

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	MIPS32
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	350MHz
Co-Processors/DSP	-
RAM Controllers	DDR
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (1)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	256-LBGA
Supplier Device Package	256-CABGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/79rc32h435-350bc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Memory and I/O Controller

The RC32435 uses a dedicated local memory/IO controller including a de-multiplexed 8-bit data and 26-bit address bus. It includes all of the signals required to interface directly to a maximum of four Intel or Motorola-style external peripherals.

DMA Controller

The DMA controller consists of 6 independent DMA channels, all of which operate in exactly the same manner. The DMA controller off-loads the CPU core from moving data among the on-chip interfaces, external peripherals, and memory. The controller supports scatter/gather DMA with no alignment restrictions, making it appropriate for communications and graphics systems.

UART Interface

The RC32435 contains a serial channel (UART) that is compatible with the industry standard 16550 UART.

I²C Interface

The standard I2C interface allows the RC32435 to connect to a number of standard external peripherals for a more complete system solution. The RC32435 supports both master and slave operations.

General Purpose I/O Controller

The RC32435 has 14 general purpose input/output pins. Each pin may be used as an active high or active low level interrupt or non-maskable interrupt input, and each signal may be used as a bit input or output port.

System Integrity Functions

The RC32435 contains a programmable watchdog timer that generates a non-maskable interrupt (NMI) when the counter expires and also contains an address space monitor that reports errors in response to accesses to undecoded address regions.

Thermal Considerations

The RC32435 is guaranteed in an ambient temperature range of 0° to +70° C for commercial temperature devices and - 40° to +85° for industrial temperature devices.

Revision History

January 19, 2006: Initial publication.

Pin Description Table

The following table lists the functions of the pins provided on the RC32435. Some of the functions listed may be multiplexed onto the same pin.

The active polarity of a signal is defined using a suffix. Signals ending with an "N" are defined as being active, or asserted, when at a logic zero (low) level. All other signals (including clocks, buses, and select lines) will be interpreted as being active, or asserted, when at a logic one (high) level.

Signal	Туре	Name/Description
Memory and Perip	heral Bus	
BDIRN	0	External Buffer Direction. Controls the direction of the external data bus buffer for the memory and peripheral bus. If the RC32435 memory and peripheral bus is connected to the A side of a transceiver, such as an IDT74FCT245, then this pin may be directly connected to the direction control (e.g., BDIR) pin of the transceiver.
BOEN	0	External Buffer Enable . This signal provides an output enable control for an external buffer on the memory and peripheral data bus.
WEN	0	Write Enables. This signal is the memory and peripheral bus write enable signal.
CSN[3:0]	0	Chip Selects. These signals are used to select an external device on the memory and peripheral bus.
MADDR[21:0]	0	Address Bus. 22-bit memory and peripheral bus address bus. MADDR[25:22] are available as GPIO alternate functions.
MDATA[7:0]	I/O	Data Bus. 8-bit memory and peripheral data bus. During a cold reset, these pins function as inputs that are used to load the boot configuration vector.
OEN	0	Output Enable. This signal is asserted when data should be driven by an external device on the memory and peripheral bus.
RWN	0	Read Write. This signal indicates whether the transaction on the memory and peripheral bus is a read transaction or a write transaction. A high level indicates a read from an external device. A low level indicates a write to an external device.
WAITACKN	I	Wait or Transfer Acknowledge. When configured as wait, this signal is asserted during a memory and peripheral bus transaction to extend the bus cycle. When configured as a transfer acknowledge, this signal is asserted during a transaction to signal the completion of the transaction.
DDR Bus	I .	1
DDRADDR[13:0]	0	DDR Address Bus. 14-bit multiplexed DDR address bus. This bus is used to transfer the addresses to the DDR devices.
DDRBA[1:0]	0	DDR Bank Address. These signals are used to transfer the bank address to the DDRs.
DDRCASN	0	DDR Column Address Strobe. This signal is asserted during DDR transactions.
DDRCKE	0	DDR Clock Enable. The DDR clock enable signal is asserted during normal DDR operation. This signal is negated following a cold reset or during a power down operation.
DDRCKN	0	DDR Negative DDR clock . This signal is the negative clock of the differential DDR clock pair.

