

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

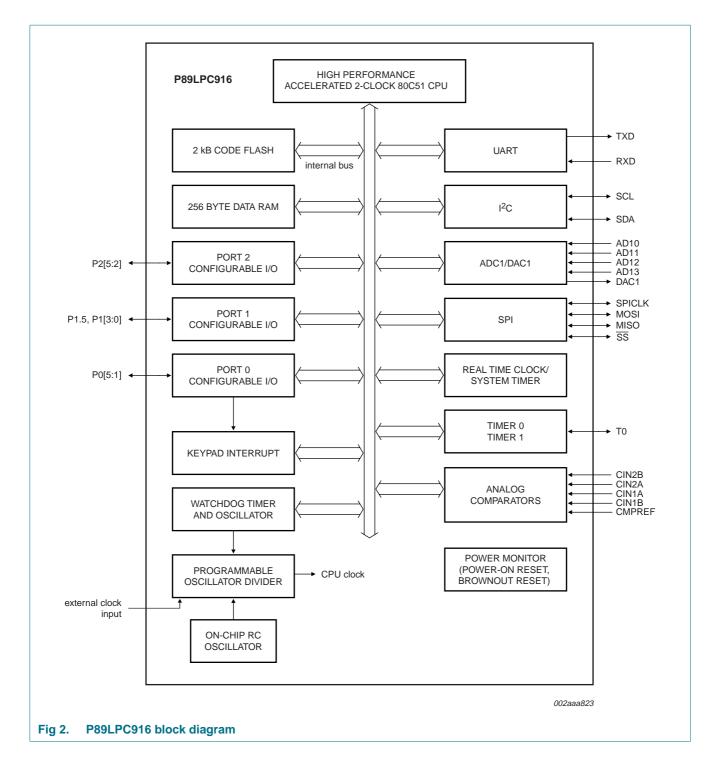
Decails	
Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	18MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	14
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 3.6V
Data Converters	A/D 4x8b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	16-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p89lpc916fdh-118

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Serial Flash In-Circuit Programming (ICP) allows simple production coding with commercial EPROM programmers. Flash security bits prevent reading of sensitive application programs.
- Watchdog timer with separate on-chip oscillator, requiring no external components. The Watchdog prescaler is selectable from 8 values.
- Low voltage brownout detect allows a graceful system shutdown when power fails. May optionally be configured as an interrupt.
- Idle and two different power-down reduced power modes. Improved wake-up from Power-down mode (a LOW interrupt input starts execution). Typical power-down current is 1 µA (total power-down with voltage comparators disabled).
- Active-LOW reset. On-chip power-on reset allows operation without external reset components. A reset counter and reset glitch suppression circuitry prevent spurious and incomplete resets. A software reset function is also available.
- Programmable port output configuration options: quasi-bidirectional, open drain, push-pull, input-only.
- Port 'input pattern match' detect. Port 0 may generate an interrupt when the value of the pins match or do not match a programmable pattern.
- LED drive capability (20 mA) on all port pins. A maximum limit is specified for the entire chip.
- Controlled slew rate port outputs to reduce EMI. Outputs have approximately 10 ns minimum ramp times.
- Only power and ground connections are required to operate the P89LPC915/916/917 when internal reset option is selected.
- Four interrupt priority levels.
- Five (P89LPC916), six (P89LPC915), or seven (P89LPC917) keypad interrupt inputs.
- Second data pointer.
- Schmitt trigger port inputs.
- Emulation support.

3. Product comparison overview

<u>Table 1</u> highlights the differences between these three devices. For a complete list of device features, please see <u>Section 2 "Features"</u>.

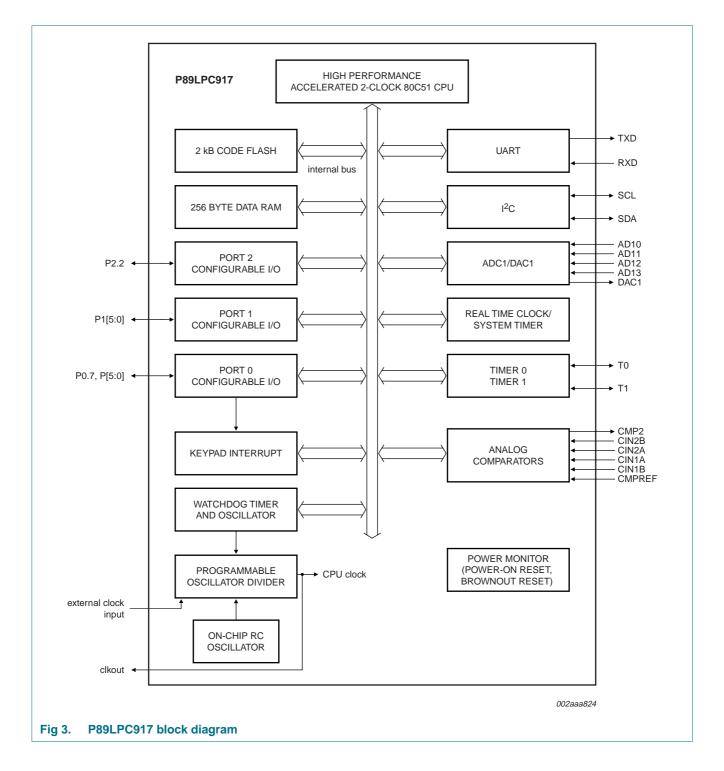

Table 1. Product comparison overview

Type number	Comparator 2 output	SPI	T1 toggle/PWM	CLKOUT	INT1	KBI
P89LPC915	Х	-	-	-	Х	6
P89LPC916	-	Х	-	-	-	5
P89LPC917	Х	-	Х	Х	Х	7

