

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Betails	
Product Status	Obsolete
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	75
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 20x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21388snfp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4 Pin Assignment

Figure 1.3 shows Pin Assignment (Top View). Tables 1.4 to 1.9 list the Pin Name Information by Pin Number.

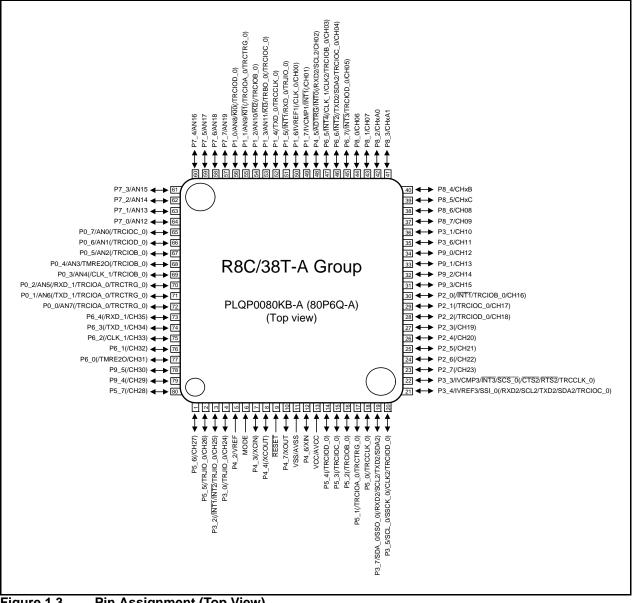


Figure 1.3 Pin Assignment (Top View)

Port	Dia Ma	INT					UAI	RT0			UART2								
Port	Pin No.	INT0	INT1	INT2	INT3	INT4	TXD_0	TXD_1	RXD_0	RXD_1	CLK_0	CLK_1	TXD2	RXD2	CTS2	RTS2	SDA2	SCL2	CLK2
P8_0	44																		
P8_1	43																		
P8_2	42																		
P8_3	41																		
P8_4	40																		
P8_5	39																		
P8_6	38																		
P8_7	37																		
P9_0	34																		
P9_1	33																		
P9_2	32																		
P9_3	31																		
P9_4	79																		
P9_5	78																		

Table 1.5 Pin Name Information by Pin Number (INT, URAT0, and UART2) (2)

	SSU//2C Timer RJ Timer RB2									
Port	Pin No.	SCL_0	SDA_0	SSL_0	SCS_0	SSCK_0	SSO_0	TRJO_0	TRJIO_0	Timer RB2 TRBO_0
P0_0	72	002_0	ODA_0	001_0	000_0		000_0	1100_0	11010_0	1120_0
P0_1	71									
P0_2	70									
P0_3	69									
P0_4	68									
P0_5	67									
P0_6	66									
P0_7	65									
P1_0 P1_1	56 55									
P1_2	54									
P1_3	53									TRBO_0
P1_4	52									_
P1_5	51								TRJIO_0	
P1_6	50									
P1_7	49									
P2_0	30									
P2_1	29									
P2_2	28									
P2_3	27									
P2_4 P2_5	26 25									
P2_5	23									
P2_7	23									
P3_0	4							TRJO_0		
P3_1	36									
P3_2	3								TRJIO_0	
P3_3	22				SCS_0					
P3_4	21			SSI_0						
P3_5	20	SCL_0				SSCK_0				
P3_6	35		054.0				000 0			
P3_7 P4_2	19 5		SDA_0				SSO_0			
P4_2	7									
P4_4	8									
P4_5	48									
P4_6	12									
P4_7	10									
P5_0	18									
P5_1	17									
P5_2	16									
P5_3	15									
P5_4	14								TD IIO A	
P5_5 P5_6	2								TRJIO_0	
P5_6 P5_7	80									
P6_0	77	1	1			1		1		
P6_1	76									
P6_2	75									
P6_3	74									
P6_4	73									
P6_5	47									
P6_6	46									
P6_7	45									
P7_0	64									
P7_1	63									
P7_2	62									
P7_3	61									
P7_4 P7_5	60 59									
P7_5 P7_6	59									
P7_0	57									
	57	1	1							

Table 1.6 Pin Name Information by Pin Number (SSU/I²C, Timer RJ, and Timer RB2) (1)

3. Address Space

3.1 Memory Map

Figure 3.1 shows the Memory Map. The R8C/38T-A Group has a 1-Mbyte address space from addresses 00000h to FFFFFh. Up to 32 Kbytes of the internal ROM (program ROM) is allocated at lower addresses, beginning with address 0FFFFh. The area in excess of 32 Kbytes is allocated at higher addresses, beginning with address 10000h. For example, a 64-Kbyte internal ROM is allocated at addresses 08000h to 17FFFh.

The fixed interrupt vector table is allocated at addresses 0FFDCh to 0FFFFh. The start address of each interrupt routine is stored here.

The internal ROM (data flash) is allocated at addresses 07000h to 07FFFh.

The internal RAM is allocated at higher addresses, beginning with address 00400h. For example, a 6-Kbyte internal RAM is allocated at addresses 00400h to 01BFFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged.

Special function registers (SFRs) are allocated at addresses 00000h to 02FFFh and addresses 06800h to 06FFFh. Peripheral function control registers are allocated here. All unallocated locations within the SFRs are reserved and cannot be accessed by users.