Table 1 Pin Description (Part 1 of 6)

Signal	Туре	Name/Description
DDRCKP	0	DDR Positive DDR clock. This signal is the positive clock of the differential DDR clock pair.
DDRCSN	0	DDR Chip Selects. This active low signal is used to select DDR device(s) on the DDR bus.
DDRDATA[15:0]	I/O	DDR Data Bus. 16-bit DDR data bus is used to transfer data between the RC32435 and the DDR devices. Data is transferred on both edges of the clock.
DDRDM[1:0]	0	DDR Data Write Enables. Byte data write enables are used to enable specific byte lanes during DDR writes. DDRDM[0] corresponds to DDRDATA[7:0] DDRDM[1] corresponds to DDRDATA[15:8]
DDRDQS[1:0]	I/O	DDR Data Strobes. DDR byte data strobes are used to clock data between DDR devices and the RC32435. These strobes are inputs during DDR reads and outputs during DDR writes. DDRDQS[0] corresponds to DDRDATA[7:0] DDRDQS[1] corresponds to DDRDATA[15:8]
DDRRASN	0	DDR Row Address Strobe. The DDR row address strobe is asserted during DDR transactions.
DDRVREF	I	DDR Voltage Reference. SSTL_2 DDR voltage reference is generated by an external source.
DDRWEN	0	DDR Write Enable. DDR write enable is asserted during DDR write transactions.
PCI Bus	<u> </u>	
PCIAD[31:0]	I/O	PCI Multiplexed Address/Data Bus. Address is driven by a bus master during initial PCIFRAMEN assertion. Data is then driven by the bus master during writes or by the bus target during reads.
PCICBEN[3:0]	I/O	PCI Multiplexed Command/Byte Enable Bus. PCI commands are driven by the bus master during the initial PCIFRAMEN assertion. Byte enable signals are driven by the bus master during subsequent data phase(s).
PCICLK	I	PCI Clock. Clock used for all PCI bus transactions.
PCIDEVSELN	I/O	PCI Device Select . This signal is driven by a bus target to indicate that the target has decoded the address as one of its own address spaces.
PCIFRAMEN	I/O	PCI Frame . Driven by a bus master. Assertion indicates the beginning of a bus transaction. Negation indicates the last data.
PCIGNTN[3:0]	I/O	PCI Bus Grant. In PCI host mode with internal arbiter: The assertion of these signals indicates to the agent that the internal RC32435 arbiter has granted the agent access to the PCI bus. In PCI host mode with external arbiter: PCIGNTN[0]: asserted by an external arbiter to indicate to the RC32435 that access to the PCI bus has been granted. PCIGNTN[3:1]: unused and driven high. In PCI satellite mode: PCIGNTN[0]: This signal is asserted by an external arbiter to indicate to the RC32435 that access to the PCI bus has been granted. PCIGNTN[3:1]: unused and driven high.
PCIIRDYN	I/O	PCI Initiator Ready. Driven by the bus master to indicate that the current datum can complete.

Table 1 Pin Description (Part 2 of 6)

Signal	Type	Name/Description
PCILOCKN	I/O	PCI Lock . This signal is asserted by an external bus master to indicate that an exclusive operation is occurring.
PCIPAR	I/O	PCI Parity . Even parity of the PCIAD[31:0] bus. Driven by the bus master during address and write Data phases. Driven by the bus target during the read data phase.
PCIPERRN	I/O	PCI Parity Error. If a parity error is detected, this signal is asserted by the receiving bus agent 2 clocks after the data is received.
PCIREQN[3:0]	I/O	PCI Bus Request. In PCI host mode with internal arbiter: These signals are inputs whose assertion indicates to the internal RC32435 arbiter that an agent desires ownership of the PCI bus. In PCI host mode with external arbiter: PCIREQN[0]: asserted by the RC32435 to request ownership of the PCI bus. PCIREQN[3:1]: unused and driven high. In PCI satellite mode: PCIREQN[0]: this signal is asserted by the RC32435 to request use of the PCI bus. PCIREQN[1]: function changes to PCIIDSEL and is used as a chip select during configuration read and write transactions. PCIREQN[3:2]: unused and driven high.
PCIRSTN	I/O	PCI Reset. In host mode, this signal is asserted by the RC32435 to generate a PCI reset. In satellite mode, assertion of this signal initiates a warm reset.
PCISERRN	I/O	PCI System Error . This signal is driven by an agent to indicate an address parity error, data parity error during a special cycle command, or any other system error. Requires an external pull-up.
PCISTOPN	I/O	PCI Stop . Driven by the bus target to terminate the current bus transaction. For example, to indicate a retry.
PCITRDYN	I/O	PCI Target Ready . Driven by the bus target to indicate that the current data can complete.
General Purpose	Input/Output	i
GPIO[0]	1/0	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U0SOUT Alternate function: UART channel 0 serial output.
GPI0[1]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: UOSINP Alternate function: UART channel 0 serial input.
GPI0[2]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: UORTSN Alternate function: UART channel 0 request to send.
GPIO[3]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: UOCTSN Alternate function: UART channel 0 clear to send.