NXP Semiconductors

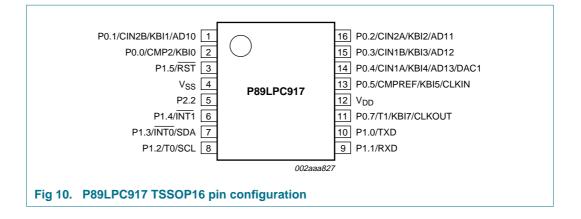
P89LPC915/916/917

8-bit microcontrollers with accelerated two-clock 80C51 core



P89LPC915_916_917_5

NXP Semiconductors


P89LPC915/916/917

8-bit microcontrollers with accelerated two-clock 80C51 core

P89LPC915_916_917_5

8-bit microcontrollers with accelerated two-clock 80C51 core

Table 7. P89LPC915 special function registers ... continued * indicates SFRs that are bit addressable. P89LPC9

Name	Description	SFR	Bit function	ons and ad	Idresses						Reset value	
		addr.	MSB							LSB	Hex	Binary
FMCON	Program flash control (F	Read) E4H	BUSY	-	-	-	HVA	HVE	SV	OI	70	0111 0000
	Program flash control (V	Vrite) E4H	FMCMD. 7	FMCMD. 6	FMCMD. 5	FMCMD. 4	FMCMD. 3	FMCMD. 2	FMCMD. 1	FMCMD. 0		
FMDATA	Program flash data	E5H									00	0000 0000
I2ADR	I ² C slave address regist	er DBH	I2ADR.6	I2ADR.5	I2ADR.4	I2ADR.3	I2ADR.2	I2ADR.1	I2ADR.0	GC	00	0000 0000
		Bit address	DF	DE	DD	DC	DB	DA	D9	D8		
I2CON*	I ² C control register	D8H	-	I2EN	STA	STO	SI	AA	-	CRSEL	00	x000 00x0
I2DAT	I ² C data register	DAH										
I2SCLH	Serial clock generator/S duty cycle register high	CL DDH									00	0000 000
I2SCLL	Serial clock generator/S duty cycle register low	CL DCH									00	0000 000
I2STAT	I ² C status register	D9H	STA.4	STA.3	STA.2	STA.1	STA.0	0	0	0	F8	1111 100
		Bit address	AF	AE	AD	AC	AB	AA	A9	A8		
IEN0*	Interrupt enable 0	A8H	EA	EWDRT	EBO	ES/ESR	ET1	EX1	ET0	EX0	00	0000 000
		Bit address	EF	EE	ED	EC	EB	EA	E9	E8		
IEN1*	Interrupt enable 1	E8H	EAD	EST	-	-	-	EC	EKBI	EI2C	00[1]	00x0 000
		Bit address	BF	BE	BD	BC	BB	BA	B9	B 8		
IP0*	Interrupt priority 0	B8H	-	PWDRT	PBO	PS/PSR	PT1	PX1	PT0	PX0	00[1]	x000 000
IP0H	Interrupt priority 0 high	B7H	-	PWDRT H	PBOH	PSH/ PSRH	PT1H	PX1H	PT0H	PX0H	00 <u>[1]</u>	x000 0000
		Bit address	FF	FE	FD	FC	FB	FA	F9	F8		
IP1*	Interrupt priority 1	F8H	PAD	PST	-	-	-	PC	PKBI	PI2C	00 <u>[1]</u>	00x0 000
IP1H	Interrupt priority 1 high	F7H	PADH	PSTH	-	-	-	PCH	PKBIH	PI2CH	00 <u>[1]</u>	00x0 000
KBCON	Keypad control register	94H	-	-	-	-	-	-	PATN _SEL	KBIF	00 <u>[1]</u>	XXXX XXOC
KBMASK	Keypad interrupt mask register	86H									00	0000 000
KBPATN	Keypad pattern register										FF	1111 111

20 of 75

Product data sheet

Table 8. P89LPC916 special function registers ... continued * indicates SFRs that are bit addressable. P89LPC

