

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MIPS32
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	266MHz
Co-Processors/DSP	-
RAM Controllers	DDR
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (1)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	256-LBGA
Supplier Device Package	256-CABGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/79rc32h435-266bcg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Signal	Туре	Name/Description
DDRCKP	0	DDR Positive DDR clock. This signal is the positive clock of the differential DDR clock pair.
DDRCSN	0	DDR Chip Selects. This active low signal is used to select DDR device(s) on the DDR bus.
DDRDATA[15:0]	I/O	DDR Data Bus. 16-bit DDR data bus is used to transfer data between the RC32435 and the DDR devices. Data is transferred on both edges of the clock.
DDRDM[1:0]	0	DDR Data Write Enables. Byte data write enables are used to enable specific byte lanes during DDR writes. DDRDM[0] corresponds to DDRDATA[7:0] DDRDM[1] corresponds to DDRDATA[15:8]
DDRDQS[1:0]	I/O	DDR Data Strobes. DDR byte data strobes are used to clock data between DDR devices and the RC32435. These strobes are inputs during DDR reads and outputs during DDR writes. DDRDQS[0] corresponds to DDRDATA[7:0] DDRDQS[1] corresponds to DDRDATA[15:8]
DDRRASN	0	DDR Row Address Strobe. The DDR row address strobe is asserted during DDR transactions.
DDRVREF	I	DDR Voltage Reference. SSTL_2 DDR voltage reference is generated by an external source.
DDRWEN	0	DDR Write Enable. DDR write enable is asserted during DDR write transactions.
PCI Bus		
PCIAD[31:0]	I/O	PCI Multiplexed Address/Data Bus . Address is driven by a bus master during initial PCIFRAMEN assertion. Data is then driven by the bus master during writes or by the bus target during reads.
PCICBEN[3:0]	I/O	PCI Multiplexed Command/Byte Enable Bus . PCI commands are driven by the bus master during the initial PCIFRAMEN assertion. Byte enable signals are driven by the bus master during subsequent data phase(s).
PCICLK	I	PCI Clock. Clock used for all PCI bus transactions.
PCIDEVSELN	I/O	PCI Device Select . This signal is driven by a bus target to indicate that the target has decoded the address as one of its own address spaces.
PCIFRAMEN	I/O	PCI Frame . Driven by a bus master. Assertion indicates the beginning of a bus transaction. Negation indicates the last data.
PCIGNTN[3:0]	I/O	PCI Bus Grant. In PCI host mode with internal arbiter: The assertion of these signals indicates to the agent that the internal RC32435 arbiter has granted the agent access to the PCI bus. In PCI host mode with external arbiter: PCIGNTN[0]: asserted by an external arbiter to indicate to the RC32435 that access to the PCI bus has been granted. PCIGNTN[3:1]: unused and driven high. In PCI satellite mode: PCIGNTN[0]: This signal is asserted by an external arbiter to indicate to the RC32435 that access to the PCI bus has been granted. PCIGNTN[3:1]: unused and driven high.
PCIIRDYN	I/O	PCI Initiator Ready . Driven by the bus master to indicate that the current datum can complete.

Table 1 Pin Description (Part 2 of 6)

Boot Configuration Vector

The encoding of the boot configuration vector is described in Table 3, and the vector input is illustrated in Figure 4. The value of the boot configuration vector read in by the RC32435 during a cold reset may be determined by reading the Boot Configuration Vector (BCV) Register.