Table 1 Pin Description (Part 3 of 6)

ounter 2435
ounter 2435
y be

Table 1 Pin Description (Part 4 of 6)

Pin Characteristics

Note: Some input pads of the RC32435 do not contain internal pull-ups or pull-downs. Unused inputs should be tied off to appropriate levels. This is especially critical for unused control signal inputs (such as WAITACKN) which, if left floating, could adversely affect the RC32435's operation. Also, any input pin left floating can cause a slight increase in power consumption.

Function	Pin Name	Туре	Buffer	I/O Type	Internal Resistor	Notes ¹
Memory and Peripheral	BDIRN	0	LVTTL	High Drive		
Bus	BOEN	0	LVTTL	High Drive		
	WEN	0	LVTTL	High Drive		
	CSN[3:0]	0	LVTTL	High Drive		
	MADDR[21:0]	I/O	LVTTL	High Drive		
	MDATA[7:0]	I/O	LVTTL	High Drive		
	OEN	0	LVTTL	High Drive		
	RWN	0	LVTTL	High Drive		
	WAITACKN	I	LVTTL	STI	pull-up	
DDR Bus	DDRADDR[13:0]	0	SSTL_2			
	DDRBA[1:0]	0	SSTL_2			
	DDRCASN	0	SSTL_2			
	DDRCKE	0	SSTL_2/LVC- MOS			
	DDRCKN	0	SSTL_2			
	DDRCKP	0	SSTL_2			
	DDRCSN	0	SSTL_2			
	DDRDATA[15:0]	I/O	SSTL_2			
	DDRDM[1:0]	0	SSTL_2			
	DDRDQS[1:0]	I/O	SSTL_2			
	DDRRASN	0	SSTL_2			
	DDRVREF	I	Analog			
	DDRWEN	0	SSTL_2			
PCI Bus Interface	PCIAD[31:0]	I/O	PCI			
	PCICBEN[3:0]	I/O	PCI			
	PCICLK	I	PCI			
	PCIDEVSELN	I/O	PCI			pull-up on board
	PCIFRAMEN	I/O	PCI			pull-up on board
	PCIGNTN[3:0]	I/O	PCI			pull-up on board
	PCIIRDYN	I/O	PCI			pull-up on board
	PCILOCKN	I/O	PCI			
	PCIPAR	I/O	PCI			
	PCIPERRN	I/O	PCI			
	PCIREQN[3:0]	I/O	PCI			pull-up on board
	PCIRSTN	I/O	PCI			pull-down on board
	PCISERRN	I/O	PCI	Open Collector		pull-up on board
	PCISTOPN	I/O	PCI			pull-up on board
	PCITRDYN	I/O	PCI			pull-up on board
General Purpose I/O	GPIO[8:0]	I/O	LVTTL	High Drive	pull-up	
	GPIO[13:9]	I/O	PCI			pull-up on board

Table 2 Pin Characteristics (Part 1 of 2)

AC Timing Definitions

Below are examples of the AC timing characteristics used throughout this document.

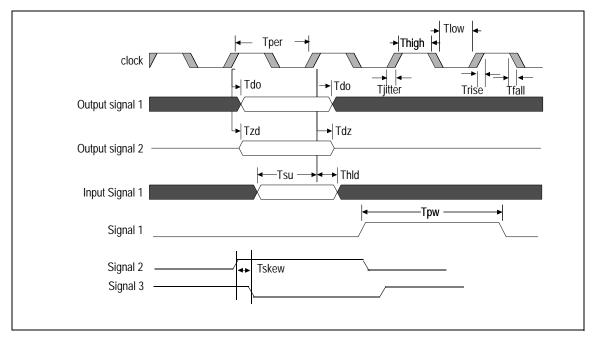


Figure 2 AC Timing Definitions Waveform

Symbol	Definition
Tper	Clock period.
Tlow	Clock low. Amount of time the clock is low in one clock period.
Thigh	Clock high. Amount of time the clock is high in one clock period.
Trise	Rise time. Low to high transition time.
Tfall	Fall time. High to low transition time.
Tjitter	Jitter. Amount of time the reference clock (or signal) edge can vary on either the rising or falling edges.
Tdo	Data out. Amount of time after the reference clock edge that the output will become valid. The minimum time represents the data output hold. The maximum time represents the earliest time the designer can use the data.
Tzd	Z state to data valid. Amount of time after the reference clock edge that the tri-stated output takes to become valid.
Tdz	Data valid to Z state. Amount of time after the reference clock edge that the valid output takes to become tri-stated.
Tsu	Input set-up. Amount of time before the reference clock edge that the input must be valid.
ThId	Input hold. Amount of time after the reference clock edge that the input must remain valid.
Tpw	Pulse width. Amount of time the input or output is active for asynchronous signals.
Tslew	Slew rate. The rise or fall rate for a signal to go from a high to low, or low to high.
X(clock)	Timing value. This notation represents a value of 'X' multiplied by the clock time period of the specified clock. Using 5(CLK) as an example: X = 5 and the oscillator clock (CLK) = 25MHz, then the timing value is 200.
Tskew	Skew. The amount of time two signal edges deviate from one another.