00000h SFR 002FFh 00400h Internal RAM 0XXXXh 06800h SFR (2) 0FFDCh 06FFFh Undefined instruction H 07000h Ξ Overflow Internal ROM Η **BRK** instruction (data flash) (Address match Η 07FFFh Single-step Watchdog timer, oscillation stop detection, voltage monitor 0YYYYh Address break Internal ROM (Reserved) (program ROM) Reset OFFFF 0FFFFh Internal ROM (program ROM) ZZZZZł FFFFF Notes: 1. Data flash indicates block A (1 Kbyte), block B (1 Kbyte), block C (1 Kbyte), and block D (1 Kbyte). 2. Addresses 06800h to 06FFFh are used for the ELC, DTC, and TSCU SFR areas. 3. The blank areas are reserved. No access is allowed. Internal ROM Internal RAM Part Number Capacity Address 0YYYYh Address ZZZZZh Capacity Address 0XXXXh R5F21388SNFP, R5F21388SDFP 64 Kbytes 08000h 17FFFh 6 Kbytes 01BFFh R5F21388SNFP, R5F21388SDFP 96 Kbytes 08000h 1FFFFh 8 Kbytes 023FFh R5F21388SNFP, R5F21388SDFP 128 Kbytes 08000h 27FFFh 10 Kbytes 02BFFh

Figure 3.1 Memory Map

R01DS0081EJ0100 Rev.1.00 Dec 09, 2011

Address	Symbol	Register Name	After Reset	Remarks
000FAh				
00FBh				
00FCh				
00FDh				
00FEh				
000FFh				
00100h				
00101h				
00102h				
00103h				
00104h				
00105h				
00106h				
00107h				
00108h				
00109h				
0010Ah				
010Bh				
010Ch				
0010Dh				
0010Eh				
0010Fh				
00110h	TRJ_0	Timer RJ_0 Counter Register	FFFFh	
00111h				
00112h	TRJCR_0	Timer RJ_0 Control Register	00h	
00113h	TRJIOC_0	Timer RJ_0 I/O Control Register	00h	
00114h	TRJMR_0	Timer RJ_0 Mode Register	00h	
00115h	TRJISR_0	Timer RJ_0 Event Pin Select Register	00h	
00116h				
00117h				
00118h				
00119h				
0011Ah				
0011Bh				
0011Ch				
0011Dh				
0011Eh				
0011Fh				
00120h				
00121h				
00122h				
00123h				
00124h				
00125h				
00126h				
00127h				
00128h				
00129h				
0012Ah				
0012Bh				
0012Ch				
012Dh				
)012Eh				
0012Fh				
00130h	TRBCR_0	Timer RB2_0 Control Register	00h	
00131h	TRBOCR_0	Timer RB2_0 One-Shot Control Register	00h	
00132h	TRBIOC_0	Timer RB2_0 I/O Control Register	00h	
00133h	TRBMR_0	Timer RB2_0 Mode Register	00h	
00134h	TRBPRE_0	Timer RB2_0 Prescaler Register	FFh	
00135h	TRBPR_0	Timer RB2_0 Primary Register	FFh	
00136h	TRBSC_0	Timer RB2_0 Secondary Register	FFh	
00137h	TRBIR_0	Timer RB2_0 Interrupt Request Register	00h	
00138h	TRCCNT_0	Timer RC_0 Counter	0000h	

Table 3.5SFR Information (5) (1)

00139h Note:

Address	Symbol	Register Name	After Reset	Remarks
0013Ah	TRCGRA_0	Timer RC_0 General Register A	FFFFh	
0013Bh				
0013Ch	TRCGRB_0	Timer RC_0 General Register B	FFFFh	
0013Dh				
0013Eh	TRCGRC_0	Timer RC_0 General Register C	FFFFh	
0013Fh				
00140h	TRCGRD_0	Timer RC_0 General Register D	FFFFh	
00140h	INCOND_0			
	TRCMR_0	Timer RC_0 Mode Register	01001000b	
	TRCCR1_0	Timer RC_0 Control Register 1	00h	
00144h	TRCIER_0	Timer RC_0 Interrupt Enable Register	01110000b	
00145h	TRCSR_0	Timer RC_0 Status Register	01110000b	
	TRCIOR0_0	Timer RC_0 I/O Control Register 0	10001000b	
	TRCIOR1_0	Timer RC_0 I/O Control Register 1	10001000b	
		Timer RC_0 Control Register 2	00011000b	-
	TRCCR2_0			
	TRCDF_0	Timer RC_0 Digital Filter Function Select Register	00h	
	TRCOER_0	Timer RC_0 Output Enable Register	0111111b	
0014Bh	TRCADCR_0	Timer RC_0 A/D Conversion Trigger Control Register	11110000b	
	TRCOPR_0	Timer RC_0 Output Waveform Manipulation Register	00h	
0014Dh	TRCELCCR_0	Timer RC_0 ELC Cooperation Control Register	00h	1
0014Dh				
		+		
0014Fh				
00150h				
00151h				
00152h				
00153h				
00154h				
00155h				
00156h				
00157h				
00158h				
00159h				
0015Ah				
0015Bh				
0015Ch				
0015Dh				
0015Eh				
0015Fh				
00160h				
00161h				
00162h				
00102h				
00164h				
00165h				
00166h				
00167h				
00168h				
00169h				
00169h				
0016Bh				
0016Ch				
0016Dh				
0016Eh				
0016Fh			1	
00170h	TRESEC	Timer RE2 Counter Data Register	00h	
0017011	INLOLU			
00171	TOCMIN	Timer RE2 Second Data Register	0.01	
00171h	TREMIN	Timer RE2 Compare Data Register	00h	
		Timer RE2 Minute Data Register		
00172h	TREHR	Timer RE2 Hour Data Register	00h	
	TREWK	Timer RE2 Day-of-the-Week Data Register	00h	1
	TREDY	Timer RE2 Day Data Register	00000001b	
	TREMON	Timer RE2 Month Data Register	0000001b	-
	TREYR	Timer RE2 Year Data Register	00h	
	TRECR	Timer RE2 Control Register	00000100b	
00178h	TRECSR	Timer RE2 Count Source Select Register	00001000b	
	TREADJ	Timer RE2 Clock Error Correction Register	00h	

Table 3.6SFR Information (6) (1)

Note:

Address	Symbol	Register Name	After Reset	Remarks
00280h	DTCTL	DTC Activation Control Register	00h	
00281h				
00282h				
00283h				
00284h				
00285h				
00286h				
00200h				
00287h	DTCEN0	DTC Activation Enable Register 0	00h	
00289h	DTCEN1	DTC Activation Enable Register 1	00h	
0028Ah	DTCEN2	DTC Activation Enable Register 2	00h	
0028Bh	DTCEN3	DTC Activation Enable Register 3	00h	
0028Ch				
0028Dh	DTCEN5	DTC Activation Enable Register 5	00h	
0028Eh	DTCEN6	DTC Activation Enable Register 6	00h	
0028Fh				
00290h	CRCSAR	SFR Snoop Address Register	0000h	
00291h				
00292h	CRCMR	CRC Control Register	00h	
00293h	0.10111			
00293h	CRCD	CRC Data Register	0000h	
	GROD	UNU Dala Negisiei	000011	
00295h	CDCIN	CDC Innut Degister	005	
00296h	CRCIN	CRC Input Register	00h	l
00297h				
00298h				
00299h				
0029Ah				
0029Bh				
0029Ch				
0029Dh				
0029Eh				
0029Fh				
0023111 002A0h	TRJ_0SR	Timer RJ_0 Pin Select Register	08h	
	TKJ_USK		0811	
002A1h				
002A2h				
002A3h				
002A4h				
002A5h	TRCCLKSR	Timer RCCLK Pin Select Register	00h	
002A6h	TRC_0SR0	Timer RC_0 Pin Select Register 0	00h	
002A7h	TRC_0SR1	Timer RC_0 Pin Select Register 1	00h	
002A8h				
002A9h				
002AAh				
002AAn 002ABh				
002ABN 002ACh				ł
	TIMOD	Timer Die Select Degister	0.04	
002ADh	TIMSR	Timer Pin Select Register	00h	
002AEh	U_0SR	UART0_0 Pin Select Register	00h	
002AFh	U_1SR	UART0_1 Pin Select Register	00h	
002B0h				
002B1h				
002B2h	U2SR0	UART2 Pin Select Register 0	00h	
002B3h	U2SR1	UART2 Pin Select Register 1	00h	
002B4h				1
002B5h				1
002B6h	INTSR0	INT Interrupt Input Pin Select Register 0	00h	1
002B011 002B7h				ł
002B8h	DINIOS			
002B9h	PINSR	I/O Function Pin Select Register	00h	1
002BAh				
002BBh				
002BCh				1
002BCh 002BDh				
	PMCSEL	Pin Assignment Select Register	00h	

Table 3.9SFR Information (9) (1)

Note:

Address	Symbol	Register Name	After Reset	Remarks
	On-chip RAM	On-chip RAM		
to				
053FFh				
05400h				
to				
069FFh				
	ELSELR0	Event Output Destination Select Register 0	00h	
	ELSELR1	Event Output Destination Select Register 1	00h	
	ELSELR2	Event Output Destination Select Register 2	00h	
	ELSELR3	Event Output Destination Select Register 3	00h	
	ELSELR4	Event Output Destination Select Register 4	00h	
06A05h				
06A06h				
06A07h				
	ELSELR8	Event Output Destination Select Register 8	00h	
	ELSELR9	Event Output Destination Select Register 9	00h	
06A0Ah				
	ELSELR11	Event Output Destination Select Register 11	00h	
	ELSELR12	Event Output Destination Select Register 12	00h	
	ELSELR13	Event Output Destination Select Register 13	00h	
	ELSELR14	Event Output Destination Select Register 14	00h	
	ELSELR15	Event Output Destination Select Register 15	00h	
	ELSELR16	Event Output Destination Select Register 16	00h	
06A11h				
06A12h				
06A13h				
06A14h				
06A15h				
06A16h				
06A17h				
06A18h				
06A19h				
06A1Ah				
06A1Bh				
06A1Ch				
06A1Dh				
06A1Eh				
06A1Fh				
06A20h				
06A21h				
06A22h				
06A23h				
06A24h				
06A25h				
06A26h				
06A27h				
06A28h				
06A29h				
06A2Ah				
06A2Bh				
06A2Ch				
06A2Dh				
06A2Eh				
06A2Fh				
06A30h				
06A31h				
to				
06AFFh				1