Name)	Description	SFR		ons and ac	Idresses						Rese	t value
Name			addr.	MSB							LSB	Hex	Binary
FMCO	N	Program flash control (F	Read) E4H	BUSY	-	-	-	HVA	HVE	SV	OI	70	0111 0000
		Program flash control (V	Vrite) E4H	FMCMD. 7	FMCMD. 6	FMCMD. 5	FMCMD. 4	FMCMD. 3	FMCMD. 2	FMCMD. 1	FMCMD. 0		
FMDA	TA	Program flash data	E5H									00	0000 0000
I2ADR	र	I ² C slave address regist	er DBH	I2ADR.6	I2ADR.5	I2ADR.4	I2ADR.3	I2ADR.2	I2ADR.1	I2ADR.0	GC	00	0000 0000
			Bit address	DF	DE	DD	DC	DB	DA	D9	D8		
12CON	۷*	I ² C control register	D8H	-	I2EN	STA	STO	SI	AA	-	CRSEL	00	x000 00x0
I2DAT	•	I ² C data register	DAH										
I2SCL	.H	Serial clock generator/S duty cycle register high	CL DDH									00	0000 0000
I2SCL	L	Serial clock generator/S duty cycle register low	CL DCH									00	0000 0000
I2STAT	Т	I ² C status register	D9H	STA.4	STA.3	STA.2	STA.1	STA.0	0	0	0	F8	1111 100
			Bit address	AF	AE	AD	AC	AB	AA	A9	A8		
IEN0*		Interrupt enable 0	A8H	EA	EWDRT	EBO	ES/ESR	ET1	-	ET0	EX0	00	0000 0000
			Bit address	EF	EE	ED	EC	EB	EA	E9	E8		
IEN1*		Interrupt enable 1	E8H	EAD	EST	-	-	ESPI	EC	EKBI	EI2C	00[1]	00x0 0000
			Bit address	BF	BE	BD	BC	BB	BA	B9	B8		
IP0*		Interrupt priority 0	B8H	-	PWDRT	PBO	PS/PSR	PT1	-	PT0	PX0	00[1]	x000 0000
IP0H		Interrupt priority 0 high	B7H	-	PWDRT H	PBOH	PSH/ PSRH	PT1H	-	PT0H	PX0H	00[1]	x000 0000
			Bit address	FF	FE	FD	FC	FB	FA	F9	F8		
IP1*		Interrupt priority 1	F8H	PAD	PST	-	-	PSPI	PC	PKBI	PI2C	00[1]	00x0 0000
IP1H		Interrupt priority 1 high	F7H	PADH	PSTH	-	-	PSPIH	PCH	PKBIH	PI2CH	00[1]	00x0 0000
KBCO	N	Keypad control register	94H	-	-	-	-	-	-	PATN _SEL	KBIF	00 <u>[1]</u>	xxxx xx00
kbma Kbpat	SK	Keypad interrupt mask register	86H									00	0000 0000
KBPAT	TN	Keypad pattern register										FF	1111 111

NXP Semiconductors

8-bit microcontrollers with accelerated two-clock 80C51 core P89LPC915/916/917

ights reserved. 24 of 75

Product data sheet

Table 8. P89LPC916 special function registers ... continued * indicates SFRs that are bit addressable.

Name	Description	SFR	Bit function	ons and ad	dresses						Rese	t value
		addr.	MSB							LSB	Hex	Binary
	Bit	address	87	86	85	84	83	82	81	80		
P0*	Port 0	80H	-	-	CMPREF /KB5	CIN1A /KB4	CIN1B /KB3	CIN2A /KB2	CIN2B /KB1	-	<u>[1]</u>	
	Bit	address	97	96	95	94	93	92	91	90		
P1*	Port 1	90H	-	-	RST	-	INT0/ SDA	T0/SCL	RXD	TXD	<u>[1]</u>	
	Bit	address	A7	A6	A5	A4	A3	A2	A1	A0		
P2*	Port 2	A0H	-	-	SPICLK	SS	MISO	MOSI	-	-	<u>[1]</u>	
P0M1	Port 0 output mode 1	84H	(P0M1.7)	(P0M1.6)	(P0M1.5)	(P0M1.4)	(P0M1.3)	(P0M1.2)	(P0M1.1)	(P0M1.0)	FF <u>[1]</u>	1111 11
P0M2	Port 0 output mode 2	85H	(P0M2.7)	(P0M2.6)	(P0M2.5)	(P0M2.4)	(P0M2.3)	(P0M2.2)	(P0M2.1)	(P0M2.0)	00 <mark>[1]</mark>	0000 000
P1M1	Port 1 output mode 1	91H	(P1M1.7)	(P1M1.6)	-	(P1M1.4)	(P1M1.3)	(P1M1.2)	(P1M1.1)	(P1M1.0)	D3[1]	11x1 xx1
P1M2	Port 1 output mode 2	92H	(P1M2.7)	(P1M2.6)	-	(P1M2.4)	(P1M2.3)	(P1M2.2)	(P1M2.1)	(P1M2.0)	00 <mark>[1]</mark>	00x0 xx0
P2M1	Port 2 output mode 1	A4H	-	-	(P2M1.5)	(P2M1.4)	(P2M1.3)	(P2M1.2)	-	-	FF[1]	11x1 xx1
P2M2	Port 2 output mode 2	A5H	-	-	(P2M2.5)	(P2M2.4)	(P2M2.3)	(P2M2.2)	-	-	00 <mark>[1]</mark>	00x0 xx0
PCON	Power control register	87H	SMOD1	SMOD0	BOPD	BOI	GF1	GF0	PMOD1	PMOD0	00	0000 000
PCONA	Power control register A	B5H	RTCPD	-	VCPD	ADPD	I2PD	SPPD	SPD	-	00 <mark>[1]</mark>	0000 000
	Bit	address	D7	D6	D5	D4	D3	D2	D1	D0		
PSW*	Program status word	D0H	CY	AC	F0	RS1	RS0	OV	F1	Р	00	0000 000
PT0AD	Port 0 digital input disable	F6H	-	-	PT0AD.5	PT0AD.4	PT0AD.3	PT0AD.2	PT0AD.1	-	00	xx00 000
RSTSRC	Reset source register	DFH	-	-	BOF	POF	R_BK	R_WD	R_SF	R_EX	<u>[3]</u>	
RTCCON	RTC control	D1H	RTCF	RTCS1	RTCS0	-	-	-	ERTC	RTCEN	60 <u>[1][</u> <u>6]</u>	011x xx0
RTCH	RTC register high	D2H									00 <mark>[6]</mark>	0000 000
RTCL	RTC register low	D3H									00[6]	0000 000
SADDR	Serial port address register	A9H									00	0000 000
SADEN	Serial port address enable	B9H									00	0000 000
SBUF	Serial Port data buffer regist	er 99H									xx	xxxx xxx
	Bit	address	9F	9E	9D	9C	9B	9A	99	98		
SCON*	Serial port control	98H	SM0/FE	SM1	SM2	REN	TB8	RB8	TI	RI	00	0000 000