Table 4 AC Timing Definitions

IDT 79RC32435

Signal	Symbol	Reference Edge	266MHz		300	MHz	350	MHz	400	400MHz		Condi-	Timing Diagram
Signal	Symbol		Min	Max	Min	Max	Min	Max	Min	Max	Unit	tions	Reference
MDATA[7:0]	Tsu_8c	EXTCLK rising	6.0	_	6.0	_	6.0	_	6.0		ns		See Figures 8
	Thld_8c		0	_	0	_	0	_	0	_	ns		and 9 (cont.).
	Tdo_8c		0.4	4.5	0.4	4.5	0.4	4.5	0.4	4.5	ns		
	Tdz_8c ²		0	0.5	0	0.5	0	0.5	0	0.5	ns		
	Tzd_8c ²		0.4	3.3	0.4	3.3	0.4	3.3	0.4	3.3	ns		
EXTCLK ³	Tper_8d	none	7.5	_	6.66	_	6.66	_	6.66	_	ns		
BDIRN	Tdo_8e	EXTCLK rising	0.4	3.8	0.4	3.8	0.4	3.8	0.4	3.8	ns		
	Tdz_8e ²		_	_	_	_	_	_	_	_	ns		
	Tzd_8e ²		_	_	_	_	_	_	_	_	ns		
BOEN	Tdo_8f	EXTCLK rising	0.4	3.8	0.4	3.8	0.4	3.8	0.4	3.8	ns		
	Tdz_8f ²		_	_	_	_	_	_	_	_	ns		
	Tzd_8f ²		_	_	_	_	_	_	_	_	ns		
WAITACKN ⁴	Tsu_8h	EXTCLK rising	6.5	_	6.5	_	6.5	_	6.5	_	ns		
	Thld_8h		0	_	0	_	0	_	0		ns		
	Tpw_8h ²	none	2(EXTCLK)	_	2(EXTCLK)	_	2(EXTCLK)	_	2(EXTCLK)	_	ns		
CSN[3:0]	Tdo_8i	EXTCLK rising	0.4	4.0	0.4	4.0	0.4	4.0	0.4	4.0	ns		
	Tdz_8i ²		_	_	_	_	_	_	_	_	ns		
	Tzd_8i ²		_	_	_	_	_	_	_	_	ns		
RWN	Tdo_8j	EXTCLK rising	0.4	3.8	0.4	3.8	0.4	3.8	0.4	3.8	ns		
	Tdz_8j ²		_	_	_	_	_	_	_	_	ns		
	Tzd_8j ²		_	_	-	_	-	_	-	_	ns		
OEN	Tdo_8k	EXTCLK rising	0.4	4.0	0.4	4.0	0.4	4.0	0.4	4.0	ns		
	Tdz_8k ²		_	_		_		_	_		ns		
	Tzd_8k ²		_	_	_	-	_	_	_	1	ns		
WEN	Tdo_8l	EXTCLK rising	0.4	3.7	0.4	3.7	0.4	3.7	0.4	3.7	ns		
	Tdz_8l ²		_	_	_	_	_	_	_	1	ns		
	Tzd_8l ²		_	_	_	-	_	_	_	ı	ns		

Table 8 Memory and Peripheral Bus AC Timing Characteristics (Part 2 of 2)

^{1.} The RC32435 provides bus turnaround cycles to prevent bus contention when going from read to write, write to read, and during external bus ownership. For example, there are no cycles where an external device and the RC32435 are both driving. See Chapter 6, Device Controller, in the RC32435 User Reference Manual.

^{2.} The values for this symbol were determined by calculation, not by testing.

^{3.} The frequency of EXTCLK is programmable. See the External Clock Divider (MDATA[5:4]) description in Table 3 of this data sheet.

^{4.} WAITACKN must meet the setup and hold times if it is synchronous or the minimum pulse width if it is asynchronous.