Signal	Name/Description
MADDR[3:0]	CPU Pipeline Clock Multiplier. This field specifies the value by which the PLL multiplies the master clock input (CLK) to obtain the processor clock frequency (PCLK). For master clock input frequency constraints, refer to Table 3.2 in the RC32435 User Manual. 0x0 - PLL Bypass 0x1 - Multiply by 3 0x2 - Multiply by 4 0x3 - Multiply by 5 - Reserved 0x4 - Multiply by 5 - Reserved 0x6 - Multiply by 6 - Reserved 0x7 - Multiply by 8 0x8 - Multiply by 10 0x9 through 0xF - Reserved
MADDR[5:4]	External Clock Divider. This field specifies the value by which the IPBus clock (ICLK), which is always 1/2 PCLK, is divided in order to generate the external clock output on the EXTCLK pin. 0x0 - Divide by 1 0x1 - Divide by 2 0x2 - Divide by 4 0x3 - reserved
MADDR[6]	Endian. This bit specifies the endianness. 0x0 - little endian 0x1 - big endian
MADDR[7]	Reset Mode . This bit specifies the length of time the RSTN signal is driven. 0x0 - Normal reset: RSTN driven for minimum of 4000 clock cycles. If the internal boot configuration vector is selected, the expiration of an 18-bit counter operating at the master clock input (CLK) frequency is used as the PLL stabilization delay. 0x1 - Reserved
MADDR[10:8]	 PCI Mode. This bit controls the operating mode of the PCI bus interface. The initial value of the EN bit in the PCIC register is determined by the PCI mode. 0x0 - Disabled (EN initial value is zero) 0x1 - PCI satellite mode with PCI target not ready (EN initial value is one) 0x2 - PCI satellite mode with suspended CPU execution (EN initial value is one) 0x3 - PCI host mode with external arbiter (EN initial value is zero) 0x4 - PCI host mode with internal arbiter using fixed priority arbitration algorithm (EN initial value is zero) 0x5 - PCI host mode with internal arbiter using round robin arbitration algorithm (EN initial value is zero) 0x6 - reserved 0x7 - reserved

Table 3 Boot Configuration Encoding (Part 1 of 2)

Signal	Name/Description
MADDR[11]	Disable Watchdog Timer . When this bit is set, the watchdog timer is disabled follow- ing a cold reset. 0x0 - Watchdog timer enabled 0x1 - Watchdog timer disabled
MADDR[13:12]	Reserved. These pins must be driven low during boot configuration.
MADDR[15:14]	Reserved. Must be set to zero.

Table 3 Boot Configuration Encoding (Part 2 of 2)

AC Timing Definitions

Below are examples of the AC timing characteristics used throughout this document.

Figure 2 AC Timing Definitions Waveform

Symbol	Definition
Tper	Clock period.
Tlow	Clock low. Amount of time the clock is low in one clock period.
Thigh	Clock high. Amount of time the clock is high in one clock period.
Trise	Rise time. Low to high transition time.
Tfall	Fall time. High to low transition time.
Tjitter	Jitter. Amount of time the reference clock (or signal) edge can vary on either the rising or falling edges.
Tdo	Data out. Amount of time after the reference clock edge that the output will become valid. The minimum time represents the data output hold. The maximum time represents the earliest time the designer can use the data.
Tzd	Z state to data valid. Amount of time after the reference clock edge that the tri-stated output takes to become valid.
Tdz	Data valid to Z state. Amount of time after the reference clock edge that the valid output takes to become tri-stated.
Tsu	Input set-up. Amount of time before the reference clock edge that the input must be valid.
Thld	Input hold. Amount of time after the reference clock edge that the input must remain valid.
Трw	Pulse width. Amount of time the input or output is active for asynchronous signals.
Tslew	Slew rate. The rise or fall rate for a signal to go from a high to low, or low to high.
X(clock)	Timing value. This notation represents a value of 'X' multiplied by the clock time period of the specified clock. Using 5(CLK) as an example: $X = 5$ and the oscillator clock (CLK) = 25MHz, then the timing value is 200.
Tskew	Skew. The amount of time two signal edges deviate from one another.

 Table 4 AC Timing Definitions

System Clock Parameters

(Values based on systems running at recommended supply voltages and operating temperatures, as shown in Tables 15 and 16.)

Paramotor	Symbol	Reference	266MHz		300	300MHz		MHz	400MHz		Unite	Timing Diagram
	Symbol	Edge	Min	Max	Min	Max	Min	Max	Min	Max	Units	Reference
PCLK ¹	Frequency	none	200	266	200	300	200	350	200	400	MHz	See Figure 3.
	Tper		3.8	5.0	3.3	5.0	2.85	5.0	2.5	5.0	ns	
ICLK ^{2,3,4}	Frequency	none	100	133	100	150	100	175	100	200	MHz	
	Tper		7.5	10.0	6.7	10.0	5.7	10.0	5.0	10.0	ns	
CLK ⁵	Frequency	none	25	125	25	125	25	125	25	125	MHz	
	Tper_5a		8.0	40.0	8.0	40.0	8.0	40.0	8.0	40.0	ns	
	Thigh_5a, Tlow_5a		40	60	40	60	40	60	40	60	% of Tper_5a	
	Trise_5a, Tfall_5a		_	3.0	_	3.0	_	3.0	_	3.0	ns	
	Tjitter_5a		_	0.1	_	0.1	—	0.1	—	0.1	ns	

Table 5 Clock Parameters

^{1.} The CPU pipeline clock (PCLK) speed is selected during cold reset by the boot configuration vector (see Table 3). Refer to Chapter 3, Clocking and Initialization, in the RC32435 User Reference Manual for the allowable frequency ranges of CLK and PCLK.

