

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MIPS32
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	266MHz
Co-Processors/DSP	-
RAM Controllers	DDR
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (1)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	· ·
Package / Case	256-LBGA
Supplier Device Package	256-CABGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/79rc32h435-266bc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Description Table

The following table lists the functions of the pins provided on the RC32435. Some of the functions listed may be multiplexed onto the same pin.

The active polarity of a signal is defined using a suffix. Signals ending with an "N" are defined as being active, or asserted, when at a logic zero (low) level. All other signals (including clocks, buses, and select lines) will be interpreted as being active, or asserted, when at a logic one (high) level.

Signal Type Name/Description										
Memory and Perip	oheral Bus									
BDIRN	0	External Buffer Direction. Controls the direction of the external data bus buffer for the memory and peripheral bus. If the RC32435 memory and peripheral bus is connected to the A side of a transceiver, such as an IDT74FCT245, then this pin may be directly connected to the direction control (e.g., BDIR) pin of the transceiver.								
BOEN	0	External Buffer Enable . This signal provides an output enable control for an external buffer on the memory and peripheral data bus.								
WEN	0	Write Enables. This signal is the memory and peripheral bus write enable signal.								
CSN[3:0]	0	Chip Selects. These signals are used to select an external device on the memory and peripheral bus.								
MADDR[21:0]	0	Address Bus. 22-bit memory and peripheral bus address bus. MADDR[25:22] are available as GPIO alternate functions.								
MDATA[7:0]	I/O	Data Bus. 8-bit memory and peripheral data bus. During a cold reset, these pins function as inputs that are used to load the boot configuration vector.								
OEN	0	Output Enable . This signal is asserted when data should be driven by an external device on the memory and peripheral bus.								
RWN	0	Read Write . This signal indicates whether the transaction on the memory and peripheral bus is a read transaction or a write transaction. A high level indicates a read from an external device. A low level indicates a write to an external device.								
WAITACKN	I	Wait or Transfer Acknowledge. When configured as wait, this signal is asserted during a memory and peripheral bus transaction to extend the bus cycle. When configured as a transfer acknowledge, this signal is asserted during a transaction to signal the completion of the transaction.								
DDR Bus										
DDRADDR[13:0]	0	DDR Address Bus. 14-bit multiplexed DDR address bus. This bus is used to transfer the addresses to the DDR devices.								
DDRBA[1:0]	0	DDR Bank Address. These signals are used to transfer the bank address to the DDRs.								
DDRCASN	0	DDR Column Address Strobe. This signal is asserted during DDR transactions.								
DDRCKE	0	DDR Clock Enable . The DDR clock enable signal is asserted during normal DDR operation. This signal is negated following a cold reset or during a power down operation.								
DDRCKN	0	DDR Negative DDR clock. This signal is the negative clock of the differential DDR clock pair.								

Table 1 Pin Description (Part 1 of 6)

Signal	Туре	Name/Description
GPIO[4]	I/O	General Purpose I/O . This pin can be configured as a general purpose I/O pin. Alternate function pin name: MADDR[22] Alternate function: Memory and peripheral bus address.
GPIO[5]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: MADDR[23] Alternate function: Memory and peripheral bus address.
GPIO[6]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: MADDR[24] Alternate function: Memory and peripheral bus address. The value of this pin may be used as a counter timer clock input (see Counter Timer Clock Select Register in Chapter 14, Counter/Timers, of the RC32435 User Manual).
GPIO[7]	Ι/Ο	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: MADDR[25] Alternate function: Memory and peripheral bus address. The value of this pin may be used as a counter timer clock input (see Counter Timer Clock Select Register in Chapter 14, Counter/Timers, of the RC32435 User Manual).
GPIO[8]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: CPU Alternate function: CPU or DMA debug output pin.
GPIO[9]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: PCIREQN[4] Alternate function: PCI Request 4.
GPIO[10]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: PCIGNTN[4] Alternate function: PCI Grant 4.
GPIO[11]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: PCIREQN[5] Alternate function: PCI Request 5.
GPIO[12]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: PCIGNTN[5] Alternate function: PCI Grant 5.
GPIO[13]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: PCIMUINTN Alternate function: PCI Messaging unit interrupt output.
SPI Interface		
SCK	I/O	Serial Clock. This signal is used as the serial clock output. This pin may be used as a bit input/output port.