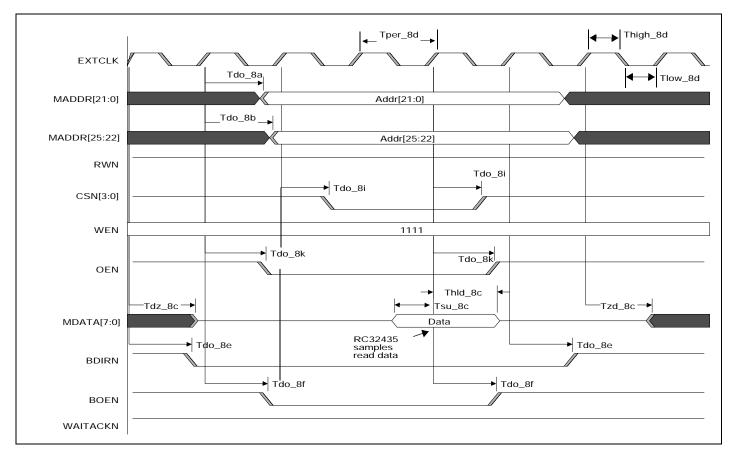


Figure 8 Memory and Peripheral Bus AC Timing Waveform — Read Access

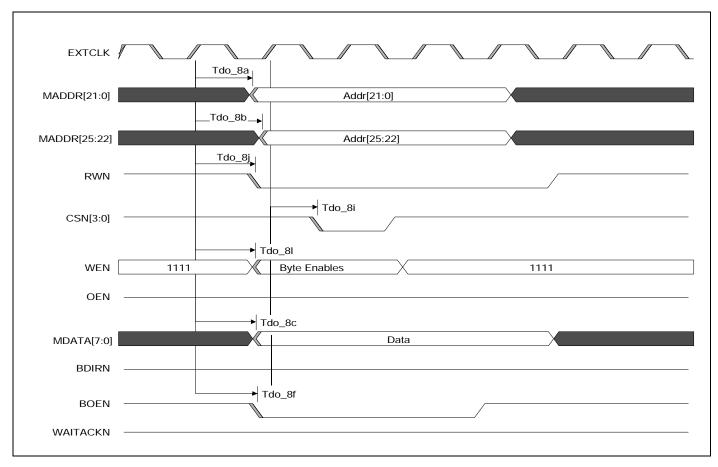


Figure 9 Memory and Peripheral Bus AC Timing Waveform — Write Access

Signal	Symbol	Reference	266	MHz	300	MHz	350	MHz	400	MHz	Unit	Condi-	Timing Diagram
Signal	Symbol	Edge	Min	Max	Min	Max	Min	Max	Min	Max	Offic	tions	Reference
Ethernet	<u> </u>										l	l	<u>I</u>
MIIMDC	Tper_9a	None	30.0	_	30.0	_	30.0	_	30.0	_	ns		See Figure 10.
	Thigh_9a, Tlow_9a		12.0	_	12.0	_	12.0	_	12.0	_	ns		
MIIMDIO	Tsu_9b	MIIMDC rising	10.0	_	10.0	_	10.0	_	10.0	_	ns		
	Thld_9b		0.0	_	0.0	_	0.0	_	0.0	_	ns		
	Tdo_9b ¹		10	300	10	300	10	300	10	300	ns		
Ethernet — MI	I Mode												
MIIRXCLK,	Tper_9c	None	399.96	400.4	399.96	400.4	399.96	400.4	399.96	400.4	ns	10 Mbps	See Figure 10.
MIITXCLK ²	Thigh_9c, Tlow_9c		140	260	140	260	140	260	140	260	ns		
	Trise_9c, Tfall_9c		_	3.0	_	3.0	_	3.0	_	3.0	ns		
MIIRXCLK,	Tper_9d	None	39.9	40.0	39.9	40.0	39.9	40.0	39.9	40.0	ns	100 Mbps	
MIITXCLK ²	Thigh_9d, Tlow_9d		14.0	26.0	14.0	26.0	14.0	26.0	14.0	26.0	ns		
	Trise_9d, Tfall_9d		_	2.0	_	2.0	_	2.0	_	2.0	ns		
MIIRXD[3:0],	Tsu_9e	MIIxRXCLK	10.0	_	10.0	_	10.0	_	10.0	_	ns		
MIIRXDV, MIIRXER	Thld_9e	rising	10.0	_	10.0	_	10.0	_	10.0	_	ns		
MIITXD[3:0], MIITXENP, MIITXER	Tdo_9f	MIIxTXCLK rising	0.0	25.0	0.0	25.0	0.0	25.0	0.0	25.0	ns		-
Ethernet — RI	MII Mode				<u> </u>				<u> </u>		<u> </u>		
RMIIREFCLK	Tper_9i	None	19.9	20.1	19.9	20.1	19.9	20.1	19.9	20.1	ns		See Figure 10.
	Thigh_9i, Tlow_9i		7.0	13.0	7.0	13.0	7.0	13.0	7.0	13.0	ns		-
RMIITXEN, RMIITXD[1:0]	Tdo_9j	MIIRXCLK rising	2.0	_	2.0	_	2.0	_	2.0	_	ns		
RMIICRSDV, RMIIRXER, RMIIRXD[1:0]	Tsu_9k		5.5	14.5	5.5	14.5	5.5	14.5	5.5	14.5	ns		

Table 9 Ethernet AC Timing Characteristics

^{1.} The values for this symbol were determined by calculation, not by testing.