SFR Information (11) ⁽¹⁾ Table 3.11

	0 1 1			
Address	Symbol	Register Name		marks
06C4Ah	DTCCT1	DTC Transfer Count Register 1	XXh	
06C4Bh	DTRLD1	DTC Transfer Count Reload Register 1	XXh	
06C4Ch	DTSAR1	DTC Source Address Register 1	XXXXh	
06C4Dh				
06C4Eh	DTDAR1	DTC Destination Address Register 1	XXXXh	
06C4Fh				
06C50h	DTCCR2	DTC Control Register 2	XXh	
06C51h	DTBLS2	DTC Block Size Register 2	XXh	
06C52h	DTCCT2	DTC Transfer Count Register 2	XXh	
06C53h	DTRLD2	DTC Transfer Count Reload Register 2	XXh	
06C54h	DTSAR2	DTC Source Address Register 2	XXXXh	
06C55h				
06C56h	DTDAR2	DTC Destination Address Register 2	XXXXh	
06C57h				
06C58h	DTCCR3	DTC Control Register 3	XXh	
06C59h	DTBLS3	DTC Block Size Register 3	XXh	
06C5Ah	DTCCT3	DTC Transfer Count Register 3	XXh	
06C5Bh	DTRLD3		XXh	
		DTC Transfer Count Reload Register 3		-
06C5Ch	DTSAR3	DTC Source Address Register 3	XXXXh	
06C5Dh				
06C5Eh	DTDAR3	DTC Destination Address Register 3	XXXXh	
06C5Fh				· · · ·
06C60h	DTCCR4	DTC Control Register 4	XXh	
06C61h	DTBLS4	DTC Block Size Register 4	XXh	
06C62h	DTCCT4	DTC Transfer Count Register 4	XXh	
06C63h	DTRLD4	DTC Transfer Count Reload Register 4	XXh	
06C64h	DTSAR4	DTC Source Address Register 4	XXXXh	
06C65h				
06C66h	DTDAR4	DTC Destination Address Register 4	XXXXh	
06C67h				
06C68h	DTCCR5	DTC Control Register 5	XXh	
06C69h	DTBLS5	DTC Block Size Register 5	XXh	
06C6Ah	DTCCT5	DTC Transfer Count Register 5	XXh	
06C6Bh	DTRLD5		XXh	
		DTC Transfer Count Reload Register 5		
06C6Ch	DTSAR5	DTC Source Address Register 5	XXXXh	
06C6Dh				
06C6Eh	DTDAR5	DTC Destination Address Register 5	XXXXh	
06C6Fh				
06C70h	DTCCR6	DTC Control Register 6	XXh	
06C71h	DTBLS6	DTC Block Size Register 6	XXh	
06C72h	DTCCT6	DTC Transfer Count Register 6	XXh	
06C73h	DTRLD6	DTC Transfer Count Reload Register 6	XXh	
06C73h	DTSAR6	DTC Source Address Register 6	XXXXh	
	DISARO	DTC Source Address Register 6	~~~~	
06C75h				
06C76h	DTDAR6	DTC Destination Address Register 6	XXXXh	
06C77h				
06C78h	DTCCR7	DTC Control Register 7	XXh	
06C79h	DTBLS7	DTC Block Size Register 7	XXh	
06C7Ah	DTCCT7	DTC Transfer Count Register 7	XXh	
06C7Bh	DTRLD7	DTC Transfer Count Reload Register 7	XXh	
06C7Bh	DTSAR7	DTC Source Address Register 7	XXXXh	
	DISARI	DIG Source Address Register /		
06C7Dh				
06C7Eh	DTDAR7	DTC Destination Address Register 7	XXXXh	
06C7Fh				
06C80h	DTCCR8	DTC Control Register 8	XXh	
06C81h	DTBLS8	DTC Block Size Register 8	XXh	
06C82h	DTCCT8	DTC Transfer Count Register 8	XXh	
06C83h	DTRLD8	DTC Transfer Count Reload Register 8	XXh	
06C84h	DTSAR8	DTC Source Address Register 8	XXXXh	
06C85h				
06C86h	DTDAR8	DTC Destination Address Register 8	XXXXh	
06C87h				
06C88h	DTCCR9	DTC Control Register 9	XXh	
06C89h	DTBLS9	DTC Block Size Register 9	XXh	
06C8Ah	DTCCT9	DTC Transfer Count Register 9	XXh	
06C8Bh	DTRLD9	DTC Transfer Count Reload Register 9	XXh	
06C8Ch	DTSAR9	DTC Source Address Register 9	XXXXh	
06C8Dh				
06C8Eh	DTDAR9	DTC Destination Address Register 9	XXXXh	
06C8Fh				
X: Undefine	d			
X. Undefine				

Table 3.14SFR Information (14) (1)

Note:

Address	Symbol	Register Name	After Reset	Remarks
06C90h	DTCCR10	DTC Control Register 10	XXh	rtomanto
06C91h	DTBLS10	DTC Block Size Register 10	XXh	
06C92h	DTCCT10	DTC Transfer Count Register 10	XXh	
06C93h	DTRLD10	DTC Transfer Count Reload Register 10	XXh	
06C94h	DTSAR10	DTC Source Address Register 10	XXXXh	
06C95h				
06C96h	DTDAR10	DTC Destination Address Register 10	XXXXh	
06C97h	DIDINITIO			
06C98h	DTCCR11	DTC Control Register 11	XXh	
06C99h	DTBLS11	DTC Block Size Register 11	XXh	
06C9Ah	DTCCT11	DTC Transfer Count Register 11	XXh	
06C9Bh	DTRLD11	DTC Transfer Count Reload Register 11	XXh	
06C9Ch	DTSAR11	DTC Source Address Register 11	XXXXh	
06C9Dh	210/111			
06C9Eh	DTDAR11	DTC Destination Address Register 11	XXXXh	
06C9Fh	DIDNIT		70000ii	
06CA0h	DTCCR12	DTC Control Register 12	XXh	
06CA0h	DTBLS12	DTC Block Size Register 12	XXh	
06CA1h	DTCCT12	DTC Transfer Count Register 12	XXh	
06CA3h	DTRLD12	DTC Transfer Count Reload Register 12	XXh	
06CA3h 06CA4h	DTSAR12	DTC Source Address Register 12	XXXXh	
06CA4h 06CA5h	DIGARIZ	DIO Source Address Register 12	^^^^	
	DTDAR12	DTC Destination Address Desister 12	V V V V L	
06CA6h 06CA7h	DIDARIZ	DTC Destination Address Register 12	XXXXh	
	DTOOD40	DTO Operatoral De existen 40	XXL	
06CA8h	DTCCR13	DTC Control Register 13	XXh	
06CA9h	DTBLS13	DTC Block Size Register 13	XXh	
06CAAh	DTCCT13	DTC Transfer Count Register 13	XXh	
06CABh	DTRLD13	DTC Transfer Count Reload Register 13	XXh	
06CACh	DTSAR13	DTC Source Address Register 13	XXXXh	
06CADh	B704040		20004	
06CAEh	DTDAR13	DTC Destination Address Register 13	XXXXh	
06CAFh	BT005//			
06CB0h	DTCCR14	DTC Control Register 14	XXh	
06CB1h	DTBLS14	DTC Block Size Register 14	XXh	
06CB2h	DTCCT14	DTC Transfer Count Register 14	XXh	
06CB3h	DTRLD14	DTC Transfer Count Reload Register 14	XXh	
06CB4h	DTSAR14	DTC Source Address Register 14	XXXXh	
06CB5h			20000	
06CB6h	DTDAR14	DTC Destination Address Register 14	XXXXh	
06CB7h				
06CB8h	DTCCR15	DTC Control Register 15	XXh	
06CB9h	DTBLS15	DTC Block Size Register 15	XXh	
06CBAh	DTCCT15	DTC Transfer Count Register 15	XXh	
06CBBh	DTRLD15	DTC Transfer Count Reload Register 15	XXh	
06CBCh	DTSAR15	DTC Source Address Register 15	XXXXh	
06CBDh	DTD 4 D 4 -		20004	
06CBEh	DTDAR15	DTC Destination Address Register 15	XXXXh	
06CBFh	B7000/-			
06CC0h	DTCCR16	DTC Control Register 16	XXh	
06CC1h	DTBLS16	DTC Block Size Register 16	XXh	
06CC2h	DTCCT16	DTC Transfer Count Register 16	XXh	
06CC3h	DTRLD16	DTC Transfer Count Reload Register 16	XXh	
06CC4h	DTSAR16	DTC Source Address Register 16	XXXXh	
06CC5h	DTD 4 5		20004	
06CC6h	DTDAR16	DTC Destination Address Register 16	XXXXh	
06CC7h				
06CC8h	DTCCR17	DTC Control Register 17	XXh	
06CC9h	DTBLS17	DTC Block Size Register 17	XXh	
06CCAh	DTCCT17	DTC Transfer Count Register 17	XXh	
06CCBh	DTRLD17	DTC Transfer Count Reload Register 17	XXh	
06CCCh	DTSAR17	DTC Source Address Register 17	XXXXh	
06CCDh				
06CCEh	DTDAR17	DTC Destination Address Register 17	XXXXh	
06CCFh				
V: Undofino				