Table 1 Pin Description (Part 4 of 6)

Signal	Туре	Name/Description
EJTAG_TMS	I	EJTAG Mode . The value on this signal controls the test mode select of the EJTAG Controller. When using the JTAG boundary scan, this pin should be left disconnected (since there is an internal pull-up) or driven high.
JTAG_TRST_N	I	JTAG Reset. This active low signal asynchronously resets the boundary scan logic, JTAG TAP Controller, and the EJTAG Debug TAP Controller. An external pull-up on the board is recommended to meet the JTAG specification in cases where the tester can access this signal. However, for systems running in func- tional mode, one of the following should occur: 1) actively drive this signal low with control logic 2) statically drive this signal low with an external pull-down on the board 3) clock JTAG_TCK while holding EJTAG_TMS and/or JTAG_TMS high.
JTAG_TCK	I	JTAG Clock. This is an input test clock used to clock the shifting of data into or out of the boundary scan logic, JTAG Controller, or the EJTAG Controller. JTAG_TCK is independent of the system and the processor clock with a nominal 50% duty cycle.
JTAG_TDO	0	JTAG Data Output . This is the serial data shifted out from the boundary scan logic, JTAG Controller, or the EJTAG Controller. When no data is being shifted out, this signal is tri-stated.
JTAG_TDI	I	JTAG Data Input . This is the serial data input to the boundary scan logic, JTAG Controller, or the EJTAG Controller.
System		
CLK	I	Master Clock . This is the master clock input. The processor frequency is a mul- tiple of this clock frequency. This clock is used as the system clock for all mem- ory and peripheral bus operations.
EXTBCV	I	Load External Boot Configuration Vector. When this pin is asserted (i.e., high) the boot configuration vector is loaded from an externally supplied value during a cold reset. When this pin is negated, the boot configuration vector is taken from the NVRAM located on-chip.
EXTCLK	0	External Clock. This clock is used for all memory and peripheral bus operations.
COLDRSTN	I	Cold Reset. The assertion of this signal initiates a cold reset. This causes the processor state to be initialized, boot configuration to be loaded, and the internal PLL to lock onto the master clock (CLK).
RSTN	I/O	Reset . The assertion of this bidirectional signal initiates a warm reset. This signal is asserted by the RC32435 during a warm reset.

Table 1 Pin Description (Part 6 of 6)

Boot Configuration Vector

The encoding of the boot configuration vector is described in Table 3, and the vector input is illustrated in Figure 4. The value of the boot configuration vector read in by the RC32435 during a cold reset may be determined by reading the Boot Configuration Vector (BCV) Register.

Signal	Name/Description
MADDR[3:0]	CPU Pipeline Clock Multiplier. This field specifies the value by which the PLL multiplies the master clock input (CLK) to obtain the processor clock frequency (PCLK). For master clock input frequency constraints, refer to Table 3.2 in the RC32435 User Manual. 0x0 - PLL Bypass 0x1 - Multiply by 3 0x2 - Multiply by 4 0x3 - Multiply by 5 - Reserved 0x4 - Multiply by 5 - Reserved 0x6 - Multiply by 6 - Reserved 0x7 - Multiply by 8 0x8 - Multiply by 10 0x9 through 0xF - Reserved
MADDR[5:4]	External Clock Divider. This field specifies the value by which the IPBus clock (ICLK), which is always 1/2 PCLK, is divided in order to generate the external clock output on the EXTCLK pin. 0x0 - Divide by 1 0x1 - Divide by 2 0x2 - Divide by 4 0x3 - reserved
MADDR[6]	Endian. This bit specifies the endianness. 0x0 - little endian 0x1 - big endian
MADDR[7]	Reset Mode . This bit specifies the length of time the RSTN signal is driven. 0x0 - Normal reset: RSTN driven for minimum of 4000 clock cycles. If the internal boot configuration vector is selected, the expiration of an 18-bit counter operating at the master clock input (CLK) frequency is used as the PLL stabilization delay. 0x1 - Reserved
MADDR[10:8]	 PCI Mode. This bit controls the operating mode of the PCI bus interface. The initial value of the EN bit in the PCIC register is determined by the PCI mode. 0x0 - Disabled (EN initial value is zero) 0x1 - PCI satellite mode with PCI target not ready (EN initial value is one) 0x2 - PCI satellite mode with suspended CPU execution (EN initial value is one) 0x3 - PCI host mode with external arbiter (EN initial value is zero) 0x4 - PCI host mode with internal arbiter using fixed priority arbitration algorithm (EN initial value is zero) 0x5 - PCI host mode with internal arbiter using round robin arbitration algorithm (EN initial value is zero) 0x6 - reserved 0x7 - reserved

Table 3 Boot Configuration Encoding (Part 1 of 2)

System Clock Parameters

(Values based on systems running at recommended supply voltages and operating temperatures, as shown in Tables 15 and 16.)