^{2.} The ethernet clock (MIIRXCLK and MIITXCLK) frequency must be equal to or less than 1/2 ICLK (MIIRXCLK and MIITXCLK <= 1/2(ICLK)).

IDT 79RC32435

Ciamal	Cy year la col	Reference	266	MHz	300	MHz	350	MHz	400	MHz	l lmit	Condi-	Timing
Signal	Symbol	Edge	Min	Max	Min	Max	Min	Max	Min	Max	Unit	tions	Diagram Reference
PCI ¹	<u>'</u>											l	
PCICLK ²	Tper_10a	none	15.0	30.0	15.0	30.0	15.0	30.0	15.0	30.0	ns	66 MHz PCI	See Figure 11.
	Thigh_10a, Tlow_10a		6.0	_	6.0	_	6.0	_	6.0	_	ns		
	Tslew_10a		1.5	4.0	1.5	4.0	1.5	4.0	1.5	4.0	V/ns		
PCIAD[31:0],	Tsu_10b	PCICLK rising	3.0	_	3.0	_	3.0	_	3.0	_	ns		
PCIBEN[3:0], PCIDEVSELN,	Thld_10b		0	_	0	_	0	_	0	_	ns		
PCIFRA-	Tdo_10b		2.0	6.0	2.0	6.0	2.0	6.0	2.0	6.0	ns		
MEN,PCIIR- DYN,	Tdz_10b ³		_	14.0	_	14.0	_	14.0	_	14.0	ns		
PCILOCKN, PCIPAR, PCI- PERRN, PCIS- TOPN, PCITRDY	Tzd_10b ³		2.0	_	2.0	_	2.0	_	2.0	_	ns		
PCIGNTN[3:0],	Tsu_10c	PCICLK rising	5.0	_	5.0	_	5.0	_	5.0	_	ns		
PCIREQN[3:0]	Thld_10c		0	_	0	_	0	_	0	_	ns		
	Tdo_10c		2.0	6.0	2.0	6.0	2.0	6.0	2.0	6.0	ns		
PCIRSTN (output) ⁴	Tpw_10d ³	None	4000 (CLK)	_	4000 (CLK)	_	4000 (CLK)	_	4000 (CLK)	_	ns		See Figures 15 and 16
PCIRSTN	Tpw_10e ³	None	2(CLK)	_	2(CLK)	_	2(CLK)	_	2(CLK)	_	ns		
(input) ^{4,5}	Tdz_10e ³	PCIRSTN falling	6(CLK)	_	6(CLK)	_	6(CLK)	_	6(CLK)	_	ns		
PCISERRN ⁶	Tsu_10f	PCICLK rising	3.0	_	3.0	_	3.0	_	3.0	_	ns		See Figure 11
	Thld_10f		0	_	0	_	0	_	0	_	ns		1
	Tdo_10f		2.0	6.0	2.0	6.0	2.0	6.0	2.0	6.0	ns		1
PCIMUINTN ⁶	Tdo_10g	PCICLK rising	4.7	11.1	4.7	11.1	4.7	11.1	4.7	11.1	ns		

Table 10 PCI AC Timing Characteristics

 $^{^{\}rm 1.}$ This PCI interface conforms to the PCI Local Bus Specification, Rev 2.2.

 $^{^{2}}$ PCICLK must be equal to or less than two times ICLK (PCICLK <= 2(ICLK)) with a maximum PCICLK of 66 MHz.

 $^{^{\}rm 3.}$ The values for this symbol were determined by calculation, not by testing.

 $^{^{\}rm 4.}$ PCIRSTN is an output in host mode and an input in satellite mode.

^{5.} To meet the PCI delay specification from reset asserted to outputs floating, the PCI reset should be logically combined with the COLDRSTN input, instead of input on PCIRSTN.

^{6.} PCISERRN and PCIMUINTN use open collector I/O types.