Table 3.15SFR Information (15) (1)

X: Undefined

Note:

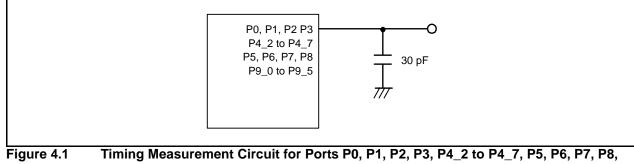
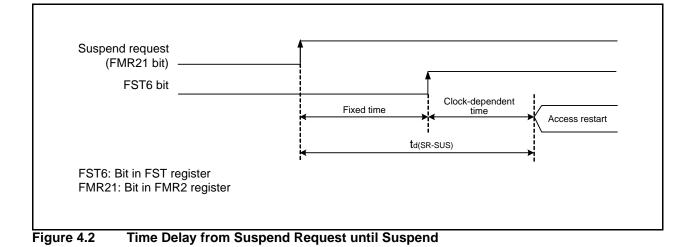

4.2 Recommended Operating Conditions

Table 4.2Recommended Operating Conditions (1)
(Vcc = 1.8 V to 5.5 V, Topr = -20°C to 85°C (N version)/-40°C to 85°C (D version),
unless otherwise specified)

Symbol		D			Operativity		Standard		11.2
Symbol		Pa	rameter		Conditions	Min.	Тур.	Max.	Unit
Vcc/AVcc	Supply volta	ige				1.8	_	5.5	V
Vss/AVss	Supply volta					_	0	_	V
Vih	Input high	Other than	CMOS input			0.8Vcc		Vcc	V
	voltage	CMOS	Input level	Input level	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0.5Vcc	_	Vcc	V
		input	switching	selection:	$2.7 \text{ V} \le \text{Vcc} < 4.0 \text{ V}$	0.55Vcc	_	Vcc	V
			function	0.35Vcc	$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	0.65Vcc	_	Vcc	V
			(I/O port)	Input level	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0.65Vcc	_	Vcc	V
				selection:	$2.7 \text{ V} \le \text{Vcc} < 4.0 \text{ V}$	0.7Vcc	_	Vcc	V
				0.5Vcc	$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	0.8Vcc	_	Vcc	V
				Input level	4.0 V ≤ Vcc ≤ 5.5 V	0.85Vcc	_	Vcc	V
				selection:	$2.7 \text{ V} \leq \text{Vcc} < 4.0 \text{ V}$	0.85Vcc	_	Vcc	V
				0.7Vcc	$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	0.85Vcc	_	Vcc	V
		External clo	ck input (XOL	JT)		1.2	_	Vcc	V
VIL	Input low		CMOS input	,		0	_	0.2Vcc	V
	voltage	CMOS	Input level	Input level	4.0 V ≤ Vcc ≤ 5.5 V	0	_	0.2Vcc	V
	0	input	switching	selection:	$2.7 \text{ V} \leq \text{Vcc} < 4.0 \text{ V}$	0	_	0.2Vcc	V
			function	0.35Vcc	$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	0	_	0.2Vcc	V
			(I/O port)	Input level	$4.0 V \le Vcc \le 5.5 V$	0	_	0.4Vcc	v
				selection:	$2.7 \text{ V} \le \text{Vcc} < 4.0 \text{ V}$	0	_	0.3Vcc	V
				0.5Vcc	$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	0	_	0.2Vcc	v
				Input level	$4.0 V \le Vcc \le 5.5 V$	0		0.55Vcc	V
				selection:	$4.0 V \le 100 \le 0.0 V$ $2.7 V \le Vcc < 4.0 V$	0	_	0.45Vcc	v
				0.7Vcc	$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	0	_	0.35Vcc	V
		External clo	ck input (XOL		1.0 V = V00 < 2.7 V	0		0.4	V
IOH(sum)	Peak sum o		• •	ins IOH(peak)			_	-80	mA
ion (sum)	current	aipar ngn	oun or un p	ino ion(peak)				00	
IOH(sum)		m output high	Sum of all pins IOH(avg)			—	—	-40	mA
	current								
IOH(peak)	Peak output	t high current		capacity is low		—		-10	mA
			When drive capacity is high			—	—	-40	mA
IOH(avg)	Average out	tput high	When drive capacity is low When drive capacity is high			—	—	-5	mA
	current					—	_	-20	mA
IOL(sum)	Peak sum o current	utput low	Sum of all p	ins IOL(peak)		-	-	80	mA
IOL(sum)		m output low	Sum of all p	ins IOL(avg)		1 –	_	40	mA
	current	low ourroat	When drive	aanaaitu ia lauu				10	
IOL(peak)	Peak output	low current		capacity is low		_			mA
1		la est la est		capacity is high		_	_	40	mA
IOL(avg)	Average out	iput low		capacity is low		—	—	5	mA
	current			capacity is high		—	_	20	mA
f(XIN)	XIN Clock in	put oscillation	rrequency		$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	-	—	20	MHz
					$1.8 V \le Vcc < 2.7 V$	—	_	5	MHz
f(XCIN)		input oscillatio			$1.8 V \le Vcc \le 5.5 V$	-	32.768	50	kHz
fHOCO		e for timer RC			$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	32	—	40	MHz
fHOCO-F	fHOCO-F fr	equency			$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	—	_	20	MHz
					$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$		_	5	MHz
	System cloc	k frequency			$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	—	_	20	MHz
					1.8 V ≤ Vcc < 2.7 V	—	_	5	MHz
f(BCLK)	CPU clock f	requency			$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	—	_	20	MHz
					$1.8~V \leq Vcc < 2.7~V$	—	—	5	MHz