^{2.} ICLK is the internal IPBus clock. It is always equal to PCLK divided by 2. This clock cannot be sampled externally.

^{3.} The ethernet clock (MIIxRXCLK and MIIxTXCLK) frequency must be equal to or less than 1/2 ICLK (MIIxRXCLK and MIIxTXCLK <= 1/2(ICLK)).

^{4.} PCICLK must be equal to or less than two times ICLK (PCICLK <= 2(ICLK)) with a maximum PCICLK of 66 MHz.

^{5.} The input clock (CLK) is input from the external oscillator to the internal PLL.

Figure 3 Clock Parameters Waveform

AC Timing Characteristics

(Values given below are based on systems running at recommended operating temperatures and supply voltages, shown in Tables 15 and 16.)

Signal	Symbol	Reference	266MHz		300	300MHz		MHz	400	MHz	Unit	Condi-	Timing Diagram
	Symbol	Edge	Min	Max	Min	Max	Min	Max	Min	Max	Unit	tions	Reference
Reset													
COLDRSTN ¹	Tpw_6a ²	none	OSC	—	OSC	—	OSC	—	OSC	—	ms	Cold reset	See Figures 4
	Trise_6a	none	_	5.0	—	5.0	—	5.0	_	5.0	ns	Cold reset	and 5.
RSTN ³ (input)	Tpw_6b ²	none	2(CLK)	_	2(CLK)	—	2(CLK)	—	2(CLK)	—	ns	Warm reset	
RSTN ³ (output)	Tdo_6c	COLDRSTN falling	_	15.0	—	15.0	—	15.0	_	15.0	ns	Cold reset	
MADDR[15:0] (boot vector)	Tdz_6d ²	COLDRSTN falling	_	30.0	_	30.0	_	30.0	_	30.0	ns	Cold reset	
	Tdz_6d ²	RSTN falling	_	5(CLK)	—	5(CLK)	—	5(CLK)	—	5(CLK)	ns	Warm reset	
	Tzd_6d ²	RSTN rising	2(CLK)	—	2(CLK)	—	2(CLK)	—	2(CLK)	—	ns	Warm reset	1

Table 6 Reset and System AC Timing Characteristics

 $^{\rm 1.}$ The COLDRSTN minimum pulse width is the oscillator stabilization time (OSC) with V $_{\rm CC}$ stable.

^{2.} The values for this symbol were determined by calculation, not by testing.

^{3.} RSTN is a bidirectional signal. It is treated as an asynchronous input.

Figure 7 DDR SDRAM Timing Waveform — Write Access

Signal	Symbol	Reference	266MHz		300MHz		350MHz		400MHz		Unit	Condi-	Timing Diagram
	Symbol	Edge	Min	Max	Min	Max	Min	Мах	Min	Max	Onit	tions	Reference
Memory and Peripheral Bus ¹												See Figures 8	
MADDR[21:0]	Tdo_8a	EXTCLK rising	0.4	4.5	0.4	4.5	0.4	4.5	0.4	4.5	ns		and 9.
	Tdz_8a ²		_	_	—	_	—	—	_	_	ns		
	Tzd_8a ²				—		—	—			ns		
MADDR[25:22]	Tdo_8b	EXTCLK rising	0.4	4.5	0.4	4.5	0.4	4.5	0.4	4.5	ns		
	Tdz_8b ²		_	_	—	—	—	—	—	_	ns		
	Tzd_8b ²		_	_	—	—	_	—	—	_	ns		

Table 8 Memory and Peripheral Bus AC Timing Characteristics (Part 1 of 2)