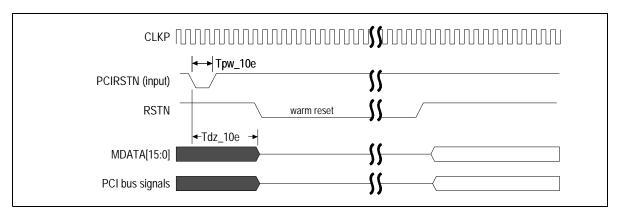


Figure 13 $\,$ PCI AC Timing Waveform — PCI Reset in Satellite Mode

Ci I	Cl	Reference	266	MHz	300	MHz	350	MHz	400	MHz	11	0	Timing
Signal	Symbol	Edge	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Conditions	Diagram Reference
I ² C ¹													
SCL	Frequency	none	0	100	0	100	0	100	0	100	kHz	100 KHz	See Figure 14.
	Thigh_12a, Tlow_12a		4.0	ı	4.0	1	4.0	-	4.0	1	μs		
	Trise_12a		_	1000	_	1000	_	1000	_	1000	ns		
	Tfall_12a		_	300	_	300	_	300	_	300	ns		
SDA	Tsu_12b	SCL rising	250	_	250	_	250	_	250	_	ns		
	Thld_12b		0	3.45	0	3.45	0	3.45	0	3.45	μs		
	Trise_12b		_	1000	_	1000	_	1000	_	1000	ns		
	Tfall_12b		_	300	_	300	_	300	_	300	ns		
Start or repeated start	Tsu_12c	SDA falling	4.7	_	4.7	-	4.7	-	4.7		μs		
condition	Thld_12c		4.0	_	4.0	_	4.0	_	4.0	_	μs		
Stop condition	Tsu_12d	SDA rising	4.0	_	4.0	_	4.0	_	4.0	_	μs		
Bus free time between a stop and start condition	Tdelay_12e		4.7		4.7		4.7	_	4.7		μs		
SCL	Frequency	none	0	400	0	400	0	400	0	400	kHz	400 KHz	
	Thigh_12a, Tlow_12a		0.6	_	0.6	_	0.6	_	0.6	_	μs		
	Trise_12a		_	300	_	300	_	300	_	300	ns		
	Tfall_12a		_	300	_	300	_	300	_	300	ns		
SDA	Tsu_12b	SCL rising	100	_	100	1	100	_	100	_	ns		
	Thld_12b		0	0.9	0	0.9	0	0.9	0	0.9	μs		
	Trise_12b		_	300	_	300	_	300		300	ns		
	Tfall_12ba		_	300	_	300	_	300	_	300	ns		

Table 11 I²C AC Timing Characteristics (Part 1 of 2)

Signal	Symbol	Reference	266MHz		300	MHz	350	MHz	400	MHz	Unit	Condi-	Timing Diagram
Signal	Symbol	Edge	Min	Max	Min	Max	Min	Max	Min	Max	Offit	tions	Reference
SPI ¹													
SCK	Tper_15a	None	100	166667	100	166667	100	166667	100	166667	ns	SPI	See Figures
	Thigh_15a, Tlow_15a		40	83353	40	83353	40	83353	40	83353	ns	SPI	16, 17, and 18.
SDI	Tsu_15b	SCK rising or	60	-	60	_	60	_	60	_	ns	SPI	See Figures
	Thld_15b	falling	60	_	60	_	60	_	60	_	ns	SPI	16, 17, and 18.
SDO	Tdo_15c	SCK rising or falling	0	60	0	60	0	60	0	60	ns	SPI	
SCK, SDI, SDO	Tpw_15e	None	2(ICLK)		2(ICLK)	-	2(ICLK)	_	2(ICLK)	ı	ns	Bit I/O	

Table 13 SPI AC Timing Characteristics

^{1.} In SPI mode, the SCK period and sampling edge are programmable. In PCI mode, the SCK period is fixed and the sampling edge is rising.