Note:

1. The average output current indicates the average value of current measured during 100 ms.

and P9_0 to P9_5

Table 4.7Voltage Detection 0 Circuit Characteristics
(Measurement conditions: Vcc = 1.8 V to 5.5 V, Topr = -20°C to 85°C (N version)/
-40°C to 85°C (D version))

Symbol	Parameter	Conditions		Unit			
Symbol	Faranielei	Conditions	Min.	Тур.	Max.	Unit	
Vdet0	Voltage detection level Vdet0_0 ⁽¹⁾	When Vcc falls	1.80	1.90	2.05	V	
	Voltage detection level Vdet0_1 (1)	When Vcc falls	2.15	2.35	2.55	V	
	Voltage detection level Vdet0_2 (1)	When Vcc falls	2.70	2.85	3.05	V	
	Voltage detection level Vdet0_3 (1)	When Vcc falls	3.55	3.80	4.05	V	
	Voltage detection 0 circuit response time ⁽²⁾	At the falling of Vcc from 5 V to (Vdet0 $-$ 0.1) V		6	150	μs	
_	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	-	1.5	-	μA	
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		_	—	100	μs	

Notes:

1. The voltage detection level must be selected with bits VDSEL0 and VDSEL1 in the OFS register.

2. Time until the voltage monitor 0 reset is generated after the voltage passes Vdet0.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

Table 4.8Voltage Detection 1 Circuit Characteristics
(Measurement conditions: Vcc = 1.8 V to 5.5 V, Topr = -20°C to 85°C (N version)/
-40°C to 85°C (D version))

Cumbal	Deremeter	Conditions		Standard	Max. 2.40 2.55 2.70 2.85 3.00 3.15 3.40 3.55 3.70 3.85 4.00 4.15 4.30 4.45 4.60 4.75 150	Unit
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Vdet1	Voltage detection level Vdet1_0 ⁽¹⁾	When Vcc falls	2.00	2.20	2.40	V
	Voltage detection level Vdet1_1 (1)	When Vcc falls	2.15	2.35	2.55	V
	Voltage detection level Vdet1_2 ⁽¹⁾	When Vcc falls	2.30	2.50	2.70	V
	Voltage detection level Vdet1_3 ⁽¹⁾	When Vcc falls	2.45	2.65	2.85	V
	Voltage detection level Vdet1_4 (1)	When Vcc falls	2.60	2.80	3.00	V
	Voltage detection level Vdet1_5 ⁽¹⁾	When Vcc falls	2.75	2.95	3.15	V
	Voltage detection level Vdet1_6 ⁽¹⁾	When Vcc falls	2.80	3.10	3.40	V
	Voltage detection level Vdet1_7 ⁽¹⁾	When Vcc falls	2.95	3.25	3.55	V
	Voltage detection level Vdet1_8 ⁽¹⁾	When Vcc falls	3.10	3.40	3.70	V
	Voltage detection level Vdet1_9 ⁽¹⁾	When Vcc falls	3.25	3.55	3.85	V
	Voltage detection level Vdet1_A (1)	When Vcc falls	3.40	3.70	4.00	V
	Voltage detection level Vdet1_B (1)	When Vcc falls	3.55	3.85	4.15	V
	Voltage detection level Vdet1_C (1)	When Vcc falls	3.70	4.00	4.30	V
	Voltage detection level Vdet1_D (1)	When Vcc falls	3.85	4.15	4.45	V
	Voltage detection level Vdet1_E (1)	When Vcc falls	4.00	4.30	4.60	V
	Voltage detection level Vdet1_F (1)	When Vcc falls	4.15	4.45	4.75	V
_	Hysteresis width at the rising of Vcc in voltage detection 1 circuit	Vdet1_0 to Vdet1_5 selected	—	0.07		V
		Vdet1_6 to Vdet1_F selected	—	0.10		V
	Voltage detection 1 circuit response time ⁽²⁾	At the falling of Vcc from 5 V to (Vdet1 $-$ 0.1) V	—	60	150	μs
—	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	—	1.7	_	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		_	—	100	μs

Notes:

1. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register.

2. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

Table 4.9Voltage Detection 2 Circuit Characteristics
(Measurement conditions: Vcc = 1.8 V to 5.5 V, Topr = -20°C to 85°C (N version)/
-40°C to 85°C (D version))

	Parameter	Conditions		Unit		
Symbol	Falanetei	Conditions	Min.	Тур.	Max.	Offic
Vdet2	Voltage detection level Vdet2_0	When Vcc falls	3.70	4.00	4.30	V
-	Hysteresis width at the rising of Vcc in voltage detection 2 circuit		_	0.1	—	μs
-	Voltage detection 2 circuit response time ⁽¹⁾	At the falling of Vcc from 5 V to (Vdet2_0 – 0.1) V	-	20	150	μs
-	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	_	1.7	_	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽²⁾			—	100	μs

Notes:

1. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.

2. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

Table 4.17DC Characteristics (4) [2.7 V \leq Vcc < 3.3 V]
(Topr = -20°C to 85°C (N version)/-40°C to 85°C (D version), unless otherwise
specified))

			Conditions						Standard (4)				
Symbol	Parameter	Oscillation			On-Chip	Oscillator		Low-Power-					Unit
			XIN (2)	XCIN	High- Speed	Low- Speed	CPU Clock	Consumption Setting	Other		Max.	-	
Icc	Power supply current ⁽¹⁾	High- speed clock mode	10 MHz	Off	Off	125 kHz	No division	-		—	3.5	10	mA
			10 MHz	Off	Off	125 kHz	Divide-by-8	-		-	1.5	7.5	mA
		High- speed on- chip	Off	Off	20 MHz (3)	125 kHz	No division	-		—	7.0	15	mA
			Off	Off	20 MHz ⁽³⁾	125 kHz	Divide-by-8	-		—	3.0	-	mA
		oscillator	Off	Off	10 MHz ⁽³⁾	125 kHz	No division	-		—	4.0	-	mA
		mode	Off	Off	10 MHz (3)	125 kHz	Divide-by-8	-		—	1.5	—	mA
			Off	Off	4 MHz ⁽³⁾	125 kHz	Divide-by-16	MSTIIC = 1 MSTTRC = 1		—	1	-	mA
		Low- speed on- chip oscillator mode	Off	Off	Off	125 kHz	Divide-by-8	FMR27 = 1 SVC0 = 0		—	90	390	μA
		Low- speed clock mode Wait mode	Off	32 kHz	Off	Off	No division	FMR27 = 1 SVC0 = 0		—	80	400	μA
			Off	32 kHz	Off	Off	No division	FMSTP = 1 SVC0 = 0	Program operation on RAM Flash memory off	—	40	-	μA
			Off	Off	Off	125 kHz	-	VCA27 = 0 VCA26 = 0 VCA25 = 0 SVC0 = 1	While a WAIT instruction is executed Peripheral clock operation	-	15	90	μA
			Off	Off	Off	125 kHz	-	VCA27 = 0 VCA26 = 0 VCA25 = 0 SVC0 = 1	While a WAIT instruction is executed Peripheral clock off	-	4	80	μA
			Off	32 kHz	Off	Off	_	VCA27 = 0 VCA26 = 0 VCA25 = 0 SVC0 = 1	While a WAIT instruction is executed Peripheral clock off	-	3.5	-	μA
		Stop mode	Off	Off	Off	Off	_	VCA27 = 0 VCA26 = 0 VCA25 = 0 CM10 = 1	Topr = 25°C Peripheral clock off	-	2.2	6.0	μA
			Off	Off	Off	Off	—	VCA27 = 0 VCA26 = 0 VCA25 = 0 CM10 = 1	Topr = 85°C Peripheral clock off	-	30	-	μA

Notes:

1. Vcc = 2.7 V to 3.3 V, single-chip mode, output pins are open, and other pins are Vss.

2. XIN is set to square wave input.

3. fHOCO-F

4. The typical value (Typ.) indicates the current value when the CPU and the memory operate.

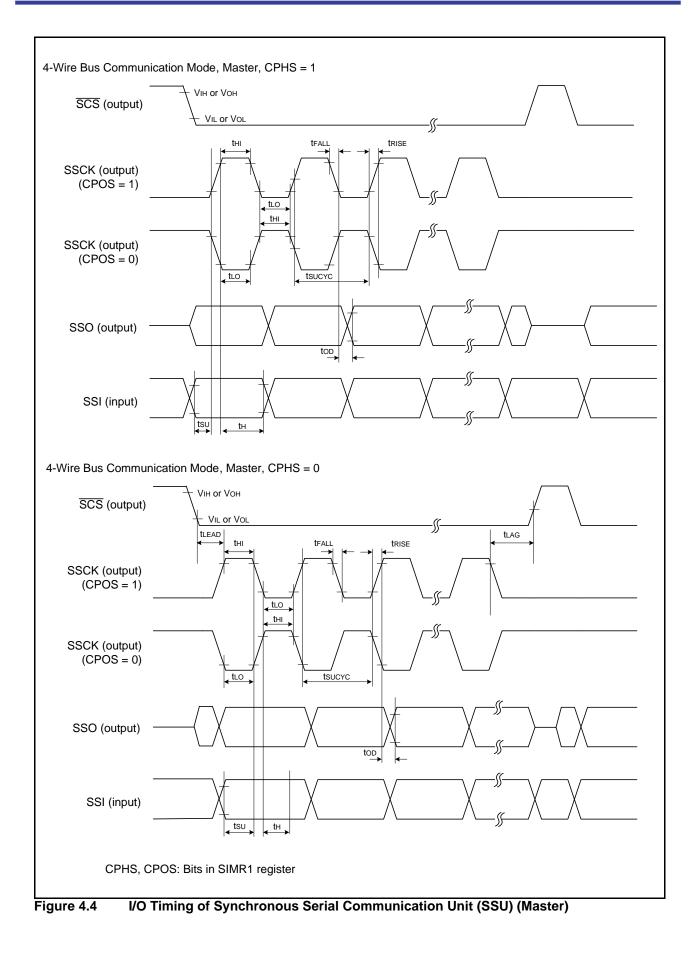
The maximum value (Max.) indicates the current value when the CPU, the memory, and the peripheral functions operate and the flash memory is programmed/erased.