Paramotor	Symbol	Reference	266MHz		300	300MHz		350MHz		MHz	Units	Timing
Farameter	Symbol	Edge	Min	Max	Min	Max	Min	Max	Min	Max	Onits	Reference
PCLK ¹	Frequency	none	200	266	200	300	200	350	200	400	MHz	See Figure 3.
	Tper		3.8	5.0	3.3	5.0	2.85	5.0	2.5	5.0	ns	
ICLK ^{2,3,4}	Frequency	none	100	133	100	150	100	175	100	200	MHz	
	Tper		7.5	10.0	6.7	10.0	5.7	10.0	5.0	10.0	ns	
CLK ⁵	Frequency	none	25	125	25	125	25	125	25	125	MHz	
	Tper_5a		8.0	40.0	8.0	40.0	8.0	40.0	8.0	40.0	ns	
	Thigh_5a, Tlow_5a		40	60	40	60	40	60	40	60	% of Tper_5a	
	Trise_5a, Tfall_5a		_	3.0	_	3.0	_	3.0	_	3.0	ns	
	Tjitter_5a		_	0.1	_	0.1	—	0.1	—	0.1	ns	

Table 5 Clock Parameters

^{1.} The CPU pipeline clock (PCLK) speed is selected during cold reset by the boot configuration vector (see Table 3). Refer to Chapter 3, Clocking and Initialization, in the RC32435 User Reference Manual for the allowable frequency ranges of CLK and PCLK.

^{2.} ICLK is the internal IPBus clock. It is always equal to PCLK divided by 2. This clock cannot be sampled externally.

^{3.} The ethernet clock (MIIxRXCLK and MIIxTXCLK) frequency must be equal to or less than 1/2 ICLK (MIIxRXCLK and MIIxTXCLK <= 1/2(ICLK)).

^{4.} PCICLK must be equal to or less than two times ICLK (PCICLK <= 2(ICLK)) with a maximum PCICLK of 66 MHz.

^{5.} The input clock (CLK) is input from the external oscillator to the internal PLL.

Figure 3 Clock Parameters Waveform

Figure 4 COLD Reset Operation with External Boot Configuration Vector AC Timing Waveform

Note: For a diagram showing the COLD Reset Operation with Internal Boot Configuration Vector, see Figure 3.6 in the RC32435 User Reference Manual.

Figure 7 DDR SDRAM Timing Waveform — Write Access

Signal	Symbol	Reference Edge	266MHz		300MHz		350MHz		400	MHz	Unit	Condi-	Timing Diagram
	Symbol		Min	Max	Min	Max	Min	Мах	Min	Max	Onit	tions	Reference
Memory and Peripheral Bus ¹													
MADDR[21:0]	Tdo_8a	EXTCLK rising	0.4	4.5	0.4	4.5	0.4	4.5	0.4	4.5	ns		and 9.
	Tdz_8a ²		_	_	—	_	—	—	_	_	ns		
	Tzd_8a ²				—		—	—			ns		
MADDR[25:22]	Tdo_8b	EXTCLK rising	0.4	4.5	0.4	4.5	0.4	4.5	0.4	4.5	ns		
	Tdz_8b ²		_	_	—	—	—	—	—	_	ns		
	Tzd_8b ²		—	_	—	—	_	—	—	_	ns		

Table 8 Memory and Peripheral Bus AC Timing Characteristics (Part 1 of 2)

Cianal	Cumebal	Reference	266	MHz	300	MHz	350	MHz	400	MHz	Linit	Condi-	Timing
Signal	Symbol	Edge	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Unit	tions	Reference
MDATA[7:0]	Tsu_8c	EXTCLK rising	6.0	_	6.0	_	6.0	_	6.0	_	ns		See Figures 8
	Thld_8c		0	_	0	_	0	_	0	-	ns		and 9 (cont.).
	Tdo_8c		0.4	4.5	0.4	4.5	0.4	4.5	0.4	4.5	ns		
	Tdz_8c ²		0	0.5	0	0.5	0	0.5	0	0.5	ns		
	Tzd_8c ²		0.4	3.3	0.4	3.3	0.4	3.3	0.4	3.3	ns		
EXTCLK ³	Tper_8d	none	7.5	—	6.66		6.66	—	6.66		ns		
BDIRN	Tdo_8e	EXTCLK rising	0.4	3.8	0.4	3.8	0.4	3.8	0.4	3.8	ns		
	Tdz_8e ²		_	_	-	_	-	_	-	-	ns		
	Tzd_8e ²		—	—	-	-	-	_	-	-	ns		
BOEN	Tdo_8f	EXTCLK rising	0.4	3.8	0.4	3.8	0.4	3.8	0.4	3.8	ns		
	Tdz_8f ²		—	—	—		—	—	—		ns		
	Tzd_8f ²		—	—	-	-	-	_	-	-	ns		
WAITACKN ⁴	Tsu_8h	EXTCLK rising	6.5	—	6.5	_	6.5	—	6.5	_	ns		
	Thld_8h		0	—	0	-	0	_	0	-	ns		
	Tpw_8h ²	none	2(EXTCLK)	—	2(EXTCLK)		2(EXTCLK)	—	2(EXTCLK)		ns		
CSN[3:0]	Tdo_8i	EXTCLK rising	0.4	4.0	0.4	4.0	0.4	4.0	0.4	4.0	ns		
	Tdz_8i ²		—	—	—		—	—	—		ns		
	Tzd_8i ²		—	—	—		—	—	—		ns		
RWN	Tdo_8j	EXTCLK rising	0.4	3.8	0.4	3.8	0.4	3.8	0.4	3.8	ns		
	Tdz_8j ²		_	—	_		—	—	_	_	ns		
	Tzd_8j ²		—	—	—		—	—	—		ns		
OEN	Tdo_8k	EXTCLK rising	0.4	4.0	0.4	4.0	0.4	4.0	0.4	4.0	ns		
	Tdz_8k ²		—	—	—		—	—	—		ns		
	Tzd_8k ²		—	—	—		—	—	—		ns		
WEN	Tdo_8I	EXTCLK rising	0.4	3.7	0.4	3.7	0.4	3.7	0.4	3.7	ns		
	Tdz_8l ²	1	—	_	-	—	-	—	-	—	ns		1
	Tzd_8l ²	<u> </u>	—	—	—	—	—	—	—	_	ns		