8-bit microcontrollers with accelerated two-clock 80C51 core P89LPC915/916/917

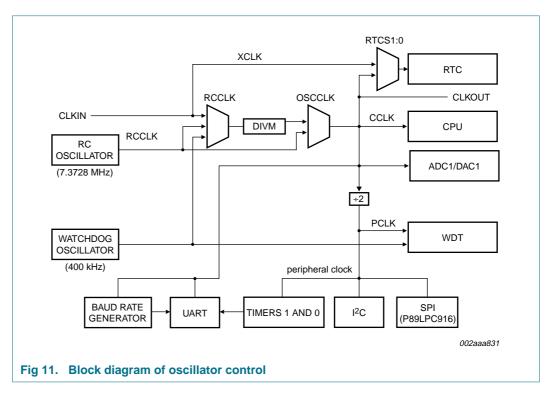
25 of 75

P89LPC9 Product data sheet

Rev. 05 15 December 2009

Table 9. P89LPC917 special function registers ... continued * indicates SFRs that are bit addressable. P89LPC9

Ν	lame	Description	SFR	Bit function	ons and ac	Idresses						Rese	t value
Ta * i N			addr.	MSB							LSB	Hex	Binary
			Bit address	87	86	85	84	83	82	81	80		
Ρ	90*	Port 0	80H	T1/KB7/ CLKOUT	-	CMPREF /KB5	CIN1A /KB4	CIN1B /KB3	CIN2A /KB2	CIN2B /KB1	CMP2 /KB0	<u>[1]</u>	
			Bit address	97	96	95	94	93	92	91	90		
Ρ	91*	Port 1	90H	-	-	RST	INT1	INT0/ SDA	T0/SCL	RXD	TXD	<u>[1]</u>	
		I	Bit address	B7	B6	B5	B 4	B 3	B2	B1	B0		
Ρ	20M1	Port 0 output mode 1	84H	(P0M1.7)	-	(P0M1.5)	(P0M1.4)	(P0M1.3)	(P0M1.2)	(P0M1.1)	(P0M1.0)	FF[1]	1111 11
Ρ	20M2	Port 0 output mode 2	85H	(P0M2.7)	-	(P0M2.5)	(P0M2.4)	(P0M2.3)	(P0M2.2)	(P0M2.1)	(P0M2.0)	00[1]	0000 00
Ρ	P1M1	Port 1 output mode 1	91H	-	-	-	(P1M1.4)	(P1M1.3)	(P1M1.2)	(P1M1.1)	(P1M1.0)	D3[1]	11x1 xx
Ρ	21M2	Port 1 output mode 2	92H	-	-	-	(P1M2.4)	(P1M2.3)	(P1M2.2)	(P1M2.1)	(P1M2.0)	00[1]	00x0 xx(
Ρ	CON	Power control register	87H	SMOD1	SMOD0	BOPD	BOI	GF1	GF0	PMOD1	PMOD0	00	0000 00
Ρ	CONA	Power control register A	B5H	RTCPD	-	VCPD	ADPD	I2PD	-	SPD	-	00[1]	0000 00
		I	Bit address	D7	D6	D5	D4	D3	D2	D1	D0		
Ρ	PSW*	Program status word	D0H	CY	AC	F0	RS1	RS0	OV	F1	Р	00	0000 00
Ρ	T0AD	Port 0 digital input disable	e F6H	-	-	PT0AD.5	PT0AD.4	PT0AD.3	PT0AD.2	PT0AD.1	-	00	xx00 000
R	RSTSRC	Reset source register	DFH	-	-	BOF	POF	R_BK	R_WD	R_SF	R_EX	<u>[3]</u>	
R	RTCCON	RTC control	D1H	RTCF	RTCS1	RTCS0	-	-	-	ERTC	RTCEN	60 <u>[1][</u> <u>6]</u>	011x xx(
R	ТСН	RTC register high	D2H									00 <mark>[6]</mark>	0000 00
R	RTCL	RTC register low	D3H									00 <mark>[6]</mark>	0000 00
S	SADDR	Serial port address regist	er A9H									00	0000 00
S	SADEN	Serial port address enabl	e B9H									00	0000 00
S	BUF	Serial Port data buffer reg	gister 99H									хх	XXXX XXX
			Bit address	9F	9E	9D	9C	9B	9A	99	98		
S	SCON*	Serial port control	98H	SM0/FE	SM1	SM2	REN	TB8	RB8	TI	RI	00	0000 00
S S S T/	STAT	Serial port extended state register	us BAH	DBMOD	INTLO	CIDIS	DBISEL	FE	BR	OE	STINT	00	0000 00
S	SP .	Stack pointer	81H									07	0000 01
	AMOD	Timer 0 and 1 auxiliary m	ode 8FH				T1M2				T0M2	00	xxx0 xxx


NXP Semiconductors

29 of 75

8.6 External clock input option

In this configuration, the processor clock is derived from an external source driving the CLKIN pin. The rate may be from 0 Hz up to 18 MHz.

When using an external clock input frequency above 12 MHz, the reset input function of P1.5 must be enabled. An external circuit is required to hold the device in reset at power-up until V_{DD} has reached its specified level. When system power is removed V_{DD} will fall below the minimum specified operating voltage. When using an external clock input frequency above 12 MHz, in some applications, an external brownout detect circuit may be required to hold the device in reset when V_{DD} falls below the minimum specified operating voltage.