Table 4.19DC Characteristics (6) [1.8 V \leq Vcc < 2.7 V]
(Topr = -20°C to 85°C (N version)/-40°C to 85°C (D version), unless otherwise
specified)

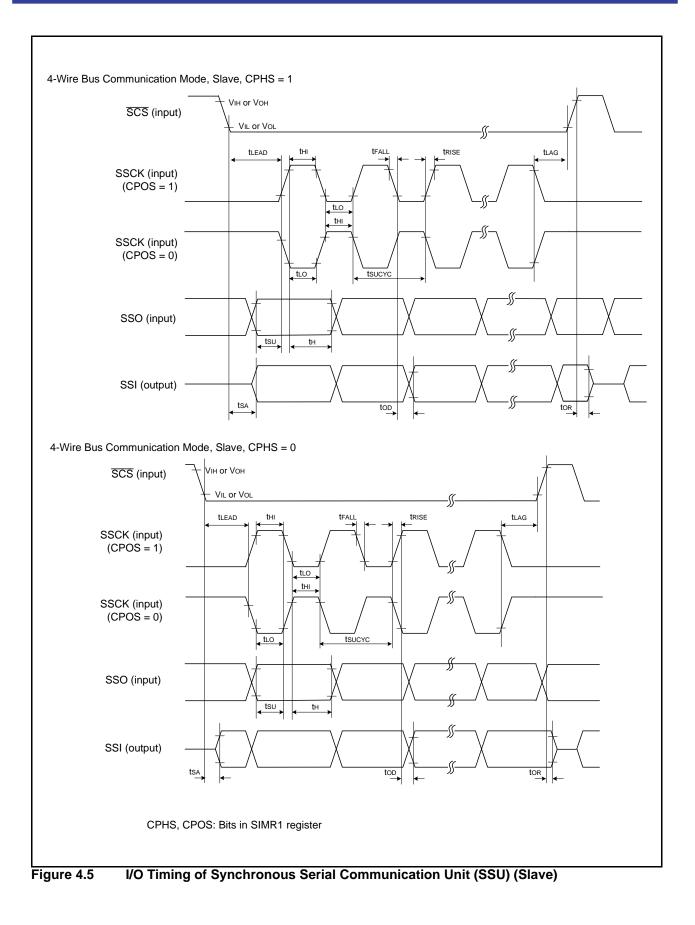
		Conditions								Sta			
Symbol	Parameter		Osci	llation	On-Chip Oscillator			Low-Power-					Unit
			XIN (2)	XCIN	High- Speed	Low- Speed	CPU Clock	Consumption Setting	Other	Min.	Тур.	Max.	0
lcc	Power supply current ⁽¹⁾	High- speed clock mode	5 MHz	Off	Off	125 kHz	No division	_		-	2.2	—	mA
			5 MHz	Off	Off	125 kHz	Divide-by-8	-		-	0.8	Ι	mA
		High-	Off	Off	5 MHz ⁽³⁾	125 kHz	No division	_		—	2.5	10	mA
		speed on- chip oscillator mode	Off	Off	5 MHz ⁽³⁾	125 kHz	Divide-by-8	—		—	1.7	-	mA
			Off	Off	4 MHz ⁽³⁾	125 kHz	Divide-by-16	MSTIIC = 1 MSTTRC = 1		-	1	-	mA
		Low- speed on- chip oscillator mode	Off	Off	Off	125 kHz	Divide-by-8	FMR27 = 1 SVC0 = 0		-	90	300	μA
		Low- speed clock mode	Off	32 kHz	Off	Off	No division	FMR27 = 1 SVC0 = 0		-	80	350	μA
		Wait mode	Off	Off	Off	125 kHz	_	VCA27 = 0 VCA26 = 0 VCA25 = 0 SVC0 = 1	While a WAIT instruction is executed Peripheral clock operation	-	15	90	μA
			Off	Off	Off	125 kHz	-	VCA27 = 0 VCA26 = 0 VCA25 = 0 SVC0 = 1	While a WAIT instruction is executed Peripheral clock off	-	4	80	μA
			Off	32 kHz	Off	Off	_	VCA27 = 0 VCA26 = 0 VCA25 = 0 SVC0 = 1	While a WAIT instruction is executed Peripheral clock off	-	3.5	—	μA
		Stop mode	Off	Off	Off	Off	-	VCA27 = 0 VCA26 = 0 VCA25 = 0 CM10 = 1	Topr = 25°C Peripheral clock off	-	2.2	6	μA
			Off	Off	Off	Off	-	VCA27 = 0 VCA26 = 0 VCA25 = 0 CM10 = 1	Topr = 85°C Peripheral clock off	-	30	_	μA

Notes:

1. Vcc = 1.8 V to 2.7 V, single-chip mode, output pins are open, and other pins are Vss.


2. XIN is set to square wave input.

3. fHOCO-F


4. The typical value (Typ.) indicates the current value when the CPU and the memory operate.

The maximum value (Max.) indicates the current value when the CPU, the memory, and the peripheral functions operate and the flash memory is programmed/erased.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renease Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renease Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or tor which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product for any application categorized as "Specific" or tor which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is expressly specified in a Renesas Electronics data sheets or data books, etc.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools
- personal electronic equipment; and industrial robots. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
- "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and mafunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and mafunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-4000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1011 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renesas Electronics Corpo GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renesas Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +480-12452-1557, Talk, Fax: +480-2485-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 204, 205, A221 A Center, No.1223 Lujiazul Ring Rd., Pudong District, Shanghai 200120, China Tel: +480-12457-17518, Fax: +480-24857-7859 Renesas Electronics Hong Kong Limited Unit 1001-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +480-2487-75580, Fax: +480-24875-9670 Renesas Electronics Taiwan Co., Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +486-2-4175-9800, Fax: +480-24175-9870 Renesas Electronics Malaysia Sdn.Bhd. Unit 100, Elock B, Menara Armcorp, Amcorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +480-2-557-9300, Fax: +480-2-4875-9510