Table 8 Memory and Peripheral Bus AC Timing Characteristics (Part 2 of 2)

^{1.} The RC32435 provides bus turnaround cycles to prevent bus contention when going from read to write, write to read, and during external bus ownership. For example, there are no cycles where an external device and the RC32435 are both driving. See Chapter 6, Device Controller, in the RC32435 User Reference Manual.

^{2.} The values for this symbol were determined by calculation, not by testing.

^{3.} The frequency of EXTCLK is programmable. See the External Clock Divider (MDATA[5:4]) description in Table 3 of this data sheet.

^{4.} WAITACKN must meet the setup and hold times if it is synchronous or the minimum pulse width if it is asynchronous.

Figure 8 Memory and Peripheral Bus AC Timing Waveform — Read Access

Signal	Symbol	Reference	266	MHz	300	MHz	350	MHz	400	MHz	Upit	Condi-	Timing Diagram
Signal	Symbol	Edge	Min	Max	Min	Мах	Min	Max	Min	Мах	Unit	tions	Reference
Ethernet		1			1		1					1	1
MIIMDC	Tper_9a	None	30.0	_	30.0	_	30.0	_	30.0	_	ns		See Figure 10.
	Thigh_9a, Tlow_9a		12.0	—	12.0	—	12.0	—	12.0		ns		
MIIMDIO	Tsu_9b	MIIMDC rising	10.0	—	10.0	—	10.0	—	10.0		ns		
	Thld_9b		0.0	_	0.0	_	0.0	_	0.0	_	ns		
	Tdo_9b ¹		10	300	10	300	10	300	10	300	ns		
Ethernet — MI	I Mode										•		
MIIRXCLK,	Tper_9c	None	399.96	400.4	399.96	400.4	399.96	400.4	399.96	400.4	ns	10 Mbps	See Figure 10.
MILLXCLK ²	Thigh_9c, Tlow_9c		140	260	140	260	140	260	140	260	ns		
	Trise_9c, Tfall_9c		—	3.0	_	3.0	_	3.0	—	3.0	ns		
MIIRXCLK,	Tper_9d	None	39.9	40.0	39.9	40.0	39.9	40.0	39.9	40.0	ns	100 Mbps	-
MIITXCLK ²	Thigh_9d, Tlow_9d		14.0	26.0	14.0	26.0	14.0	26.0	14.0	26.0	ns		
	Trise_9d, Tfall_9d		_	2.0	_	2.0	_	2.0	_	2.0	ns		
MIIRXD[3:0],	Tsu_9e	MIIxRXCLK	10.0	—	10.0	—	10.0	—	10.0	_	ns		
MIIRXDV, MIIRXER	Thld_9e	rising	10.0	—	10.0	—	10.0	—	10.0	-	ns		
MIITXD[3:0], MIITXENP, MIITXER	Tdo_9f	MIIxTXCLK rising	0.0	25.0	0.0	25.0	0.0	25.0	0.0	25.0	ns		
Ethernet — RM	/III Mode	1											
RMIIREFCLK	Tper_9i	None	19.9	20.1	19.9	20.1	19.9	20.1	19.9	20.1	ns		See Figure 10.
	Thigh_9i, Tlow_9i		7.0	13.0	7.0	13.0	7.0	13.0	7.0	13.0	ns		
RMIITXEN, RMIITXD[1:0]	Tdo_9j	MIIRXCLK rising	2.0	_	2.0	_	2.0	_	2.0		ns		
rmiicrsdv, rmiirxer, rmiirxd[1:0]	Tsu_9k		5.5	14.5	5.5	14.5	5.5	14.5	5.5	14.5	ns		

Table 9 Ethernet AC Timing Characteristics

^{1.} The values for this symbol were determined by calculation, not by testing.