8.7 CCLK wake-up delay

The P89LPC915/916/917 has an internal wake-up timer that delays the clock until it stabilizes. The delay is 224 OSCCLK cycles plus 60 μ s to 100 μ s.

8.8 CCLK modification: DIVM register

The OSCCLK frequency can be divided down up to 510 times by configuring a dividing register, DIVM, to generate CCLK. This feature makes it possible to temporarily run the CPU at a lower rate, reducing power consumption. By dividing the clock, the CPU can retain the ability to respond to events that would not exit Idle mode by executing its normal program at a lower rate. This can also allow bypassing the oscillator start-up time in cases where Power-down mode would otherwise be used. The value of DIVM may be changed by the program at any time without interrupting code execution.

8.9 Low power select

The P89LPC915/916/917 is designed to run at 18 MHz (CCLK) maximum. However, if CCLK is 8 MHz or slower, the CLKLP SFR bit (AUXR1.7) can be set to '1' to lower the power consumption further. On any reset, CLKLP is '0' allowing highest performance access. This bit can then be set in software if CCLK is running at 8 MHz or slower.

8.10 Memory organization

The various P89LPC915/916/917 memory spaces are as follows:

• DATA

128 bytes of internal data memory space (00H:7FH) accessed via direct or indirect addressing, using instructions other than MOVX and MOVC. All or part of the Stack may be in this area.

• IDATA

Indirect Data. 256 bytes of internal data memory space (00H:FFH) accessed via indirect addressing using instructions other than MOVX and MOVC. All or part of the Stack may be in this area. This area includes the DATA area and the 128 bytes immediately above it.

SFR

Special Function Registers. Selected CPU registers and peripheral control and status registers, accessible only via direct addressing.

• CODE

64 kB of Code memory space, accessed as part of program execution and via the MOVC instruction. The P89LPC915/916/917 devices have 2 kB of on-chip Code memory.

8.11 Data RAM arrangement

The 256 bytes of on-chip RAM are organized as shown in Table 10.

Туре	Data RAM	Size (bytes)
DATA	Memory that can be addressed directly and indirectly	128
IDATA	Memory that can be addressed indirectly	256

8.12 Interrupts

The P89LPC915/916/917 uses a four priority level interrupt structure. This allows great flexibility in controlling the handling of the many interrupt sources.

The P89LPC915 and P89LPC917 support 13 interrupt sources: external interrupts 0 and 1, timers 0 and 1, serial port TX, serial port RX, combined serial port RX/TX, brownout detect, watchdog/RTC, I²C-bus, keyboard, comparators 1 and 2, and ADC completion.

The P89LPC916 supports 14 interrupt sources: external interrupts 0 and 1, timers 0 and 1, serial port TX, serial port RX, combined serial port RX/TX, brownout detect, watchdog/RTC, I²C-bus, keyboard, comparators 1 and 2, SPI, and ADC completion.

In the 'Timer' function, the register is incremented every machine cycle.

In the 'Counter' function, the register is incremented in response to a 1-to-0 transition at its corresponding external input pin, T0 or T1. In this function, the external input is sampled once during every machine cycle.

Timer 0 has five operating modes (Modes 0, 1, 2, 3 and 6).

Timer 1 has four operating modes (Modes 0, 1, 2, and 3), except on the P89LPC917 where Timer 1 also has Mode 6. Modes 0, 1, 2 and 6 are the same for both Timers/Counters. Mode 3 is different.

8.17.1 Mode 0

Putting either Timer into Mode 0 makes it look like an 8048 Timer, which is an 8-bit Counter with a divide-by-32 prescaler. In this mode, the Timer register is configured as a 13-bit register. Mode 0 operation is the same for Timer 0 and Timer 1.

8.17.2 Mode 1

Mode 1 is the same as Mode 0, except that all 16 bits of the timer register are used.

8.17.3 Mode 2

Mode 2 configures the Timer register as an 8-bit Counter with automatic reload. Mode 2 operation is the same for Timer 0 and Timer 1.

8.17.4 Mode 3

When Timer 1 is in Mode 3 it is stopped. Timer 0 in Mode 3 forms two separate 8-bit counters and is provided for applications that require an extra 8-bit timer. When Timer 1 is in Mode 3 it can still be used by the serial port as a baud rate generator.

8.17.5 Mode 6

In this mode, the corresponding timer can be changed to a PWM with a full period of 256 timer clocks.

8.17.6 Timer overflow toggle output

Timer 0 (and Timer 1 on the P89LPC917) can be configured to automatically toggle a port output whenever a timer overflow occurs. The same device pins that are used for the T0 and T1 count inputs are also used for the timer toggle outputs. The port outputs will be a logic 1 prior to the first timer overflow when this mode is turned on.

8.18 RTC/system timer

The P89LPC915/916/917 have a simple RTC that allows a user to continue running an accurate timer while the rest of the device is powered down. The RTC can be a wake-up or an interrupt source. The RTC is a 23-bit down-counter comprised of a 7-bit prescaler and a 16-bit loadable down-counter. When it reaches all '0's, the counter will be reloaded again and the RTCF flag will be set.

The clock source for this counter can be either the CPU clock (CCLK) or the external clock input, provided that the external clock input is not being used as the CPU clock. If the external clock input is used as the CPU clock, then the RTC will use CCLK as its clock source. Only power-on reset will reset the RTC and its associated SFRs to the default state.