Cianal	Cumebal	Reference	266	MHz	300	MHz	350	MHz	400	MHz	Linit	Condi-	Timing
Signal	Symbol	Edge	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Unit	tions	Reference
MDATA[7:0]	Tsu_8c	EXTCLK rising	6.0	_	6.0	_	6.0	_	6.0	_	ns		See Figures 8
	Thld_8c		0	_	0	_	0	_	0	-	ns		and 9 (cont.).
	Tdo_8c		0.4	4.5	0.4	4.5	0.4	4.5	0.4	4.5	ns		
	Tdz_8c ²		0	0.5	0	0.5	0	0.5	0	0.5	ns		
	Tzd_8c ²		0.4	3.3	0.4	3.3	0.4	3.3	0.4	3.3	ns		
EXTCLK ³	Tper_8d	none	7.5	—	6.66		6.66	—	6.66		ns		
BDIRN	Tdo_8e	EXTCLK rising	0.4	3.8	0.4	3.8	0.4	3.8	0.4	3.8	ns		
	Tdz_8e ²		_	_	-	_	-	_	-	-	ns		
	Tzd_8e ²	-	—	—	-	-	-	_	-	-	ns		
BOEN	Tdo_8f	EXTCLK rising	0.4	3.8	0.4	3.8	0.4	3.8	0.4	3.8	ns		
	Tdz_8f ²		—	—	—		—	—	—		ns		
	Tzd_8f ²		—	—	-	-	-	_	-	-	ns		
WAITACKN ⁴	Tsu_8h	EXTCLK rising	6.5	—	6.5	_	6.5	—	6.5	_	ns		
	Thld_8h		0	—	0	-	0	_	0	-	ns		
	Tpw_8h ²	none	2(EXTCLK)	—	2(EXTCLK)		2(EXTCLK)	—	2(EXTCLK)		ns		
CSN[3:0]	Tdo_8i	EXTCLK rising	0.4	4.0	0.4	4.0	0.4	4.0	0.4	4.0	ns		
	Tdz_8i ²		—	—	—		—	—	—		ns		1
	Tzd_8i ²		—	—	—		—	—	—		ns		
RWN	Tdo_8j	EXTCLK rising	0.4	3.8	0.4	3.8	0.4	3.8	0.4	3.8	ns		
	Tdz_8j ²		_	—	_		—	—	_	_	ns		
	Tzd_8j ²		—	—	—		—	—	—		ns		
OEN	Tdo_8k	EXTCLK rising	0.4	4.0	0.4	4.0	0.4	4.0	0.4	4.0	ns		
	Tdz_8k ²		—	—	—		—	—	—		ns		
	Tzd_8k ²		—	—	—		—	—	—		ns		
WEN	Tdo_8I	EXTCLK rising	0.4	3.7	0.4	3.7	0.4	3.7	0.4	3.7	ns		
	Tdz_8l ²	1	—	_	-	—	-	—	-	—	ns		-
	Tzd_8l ²		—	—	—	—	-	—	—	_	ns]

Table 8 Memory and Peripheral Bus AC Timing Characteristics (Part 2 of 2)

^{1.} The RC32435 provides bus turnaround cycles to prevent bus contention when going from read to write, write to read, and during external bus ownership. For example, there are no cycles where an external device and the RC32435 are both driving. See Chapter 6, Device Controller, in the RC32435 User Reference Manual.

^{2.} The values for this symbol were determined by calculation, not by testing.

^{3.} The frequency of EXTCLK is programmable. See the External Clock Divider (MDATA[5:4]) description in Table 3 of this data sheet.

^{4.} WAITACKN must meet the setup and hold times if it is synchronous or the minimum pulse width if it is asynchronous.

Figure 9 Memory and Peripheral Bus AC Timing Waveform — Write Access

COLDRSTN PCIRSTN (output) RSTN	Cold resetPCI interface enabled (tri-state) PCI interface enabled warm reset	/
Konv		
Note: During and after cold rese After the PCI interface is enable reset state of the RC32435.	et, PCIRSTN is tri-stated and requires a pull-down to reach a low state. ed in host mode, PCIRSTN will be driven either high or low depending on the	

Figure 12 PCI AC Timing Waveform — PCI Reset in Host Mode

Signal	Symbol	Reference Edge	266MHz		300MHz		350MHz		400MHz		Upit	Conditions	Timing	
	Symbol		Min	Max	Min	Max	Min	Max	Min	Max	Unit	Conditions	Reference	
Start or repeated start	Tsu_12c	SDA falling	0.6	_	0.6	_	0.6	_	0.6	_	μs	400 KHz	See Figure 14.	
condition	Thld_12c		0.6		0.6	_	0.6	—	0.6	—	μs			
Stop condition	Tsu_12d	SDA rising	0.6	_	0.6	_	0.6	_	0.6	_	μs			
Bus free time between a stop and start condi- tion	Tdelay_12e		1.3	-	1.3	_	1.3	_	1.3	_	μs			

Table 11 I²C AC Timing Characteristics (Part 2 of 2)

 $^{1\cdot}$ For more information, see the I^2C-Bus specification by Philips Semiconductor.