^{2.} The ethernet clock (MIIRXCLK and MIITXCLK) frequency must be equal to or less than 1/2 ICLK (MIIRXCLK and MIITXCLK <= 1/2(ICLK)).

Figure 13 PCI AC Timing Waveform — PCI Reset in Satellite Mode

Ciarra e l	Currente e l	Reference	266	MHz	300	MHz	350	MHz	400	MHz	L	C	Timing S Diagram
Signai	Symbol	Edge	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Conditions	Reference
I ² C ¹													
SCL	Frequency	none	0	100	0	100	0	100	0	100	kHz	100 KHz	See Figure 14.
	Thigh_12a, Tlow_12a		4.0	Ι	4.0	Ι	4.0	Ι	4.0		μs		
	Trise_12a		_	1000	_	1000	_	1000	_	1000	ns		
	Tfall_12a		_	300	_	300	_	300	_	300	ns		
SDA	Tsu_12b	SCL rising	250	—	250	—	250	_	250	_	ns		
	Thld_12b		0	3.45	0	3.45	0	3.45	0	3.45	μs		
	Trise_12b		—	1000	—	1000	_	1000		1000	ns		
	Tfall_12b		—	300	—	300		300	_	300	ns		
Start or repeated start	Tsu_12c	SDA falling	4.7	-	4.7		4.7	-	4.7	-	μs		
condition	Thld_12c		4.0		4.0	_	4.0		4.0		μs		
Stop condition	Tsu_12d	SDA rising	4.0	—	4.0	—	4.0	_	4.0	_	μs		
Bus free time between a stop and start condi- tion	Tdelay_12e		4.7	Ι	4.7		4.7		4.7		μs		
SCL	Frequency	none	0	400	0	400	0	400	0	400	kHz	400 KHz	
	Thigh_12a, Tlow_12a		0.6	_	0.6		0.6	_	0.6	_	μs		
	Trise_12a		—	300	—	300		300	—	300	ns		
	Tfall_12a		—	300	—	300		300	—	300	ns		
SDA	Tsu_12b	SCL rising	100	_	100	_	100	—	100	_	ns		
	Thld_12b		0	0.9	0	0.9	0	0.9	0	0.9	μs		
	Trise_12b		_	300	_	300	_	300	—	300	ns		
	Tfall_12ba		—	300	—	300	—	300	—	300	ns		

Table 11 I²C AC Timing Characteristics (Part 1 of 2)

Signal	Symbol	Reference Edge	266MHz		300MHz		350MHz		400MHz		Upit	Conditions	Timing
			Min	Max	Min	Max	Min	Max	Min	Max	Unit	Conditions	Reference
Start or repeated start	Tsu_12c	SDA falling	0.6	_	0.6	_	0.6	_	0.6	_	μs	400 KHz	See Figure 14.
condition	Thld_12c		0.6		0.6	_	0.6	_	0.6	_	μs		
Stop condition	Tsu_12d	SDA rising	0.6	_	0.6	_	0.6	_	0.6	_	μs		
Bus free time between a stop and start condi- tion	Tdelay_12e		1.3	-	1.3	_	1.3	_	1.3	_	μs		

Table 11 I²C AC Timing Characteristics (Part 2 of 2)

 $^{1\cdot}$ For more information, see the I^2C-Bus specification by Philips Semiconductor.

Figure 14 I2C AC Timing Waveform

Signal	ignal Symbol Referenc Edge	Reference	266MHz		300MHz		350MHz		400MHz		Unit	Condi-	Timing Diagram
Signal		Edge	Min	Max	Min	Max	Min	Max	Min	Max	Onit	tions	Reference
GPIO													
GPIO[13:0]	Tpw_13b ¹	None	2(ICLK)	—	2(ICLK)	—	2(ICLK)	—	2(ICLK)	_	ns		See Figure 15.

Table 12 GPIO AC Timing Characteristics

^{1.} The values for this symbol were determined by calculation, not by testing.

Figure 15 GPIO AC Timing Waveform

Using the EJTAG Probe

In Figure 20, the pull-up resistors for JTAG_TDO and RST*, the pull-down resistor for JTAG_TRST_N, and the series resistor for JTAG_TDO must be adjusted to the specific design. However, the recommended pull-up/down resistor is 1.0 k Ω because a low value reduces crosstalk on the cable to the connector, allowing higher JTAG_TCK frequencies. A typical value for the series resistor is 33 Ω . Recommended resistor values have ± 5% tolerance.