8.19 UART

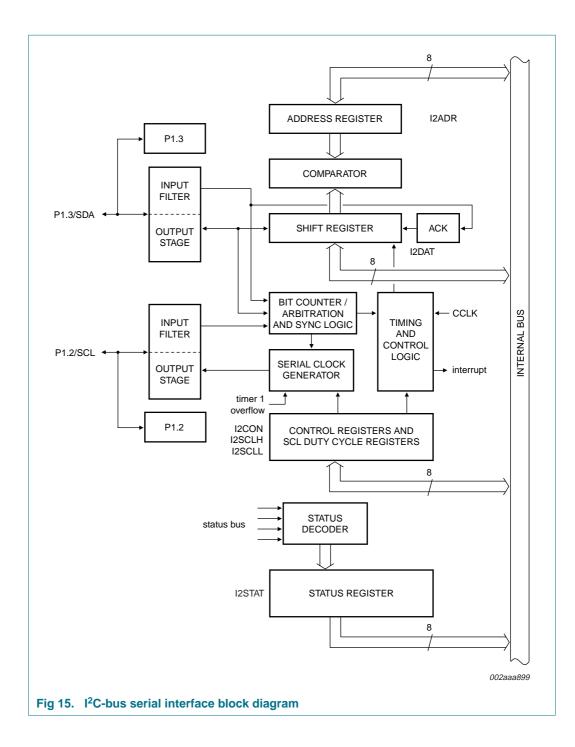
The P89LPC915/916/917 has an enhanced UART that is compatible with the conventional 80C51 UART except that Timer 2 overflow cannot be used as a baud rate source. The P89LPC915/916/917 does include an independent Baud Rate Generator. The baud rate can be selected from the oscillator (divided by a constant), Timer 1 overflow, or the independent Baud Rate Generator. In addition to the baud rate generation, enhancements over the standard 80C51 UART include Framing Error detection, automatic address recognition, selectable double buffering and several interrupt options. The UART can be operated in 4 modes: shift register, 8-bit UART, 9-bit UART, and CPU clock/32 or CPU clock/16.

8.19.1 Mode 0

Serial data enters and exits through RXD. TXD outputs the shift clock. 8 bits are transmitted or received, LSB first. The baud rate is fixed at $\frac{1}{16}$ of the CPU clock frequency.

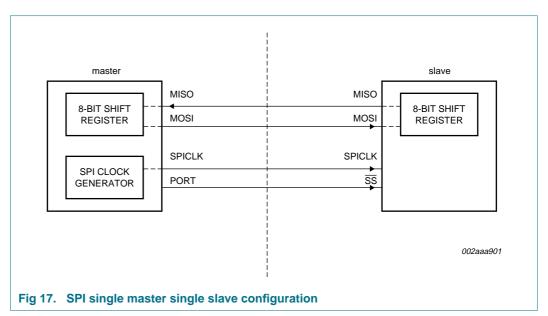
8.19.2 Mode 1

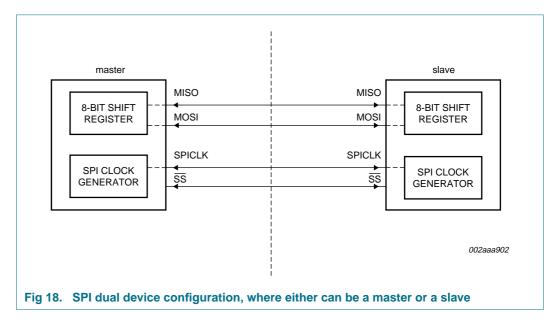
10 bits are transmitted (through TXD) or received (through RXD): a start bit (logic 0), 8 data bits (LSB first), and a stop bit (logic 1). When data is received, the stop bit is stored in RB8_n in Special Function Register SnCON. The baud rate is variable and is determined by the Timer 1 overflow rate or the Baud Rate Generator (described in <u>Section</u> <u>8.19.5 "Baud rate generator and selection"</u>).

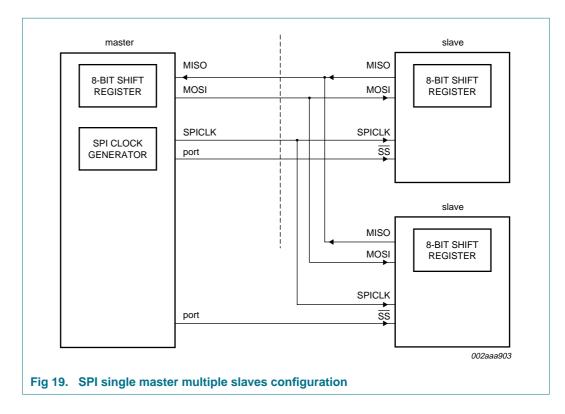

8.19.3 Mode 2

11 bits are transmitted (through TXD) or received (through RXD): start bit (logic 0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (logic 1). When data is transmitted, the 9th data bit (TB8 in SCON) can be assigned the value of '0' or '1'. Or, for example, the parity bit (P, in the PSW) could be moved into TB8. When data is received, the 9th data bit goes into RB8 in Special Function Register SCON, while the stop bit is not saved. The baud rate is programmable to either $1/_{16}$ or $1/_{32}$ of the CPU clock frequency, as determined by the SMOD1 bit in PCON. The SMOD1 bit controls the Timer 1 output rate available to the UART.

8.19.4 Mode 3


11 bits are transmitted (through TXD) or received (through RXD): a start bit (logic 0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (logic 1). In fact, Mode 3 is the same as Mode 2 in all respects except baud rate. The baud rate in Mode 3 is variable and is determined by the Timer 1 overflow rate or the Baud Rate Generator (described in Section 8.19.5 "Baud rate generator and selection").