Figure 14 I2C AC Timing Waveform

Signal	Signal Symbol	Reference Edge	266MHz		300MHz		350MHz		400MHz		Unit	Condi-	Timing Diagram
Signal			Min	Max	Min	Max	Min	Max	Min	Max	Onit	tions	Reference
GPIO													
GPIO[13:0]	Tpw_13b ¹	None	2(ICLK)	—	2(ICLK)	—	2(ICLK)	—	2(ICLK)	_	ns		See Figure 15.

Table 12 GPIO AC Timing Characteristics

^{1.} The values for this symbol were determined by calculation, not by testing.

Figure 15 GPIO AC Timing Waveform

SCK, SDI, SDO (input) X X	
I ← Tpw_15e →	

Signal	Symbol	Reference	266	MHz	300	MHz	350	MHz	400	MHz	Unit	Condi-	Timing
Signal	Symbol	Edge	Min	Мах	Min	Мах	Min	Мах	Min	Мах	tions	Reference	
EJTAG and JT	EJTAG and JTAG												
JTAG_TCK	Tper_16a	none	25.0	50.0	25.0	50.0	25.0	50.0	25.0	50.0	ns		See Figure 19.
	Thigh_16a, Tlow_16a		10.0	25.0	10.0	25.0	10.0	25.0	10.0	25.0	ns		
JTAG_TMS ¹ ,	Tsu_16b	JTAG_TCK	2.4	—	2.4	_	2.4	_	2.4	—	ns		
JIAG_IDI	Thld_16b	rising	1.0	—	1.0	_	1.0	_	1.0	—	ns		
JTAG_TDO	Tdo_16c	JTAG_TCK fall-	-	11.3	—	11.3	—	11.3	—	11.3	ns		
	Tdz_16c ²	ing	_	11.3	—	11.3	—	11.3	—	11.3	ns		
JTAG_TRST_ N	Tpw_16d ²	none	25.0	—	25.0	—	25.0	—	25.0	—	ns		
EJTAG_TMS ¹	Tsu_16e	JTAG_TCK	2.0	_	2.0		2.0		2.0	_	ns		
	Thld_6e	rising	1.0	_	1.0	_	1.0		1.0	_	ns		

Table 14 JTAG AC Timing Characteristics

^{1.} The JTAG specification, IEEE 1149.1, recommends that both JTAG_TMS and EJTAG_TMS should be held at 1 while the signal applied at JTAG_TRST_N changes from 0 to 1. Otherwise, a race may occur if JTAG_TRST_N is deasserted (going from low to high) on a rising edge of JTAG_TCK when either JTAG_TMS or EJTAG_TMS is low, because the TAP controller might go to either the Run-Test/Idle state or stay in the Test-Logic-Reset state.

^{2.} The values for this symbol were determined by calculation, not by testing.

DC Electrical Characteristics

Values based on systems running at recommended supply voltages, as shown in Table 15.

Note: See Table 2, Pin Characteristics, for a complete I/O listing.