If a probe is used, the pull-up resistor on JTAG_TDO must ensure that the JTAG_TDO level is high when no probe is connected and the JTAG_TDO output is tri-stated. This requirement allows reliable connection of the probe if it is hooked-up when the power is already on (hot plug). The pull-up resistor value of around 47 k Ω should be sufficient. Optional diodes to protect against overshoot and undershoot voltage can be added on the signals of the chip with EJTAG.

If a probe is used, the RST* signal must have a pull-up resistor because it is controlled by an open-collector (OC) driver in the probe, and thus is actively pulled low only. The pull-up resistor is responsible for the high value when not driven by the probe of 25pF. The input on the target system reset circuit must be able to accept the rise time when the pull-up resistor charges the capacitance to a high logical level. Vcc I/O must connect to a voltage reference that drops rapidly to below 0.5V when the target system loses power, even with a capacitive load of 25pF. The probe can thus detect the lost power condition.

For additional information on EJTAG, refer to Chapter 17 of the RC32435 User Reference Manual.

Phase-Locked Loop (PLL)

The phase-locked loop (PLL) multiplies the external oscillator input (pin CLK) according to the parameter provided by the boot configuration vector to create the processor clock (PCLK). Inherently, PLL circuits are only capable of generating clock frequencies within a limited range.

PLL Filters

It is recommended that the system designer provide a filter network of passive components for the PLL analog and digital power supplies. The PLL circuit power and PLL circuit ground should be isolated from power and ground with a filter circuit such as the one shown in Figure 21. Because the optimum values for the filter components depend upon the application and the system noise environment, these values should be considered as starting points for further experimentation within your specific application.

Figure 21 PLL Filter Circuit for Noisy Environments

Recommended Operating Supply Voltages

Symbol	Parameter	Minimum	Typical	Maximum	Unit
V _{ss}	Common ground	0	0	0	V
V _{ss} PLL	PLL ground				
V _{cc} I/O	I/O supply except for SSTL_2 ¹	3.135	3.3	3.465	V
V _{cc} SI/O (DDR)	I/O supply for SSTL_2 ¹	2.375	2.5	2.625	V
V _{cc} PLL	PLL supply (digital)	1.1	1.2	1.3	V
V _{cc} APLL	PLL supply (analog)	3.135	3.3	3.465	V
V _{cc} Core	Internal logic supply	1.1	1.2	1.3	V
DDRVREF ²	SSTL_2 input reference voltage	0.5(VccSI/O)	0.5(VccSI/O)	0.5(VccSI/O)	V
V _{TT} ³	SSTL_2 termination voltage	DDRVREF - 0.04	DDRVREF	DDRVREF + 0.04	V

Table 15 RC32435 Operating Voltages

 $^{\rm 1.}\,{\rm SSTL}_2$ I/Os are used to connect to DDR SDRAM.

 2 Peak-to-peak AC noise on DDRVREF may not exceed \pm 2% DDRVREF (DC).

 $^{3.}$ V_{TT} of the SSTL_2 transmitting device must track DDRVREF of the receiving device.

Recommended Operating Temperatures

Grade	Temperature
Commercial	0°C to +70°C Ambient
Industrial	-40°C to +85°C Ambient

Table 16 RC32435 Operating Temperatures

Capacitive Load Deration

Refer to the 79RC32435 IBIS Model on the IDT web site (www.idt.com).

Package Pin-out — 256-BGA Signal Pinout for the RC32435

The following table lists the pin numbers, signal names, and number of alternate functions for the RC32435 device. Signal names ending with an "_n" or "n" are active when low.

Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt
A1	RWN		E1	MIIRXD[3]		J1	GPIO[3]	1	N1	PCIAD[29]	
A2	OEN		E2	MIIRXD[2]		J2	JTAG_TCK		N2	PCIAD[28]	
A3	CSN[2]		E3	MIITXD[0]		J3	GPIO[2]	1	N3	PCIAD[30]	
A4	CSN[0]		E4	MIITXD[1]		J4	EJTAG_TMS		N4	PCIAD[18]	
A5	MADDR[10]		E5	V _{cc} I/0		J5	V _{cc} CORE		N5	PCIREQN[1]	
A6	MDATA[6]		E6	V _{cc} I/0		J6	V _{ss}		N6	PCIREQN[2]	
A7	GPIO[7]	1	E7	V _{cc} I/0		J7	V _{ss}		N7	PCIIRDYN	
A8	GPIO[4]	1	E8	V _{cc} CORE		J8	V _{ss}		N8	PCILOCKN	
A9	MADDR[16]		E9	V _{cc} CORE		J9	V _{ss}		N9	PCIPERRN	
A10	MADDR[13]		E10	V _{cc} I/0		J10	V _{ss}		N10	PCIAD[15]	
A11	V _{ss} PLL		E11	V _{cc} DDR		J11	V _{cc} CORE		N11	PCIAD[11]	
A12	JTAG_TDI		E12	V _{cc} DDR		J12	V _{cc} CORE		N12	PCICBEN[0]	
A13	MADDR[9]		E13	DDRDATA[6]		J13	DDRCKN		N13	DDRADDR[5]	
A14	MADDR[7]		E14	DDRDATA[5]		J14	DDRVREF		N14	DDRADDR[4]	
A15	MADDR[5]		E15	DDRADDR[13]		J15	DDRCKP		N15	DDRADDR[3]	
A16	MADDR[2]		E16	DDRDATA[4]		J16	DDRDQS[0]		N16	DDRBA[0]	
B1	BOEN		F1	MIITXD[2]		K1	JTG_TDO		P1	PCIAD[27]	
B2	RSTN		F2	MIIRXCLK		K2	SCK		P2	PCIAD[26]	
B3	CSN[3]		F3	MIITXD[3]		K3	Reserved		P3	GPIO[10]	1
B4	CSN[1]		F4	MIITXENP		K4	SDO		P4	PCIAD[20]	
B5	MADDR[11]		F5	V _{cc} I/0		K5	V _{cc} I/0		P5	PCIREQN[3]	
B6	MDATA[1]		F6	V _{ss}		K6	V _{cc} I/0		P6	PCIREQN[0]	
B7	MDATA[4]		F7	V _{ss}		K7	V _{ss}		P7	PCIFRAMEN	
B8	GPIO[5]	1	F8	V _{ss}		K8	V _{ss}		P8	PCISTOPN	
B9	MADDR[17]		F9	V _{cc} CORE		K9	V _{ss}		P9	PCISERRN	
B10	MADDR[12]		F10	V _{ss}		K10	V _{ss}		P10	PCIAD[14]	
B11	V _{cc} PLL		F11	V _{ss}		K11	V _{ss}		P11	PCIAD[10]	
B12	V _{SS} APLL		F12	V _{cc} DDR		K12	V _{cc} DDR		P12	PCIAD[7]	
B13	MADDR[8]		F13	DDRDATA[9]		K13	DDRCKE		P13	PCIAD[4]	
B14	MADDR[6]		F14	DDRDATA[8]		K14	DDRADDR[11]		P14	DDRADDR[0]	1
B15	MADDR[3]		F15	DDRDM[0]		K15	DDRADDR[10]		P15	DDRADDR[2]	1
B16	MADDR[1]		F16	DDRDATA[7]		K16	DDRADDR[12]		P16	DDRCSN	1
C1	EXTCLK		G1	MIIRXDV		L1	SDA		R1	PCIAD[25]	

Table 20 RC32435 Pinout (Part 1 of 2)

Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt
C2	BDIRN		G2	MIITXER		L2	SCL		R2	PCICBEN[3]	
C3	COLDRSTN		G3	MIIRXER		L3	GPIO[8]	1	R3	PCIAD[23]	
C4	WEN		G4	MIITXCLK		L4	SDI		R4	PCIAD[21]	
C5	MDATA[3]		G5	V _{cc} I/0		L5	V _{cc} I/0		R5	PCIAD[17]	
C6	MDATA[5]		G6	V _{ss}		L6	V _{ss}		R6	PCIRSTN	
C7	GPIO[6]	1	G7	V _{ss}		L7	V _{ss}		R7	PCICBEN[2]	
C8	MADDR[21]		G8	V _{ss}		L8	V _{cc} CORE		R8	PCITRDYN	
C9	MADDR[18]		G9	V _{ss}		L9	V _{ss}		R9	PCICBEN[1]	
C10	MADDR[14]		G10	V _{ss}		L10	V _{ss}		R10	PCIAD[12]	
C11	JTAG_TMS		G11	V _{ss}		L11	V _{ss}		R11	PCIAD[8]	
C12	V _{cc} APLL		G12	V _{cc} DDR		L12	V _{cc} DDR		R12	PCIAD[5]	
C13	CLK		G13	DDRDM[1]		L13	DDRADDR[9]		R13	PCIAD[3]	
C14	MADDR[4]		G14	DDRDQS[1]		L14	DDRWEN		R14	PCIAD[0]	
C15	MADDR[0]		G15	DDRDATA[10]		L15	DDRCASN		R15	PCIGNTN[2]	
C16	DDRDATA[0]		G16	DDRDATA[11]		L16	DDRADDR[8]		R16	DDRADDR[1]	
D1	MIIRXD[0]		H1	MIIMDIO		M1	GPIO[12]	1	T1	PCIAD[24]	
D2	MIICL		H2	MIIMDC		M2	PCIAD[31]		T2	GPIO[13]	1
D3	MIICRS		H3	GPIO[0]	1	M3	GPIO[11]	1	Т3	PCIAD[22]	
D4	MIIRXD[1]		H4	GPIO[1]	1	M4	GPIO[9]	1	T4	PCIAD[19]	
D5	MDATA[7]		H5	V _{cc} CORE		M5	V _{cc} I/0		T5	PCIAD[16]	
D6	MDATA[2]		H6	V _{cc} CORE		M6	V _{cc} I/0		Т6	PCICLK	
D7	MDATA[0]		H7	V _{ss}		M7	V _{cc} I/0		T7	PCIGNTN[0]	
D8	MADDR[20]		H8	V _{ss}		M8	V _{cc} CORE		T8	PCIDEVSELN	
D9	MADDR[19]		H9	V _{ss}		M9	V _{cc} CORE		Т9	PCIPAR	
D10	MADDR[15]		H10	V _{ss}		M10	V _{cc} I/0		T10	PCIAD[13]	
D11	EXTBCV		H11	V _{SS}		M11	V _{cc} DDR		T11	PCIAD[9]	
D12	JTAG_TRSTN		H12	V _{cc} CORE		M12	V _{cc} DDR		T12	PCIAD[6]	
D13	WAITACKN		H13	DDRDATA[15]		M13	DDRRASN		T13	PCIAD[2]	
D14	DDRDATA[2]		H14	DDRDATA[14]		M14	DDRBA[1]	1	T14	PCIAD[1]	
D15	DDRDATA[3]		H15	DDRDATA[12]		M15	DDRADDR[6]	1	T15	PCIGNTN[1]	
D16	DDRDATA[1]		H16	DDRDATA[13]		M16	DDRADDR[7]		T16	PCIGNTN[3]	

Table 20 RC32435 Pinout (Part 2 of 2)

RC32435 Alternate Signal Functions

Pin	GPIO	Alternate	Pin	GPIO	Alternate
A7	GPIO[7]	MADDR[25]	73	GPIO[2]	UORTSN
A8	GPIO[4]	MADDR[22]	L3	GPIO[8]	CPU
B8	GPIO[5]	MADDR[23]	M1	GPIO[12]	PCIGNTN[5]
C7	GPIO[6]	MADDR[24]	M3	GPIO[11]	PCIREQN[5]
H3	GPIO[0]	U0SOUT	M4	GPIO[9]	PCIREQN[4]
H4	GPIO[1]	UOSINP	P3	GPIO[10]	PCIGNTN[4]
J1	GPIO[3]	UOCTSN	T2	GPIO[13]	PCIMUINTN

Table 21 RC32435 Alternate Signal Functions

RC32435 Power Pins

V _{cc} I/O	V _{cc} DDR	V _{cc} Core	V _{cc} PLL	V _{CC} APLL
E5	E11	E8	B11	C12
E6	E12	E9		
E7	F12	F9		
E10	G12	H5		
F5	K12	H6		
G5	L12	H12		
K5	M11	J5		
K6	M12	J11		
L5		J12		
M5		L8		
M6		M8		
M7		M9		
M10				

Table 22 RC32435 Power Pins

RC32435 Ground Pins

V _{ss}	V _{ss}	V_{ss} PLL
F6	J6	A11, B12
F7	J7	
F8	J8	
F10	J9	
F11	J10	
G6	K7	
G7	K8	
G8	К9	
G9	K10	
G10	K11	
G11	L6	
H7	L7	
H8	L9	
Н9	L10	
H10	L11	
H11		

Table 23 RC32435 Ground Pins

RC32435 Signals Listed Alphabetically

The following table lists the RC32435 pins in alphabetical order.

Signal Name	I/О Туре	Location	Signal Category
BDIRN	0	C2	Memory and Peripheral Bus
BOEN	0	B1	
CLK	I	C13	System
COLDRSTN	I	C3	
CSN[0]	0	A4	Memory and Peripheral Bus
CSN[1]	0	B4	
CSN[2]	0	A3	
CSN[3]	0	B3	

Table 24 RC32435 Alphabetical Signal List (Part 1 of 7)

Ordering Information

Valid Combinations

79RC32H435 - 266BC, 300BC, 350BC, 400BC256-pin CABGA package, Commercial Temperature79RC32H435 - 266BCI, 300BCI, 350BCI256-pin CABGA package, Industrial Temperature

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 *for SALES:* 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support: email: rischelp@idt.com phone: 408-284-8208