8-bit microcontrollers with accelerated two-clock 80C51 core


8-bit microcontrollers with accelerated two-clock 80C51 core

8.21.1 Typical SPI configurations

8-bit microcontrollers with accelerated two-clock 80C51 core

8.28 User sector security bytes

There are eight User Sector Security Bytes on the P89LPC915/916/917. Each byte corresponds to one sector. Please see the P89LPC915/916/917 *User's Manual* for additional details.

9. A/D converter

9.1 General description

The P89LPC915/916/917 devices have a single 8-bit, 4-channel multiplexed analog-to-digital converter with a DAC module. A block diagram of the A/D converter is shown in <u>Figure 22</u>. The A/D consists of a 4-input multiplexer which feeds a sample-and-hold circuit providing an input signal to one of two comparator inputs. The control logic in combination with the SAR drives a digital-to-analog converter which provides the other input to the comparator. The output of the comparator is fed to the SAR.

9.2 Features

- Single 8-bit, 4-channel multiplexed input, successive approximation A/D converter.
- Four A/D result registers.
- Six operating modes:
 - Fixed channel, single conversion mode.
 - Fixed channel, continuous conversion mode.
 - Auto scan, single conversion mode.
 - Auto scan, continuous conversion mode.
 - Dual channel, continuous conversion mode.
 - Single step mode.
- Three conversion start modes:
 - Timer triggered start.
 - Start immediately.
 - Edge triggered.
- **8**-bit conversion time of \geq 3.9 µs at an A/D clock of 3.3 MHz.
- Interrupt or polled operation.
- Boundary limits interrupt.
- DAC output to a port pin with high output impedance.
- Clock divider.
- Power-down mode.

9.4.4 Auto scan, continuous conversion mode

Any combination of the four input channels can be selected for conversion. A conversion of each selected input will be performed and the result placed in the result register which corresponds to the selected input channel. An interrupt, if enabled, will be generated after all selected channels have been converted. The process will repeat starting with the first selected channel. Additional conversion results will again cycle through the four result registers, overwriting the previous results.Continous conversions continue until terminated by the user.

9.4.5 Dual channel, continuous conversion mode

This is a variation of the auto scan continuous conversion mode where conversion occurs on two user-selectable inputs. The result of the conversion of the first channel is placed in result register, AD1DAT0. The result of the conversion of the second channel is placed in result register, AD1DAT1. The first channel is again converted and its result stored in AD1DAT2. The second channel is again converted and its result placed in AD1DAT3. An interrupt is generated, if enabled, after every set of four conversions (two conversions per channel).

9.4.6 Single step mode

This special mode allows 'single-stepping' in an auto scan conversion mode. Any combination of the four input channels can be selected for conversion. After each channel is converted, an interrupt is generated, if enabled, and the A/D waits for the next start condition. May be used with any of the start modes.

9.5 Conversion start modes

9.5.1 Timer triggered start

An A/D conversion is started by the overflow of Timer 0. Once a conversion has started, additional Timer 0 triggers are ignored until the conversion has completed. The Timer triggered start mode is available in all A/D operating modes.

9.5.2 Start immediately

Programming this mode immediately starts a conversion. This start mode is available in all A/D operating modes.

9.5.3 Edge triggered

An A/D conversion is started by rising or falling edge of P1.4. Once a conversion has started, additional edge triggers are ignored until the conversion has completed. The edge triggered start mode is available in all A/D operating modes.

9.6 Boundary limits interrupt

The A/D converter has both a high and low boundary limit register. After the four MSBs have been converted, these four bits are compared with the four MSBs of the boundary high and low registers. If the four MSBs of the conversion are outside the limit an interrupt will be generated, if enabled. If the conversion result is within the limits, the boundary limits will again be compared after all 8 bits have been converted. An interrupt will be generated, if enabled, if the result is outside the boundary limits. The boundary limit may be disabled by clearing the boundary limit interrupt enable.

10. Limiting values

Table 14. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).[1]

Parameter	Conditions	Min	Max	Unit
operating bias ambient temperature		-55	+125	°C
storage temperature range		-65	+150	°C
HIGH-level output current per I/O pin		-	8	mA
LOW-level output current per I/O pin		-	20	mA
maximum total I/O current		-	120	mA
voltage on any pin (except V_{SS})	with respect to V _{DD}	-	3.5	V
total power dissipation per package	based on package heat transfer, not device power consumption	-	1.5	W
	operating bias ambient temperature storage temperature range HIGH-level output current per I/O pin LOW-level output current per I/O pin maximum total I/O current voltage on any pin (except V _{SS})	operating bias ambient temperaturestorage temperature rangeHIGH-level output current per I/O pinLOW-level output current per I/O pinmaximum total I/O currentvoltage on any pin (except V _{SS})with respect to V _{DD} total power dissipation per packagebased on package heat transfer, not device power	operating bias ambient temperature-55storage temperature range-65HIGH-level output current per I/O pin-LOW-level output current per I/O pin-maximum total I/O current-voltage on any pin (except V _{SS})with respect to V _{DD} total power dissipation per packagebased on package heat transfer, not device power	operating bias ambient temperature-55+125storage temperature range-65+150HIGH-level output current per I/O pin-8LOW-level output current per I/O pin-20maximum total I/O current-120voltage on any pin (except V _{SS})with respect to V _{DD} -total power dissipation per packagebased on package heat transfer, not device power-1.5

[1] The following applies to <u>Table 14</u>:

a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.

b) Parameters are valid over ambient temperature range unless otherwise specified. All voltages are with respect to V_{SS} unless otherwise noted.

8-bit microcontrollers with accelerated two-clock 80C51 core

Table 17. Dynamic characteristics (18 MHz)

 V_{DD} = 3.0 V to 3.6 V unless otherwise specified.