I/О Туре	Para- meter	Min.	Typical	Max.	Unit	Conditions	
LOW Drive	I _{OL}	—	14.0	_	mA	$V_{OL} = 0.4V$	
Output	I _{OH}	—	-12.0	—	mA	V _{OH} = 1.5V	
HIGH Drive	I _{OL}	—	41.0	—	mA	$V_{OL} = 0.4V$	
Output	I _{ОН}	—	-42.0	—	mA	V _{OH} = 1.5V	
Schmitt Trigger	V _{IL}	-0.3	_	0.8	V	_	
input (STI)	V _{IH}	2.0	_	$V_{cc}I/O + 0.5$	V	_	
SSTL_2 (for DDR	I _{OL}	7.6	_	—	mA	V _{OL} = 0.5V	
SURAIVI)	I _{OH}	-7.6	_	—	mA	V _{OH} = 1.76V	
	V _{IL}	-0.3	—	0.5(V _{cc} SI/O) - 0.18	V		
	V _{IH}	0.5(V _{cc} SI/O) + 0.18	_	$V_{cc}SI/O + 0.3$	V		
PCI	I _{OH} (AC)	-12(V _{cc} I/O)	_	—	mA	$0 < V_{OUT} < 0.3(V_{cc}I/O)$	
	Switching	-17.1(V _{cc} I/O - V _{OUT})	_	—	mA	$0.3(V_{cc}I/O) < V_{OUT} < 0.9(V_{cc}I/O)$	
		—	_	-32(V _{cc} I/O)	—	0.7(V _{cc} I/O)	
		16(V _{cc} I/O)	_	See Note 1	mA	0.7(V _{cc} I/O) < V _{OUT} < V _{cc} I/O	
	I _{OL} (AC) Switching	+16(V _{cc} I/O)	_	—	mA	$V_{cc}I/O > V_{OUT} > 0.6(V_{cc}I/O)$	
		+26.7(V _{OUT})	_	—	mA	$0.6(V_{cc}I/O) > V_{OUT} > 0.1(V_{cc}I/O)$	
		—	—	+38(V _{cc} I/O)	mA	$V_{OUT} = 0.18(V_{cc}I/O)$	
		—	_	See Note 2	mA	$0.18(V_{cc}I/O) > V_{OUT} > 0$	
	V _{IL}	-0.3	—	0.3(V _{cc} I/O)	V		
	V _{IH}	0.5(V _{cc} I/O)	—	5.5	V		
Capacitance	C _{IN}	—	—	10.5	pF	_	
Leakage	Inputs	—	_	<u>+</u> 10	μA	Vcc (max)	
	I/O _{LEAK W/O} — Pull-ups/ downs		_	<u>+</u> 10	μA	Vcc (max)	
	I/O _{LEAK WITH} Pull-ups/ downs	_	_	<u>+</u> 80	μA	Vcc (max)	

Table 18 DC Electrical Characteristics

Note 1: $I_{OH}(AC) max = (98/V_{CC}I/O) * (V_{OUT} - V_{CC}I/O) * (V_{OUT} + 0.4V_{CC}I/O)$

Note 2: $I_{OL}(AC)$ max = (256/V_{CC}I/O) * V_{OUT} * (V_{CC}I/O - V_{OUT})

RC32435 Alternate Signal Functions

Pin	GPIO	Alternate	Pin	GPIO	Alternate
A7	GPIO[7]	MADDR[25]	73	GPIO[2]	UORTSN
A8	GPIO[4]	MADDR[22]	L3	GPIO[8]	CPU
B8	GPIO[5]	MADDR[23]	M1	GPIO[12]	PCIGNTN[5]
C7	GPIO[6]	MADDR[24]	M3	GPIO[11]	PCIREQN[5]
H3	GPIO[0]	U0SOUT	M4	GPIO[9]	PCIREQN[4]
H4	GPIO[1]	UOSINP	P3	GPIO[10]	PCIGNTN[4]
J1	GPIO[3]	UOCTSN	T2	GPIO[13]	PCIMUINTN

Table 21 RC32435 Alternate Signal Functions

RC32435 Power Pins

V _{cc} I/O	V _{cc} DDR	V _{cc} Core	V _{cc} PLL	V _{CC} APLL
E5	E11	E8	B11	C12
E6	E12	E9		
E7	F12	F9		
E10	G12	H5		
F5	K12	H6		
G5	L12	H12		
K5	M11	J5		
K6	M12	J11		
L5		J12		
M5		L8		
M6		M8		
M7		M9		
M10				

Table 22 RC32435 Power Pins

Signal Name	I/О Туре	Location	Signal Category
DDRDATA[15]	I/O	H13	DDR Bus
DDRDM[0]	0	F15	
DDRDM[1]	0	G13	
DDRDQS[0]	I/O	J16	
DDRDQS[1]	I/O	G14	
DDRRASN	0	M13	
DDRVREF	I	J14	
DDRWEN	0	L14	
EJTAG_TMS	I	J4	JTAG / EJTAG
EXTBCV	I	D11	System
EXTCLK	0	C1	
GPIO[0]	I/O	H3	General Purpose Input/Output
GPIO[1]	I/O	H4	
GPIO[2]	I/O	J3	
GPIO[3]	I/O	J1	
GPIO[4]	I/O	A8	
GPIO[5]	I/O	B8	
GPIO[6]	I/O	C7	
GPIO[7]	I/O	A7	
GPIO[8]	I/O	L3	
GPIO[9]	I/O	M4	
GPIO[10]	I/O	P3	
GPIO[11]	I/O	M3	
GPIO[12]	I/O	M1	
GPIO[13]	I/O	T2	
JTAG_TCK	I	J2	JTAG / EJTAG
JTAG_TDI	I	A12	
JTAG_TDO	0	K1	
JTAG_TMS	I	C11	
JTAG_TRSTN	I	D12	

Table 24 RC32435 Alphabetical Signal List (Part 3 of 7)

Signal Name	I/О Туре	Location	Signal Category
MIICL	I	D2	Ethernet Interface
MIICRS	I	D3	
MIIMDC	0	H2	
MIIMDIO	I/O	H1	
MIIRXCLK	I	F2	
MIIRXD[0]	I	D1	
MIIRXD[1]	I	D4	
MIIRXD[2]	I	E2	
MIIRXD[3]	I	E1	
MIIRXDV	I	G1	
MIIRXER	I	G3	
MIITXCLK	I	G4	
MIITXD[0]	0	E3	
MIITXD[1]	0	E4	
MIITXD[2]	0	F1	
MIITXD[3]	0	F3	
MIITXENP	0	F4	
MIITXER	0	G2	
OEN	0	A2	Memory and Peripheral Bus
PCIAD[0]	I/O	R14	PCI Bus Interface
PCIAD[1]	I/O	T14	
PCIAD[2]	I/O	T13	
PCIAD[3]	I/O	R13	
PCIAD[4]	I/O	P13	
PCIAD[5]	I/O	R12	
PCIAD[6]	I/O	T12	
PCIAD[7]	I/O	P12	
PCIAD[8]	I/O	R11	
PCIAD[9]	I/O	T11	
PCIAD[10]	I/O	P11	
PCIAD[11]	I/O	N11	
PCIAD[12]	I/O	R10	
PCIAD[13]	I/O	T10	
PCIAD[14]	I/O	P10	
PCIAD[15]	I/O	N10	
PCIAD[16]	I/O	T5	

Table 24 RC32435 Alphabetical Signal List (Part 5 of 7)

Signal Name	I/О Туре	Location	Signal Category
PCISTOPN	I/O	P8	PCI Bus Interface
PCITRDYN	I/O	R8	
RSTN	I/O	B2	System
RWN	0	A1	Memory and Peripheral Bus
SCK	I/O	К2	Serial Peripheral Interface
SCL	I/O	L2	l ² C
SDA	I/O	L1	
SDI	I/O	L4	Serial Peripheral Interface
SDO	I/O	К4	
Vcc APLL		C12	Power
Vcc Core		E8, E9, F9, H5, H6, H12, J5, J11, J12, L8, M8, M9	
Vcc DDR		E11, E12, F12, G12, K12, L12, M11, M12	
Vcc I/O		E5, E6, E7, E10, F5, G5, K5, K6, L5, M5, M6, M7, M10	
Vcc PLL		B11	
Vss		F6, F7, F8, F10, F11, G6, G7, G8, G9, G10, G11, H7, H8, H9, H10, H11, J6, J7, J8, J9, J10, K7, K8, K9, K10, K11, L6, L7, L9, L10, L11	Ground
Vss APLL		B12	
Vss PLL		A11	
WAITACKN	I	D13	Memory and Peripheral Bus
WEN	0	C4	
Reserved		K3, L1, L2	

Table 24 RC32435 Alphabetical Signal List (Part 7 of 7)

RC32435 Package Drawing — 256-pin CABGA

Ordering Information

Valid Combinations

79RC32H435 - 266BC, 300BC, 350BC, 400BC256-pin CABGA package, Commercial Temperature79RC32H435 - 266BCI, 300BCI, 350BCI256-pin CABGA package, Industrial Temperature

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 *for SALES:* 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support: email: rischelp@idt.com phone: 408-284-8208