 $T_{amb} = -40 \degree C$ to +85 °C, or -40 °C to +125 °C (see <u>Table 3 on page 3</u>), unless otherwise specified.[1][2]

Symbol	Parameter	Conditions	Varia	able clock	f _{osc} = 1	Unit	
			Min	Max	Min	Max	1
osc(RC)	internal RC oscillator frequency	industrial	7.189	7.557	7.189	7.557	MHz
(-/		extended	7.004	7.741	7.004	7.741	MHz
^f osc(WD)	internal watchdog oscillator frequency		320	520	320	520	kHz
fclklp	low power select clock frequency		0	8	-	-	MHz
Glitch filte	r						
t _{gr}	glitch rejection time	P1.5/RST pin	-	50	-	50	ns
		any pin except P1.5/RST	-	15	-	15	ns
t _{sa}	signal acceptance time	P1.5/RST pin	125	-	125	-	ns
		any pin except P1.5/RST	50	-	50	-	ns
External c	lock						
f _{osc}	oscillator frequency		0	18	-	-	MHz
T _{cy(clk)}	clock cycle time	see Figure 28	55	-	-	-	ns
снсх	clock HIGH time	see Figure 28	22	$T_{cy(CLK)} - t_{CLCX}$	22	-	ns
CLCX	clock LOW time	see Figure 28	22	$T_{cy(CLK)} - t_{CHCX}$	22	-	ns
^t сlсн	clock rise time	see Figure 28	-	5	-	5	ns
^t CHCL	clock fall time	see Figure 28	-	5	-	5	ns
Shift regis	ter (UART mode 0)						
T _{XLXL}	serial port clock cycle time	see Figure 27	16T _{cy(CLK)}	-	888	-	ns
QVXH	output data set-up to clock rising edge time	see Figure 27	13T _{cy(CLK)}	-	722	-	ns
^t xhqx	output data hold after clock rising edge time	see Figure 27	-	$T_{cy(CLK)}$ + 20	-	75	ns
t _{XHDX}	input data hold after clock rising edge time	see Figure 27	-	0	-	0	ns
t _{XHDV}	input data valid to clock rising edge time	see Figure 27	150	-	150	-	ns
SPI interfa	ice						
f _{SPI}	SPI operating frequency						
	slave		0	CCLK _{/6}	0	3.0	MH:
	master		-	CCLK/4	-	4.5	MH:
T _{SPICYC}	SPI cycle time	see Figure 23, 24,					
	slave	<u>25, 26</u>	⁶ /CCLK	-	333	-	ns
	master		4/CCLK	-	222	-	ns
SPILEAD	SPI enable lead time	see Figure 25, 26					
	slave		250	-	250	-	ns
t _{SPILAG}	SPI enable lag time	see <u>Figure 25</u> , <u>26</u>	250	-	250	-	ns

8-bit microcontrollers with accelerated two-clock 80C51 core

Table 17. Dynamic characteristics (18 MHz) ...continued

 V_{DD} = 3.0 V to 3.6 V unless otherwise specified.

 $T_{amb} = -40 \degree C$ to +85 °C, or -40 °C to +125 °C (see <u>Table 3 on page 3</u>), unless otherwise specified.^{[1][2]}

Symbol	Parameter	Conditions	Varial	ole clock	f _{osc} = 1	Unit	
			Min	Max	Min	Max	
t _{SPICLKH}	SPICLK HIGH time	see <u>Figure 23</u> , <u>24</u> ,					
	master	<u>25, 26</u>	² /CCLK	-	111	-	ns
	slave		³ ⁄CCLK	-	167	-	ns
t _{SPICLKL}	SPICLK LOW time	see Figure 23, 24,					
	master	<u>25, 26</u>	² /CCLK	-	111	- - - - 80 160 111 - 111	ns
	slave		³ ⁄CCLK	-	167	-	ns
t _{SPIDSU}	SPI data set-up time	see Figure 23, 24,					
	master or slave	<u>25, 26</u>	100	-	100	Max 80 160 111 100 2000 100	ns
t _{SPIDH}	SPI data hold time	see <u>Figure 23, 24,</u>					
	master or slave	<u>25, 26</u>	100	-	100	-	ns
t _{SPIA}	SPI access time	see Figure 25, 26					
	slave		0	80	0	80	ns
t _{SPIDIS}	SPI disable time	see Figure 25, 26					
	slave		0	160	-	160	ns
t _{SPIDV}	SPI enable to output data valid time	see <u>Figure 23, 24,</u> <u>25, 26</u>				160	
	slave		-	160	-	160	ns
	master		-	111	-	111	ns
t _{SPIOH}	SPI output data hold time	see <u>Figure 23, 24,</u> <u>25, 26</u>	0	-	0	-	ns
t _{SPIR}	SPI rise time	see Figure 23, 24,				- 80 160 111 - 100 2000	
	SPI outputs (SPICLK, MOSI, MISO)	<u>25, 26</u>	-	100	-	100	ns
	SPI inputs (SPICLK, MOSI, MISO, \overline{SS})		-	2000	-	2000	ns
t _{SPIF}	SPI fall time	see Figure 23, 24,					
	SPI outputs (SPICLK, MOSI, MISO)	<u>25, 26</u>	-	100	-	100	ns
	SPI inputs (SPICLK, MOSI, MISO, SS)		-	2000	-	2000	ns

[1] Parameters are valid over ambient temperature range unless otherwise specified.

[2] Parts are tested to 2 MHz, but are guaranteed to operate down to 0 Hz.