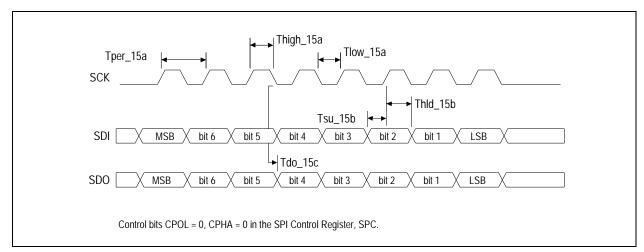


Figure 16 SPI AC Timing Waveform — Clock Polarity 0, Clock Phase 0

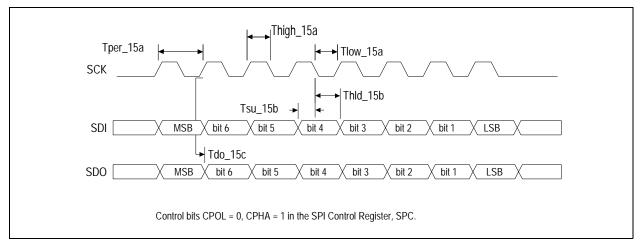


Figure 17 SPI AC Timing Waveform — Clock Polarity 0, Clock Phase 1

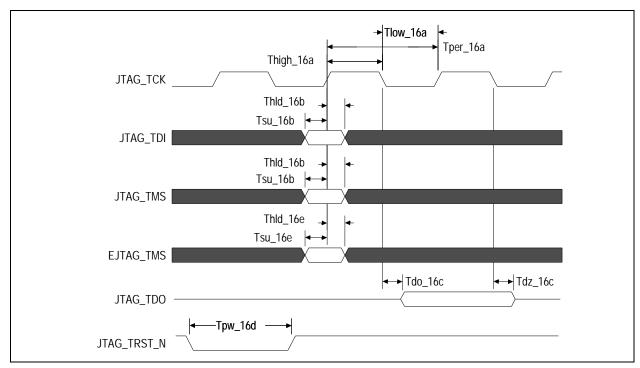


Figure 19 JTAG AC Timing Waveform

The IEEE 1149.1 specification requires that the JTAG and EJTAG TAP controllers be reset at power-up whether or not the interfaces are used for a boundary scan or a probe. Reset can occur through a pull-down resistor on JTAG_TRST_N if the probe is not connected. However, on-chip pull-up resistors are implemented on the RC32435 due to an IEEE 1149.1 requirement. Having on-chip pull-up and external pull-down resistors for the JTAG_TRST_N signal requires special care in the design to ensure that a valid logical level is provided to JTAG_TRST_N, such as using a small external pull-down resistor to ensure this level overrides the on-chip pull-up. An alternative is to use an active power-up reset circuit for JTAG_TRST_N, which drives JTAG_TRST_N low only at power-up and then holds JTAG_TRST_N high afterwards with a pull-up resistor.

Figure 20 shows the electrical connection of the EJTAG probe target system connector.

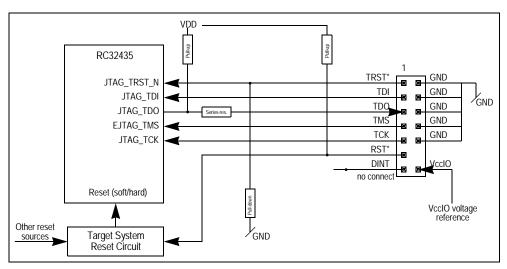


Figure 20 Target System Electrical EJTAG Connection

Power Consumption

Parameter		266MHz		300MHz		350MHz		400MHz		Unit	Conditions	
		Тур.	Max.	Тур.	Max.	Тур.	Max.	Тур.	Max.		GONGINIONS	
I _{cc} I/O		215	270	220	275	225	280	230	285	mA	C _L = 35 pF	
I _{cc} SI/O (DDR)		70	85	75	90	85	100	95	110	mA	T _{ambient} = 25°C Max. values use the maximum volt-	
I _{cc} Core, I _{cc} PLL	Normal mode	325	510	350	550	400	610	450	670	mA	ages listed in Table 15. Typical val- ues use the typical voltages listed	
	Standby mode ¹	220	_	240	_ 200 _ 280 _	in that table. Note: For additional information, see Power Considerations for IDT						
Power Dissipation	Normal mode	1.27	1.82	1.36	1.90	1.45	2.02	1.54	2.15	W	Processors on the IDT web site www.idt.com.	
	Standby mode ¹	0.73	_	0.78	_	0.84	_	0.90	_	W		

Table 17 RC32435 Power Consumption

Power Curve

The following graph contains a power curve that shows power consumption at various core frequencies.

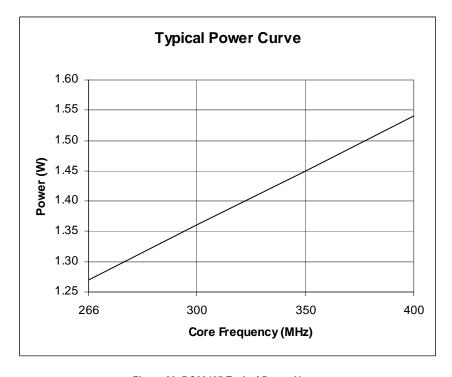


Figure 22 RC32435 Typical Power Usage

^{1.} The RC32435 enter Standby mode by executing WAIT instructions. Minimal I/O switching is assumed. On-chip logic outside the CPU core continues to function.

Signal Name	I/O Type	Location	Signal Category
DDRADDR[0]	0	P14	DDR Bus
DDRADDR[1]	0	R16	
DDRADDR[2]	0	P15	
DDRADDR[3]	0	N15	
DDRADDR[4]	0	N14	
DDRADDR[5]	0	N13	
DDRADDR[6]	0	M15	
DDRADDR[7]	0	M16	
DDRADDR[8]	0	L16	
DDRADDR[9]	0	L13	
DDRADDR[10]	0	K15	
DDRADDR[11]	0	K14	
DDRADDR[12]	0	K16	
DDRADDR[13]	0	E15	
DDRBA[0]	0	N16	
DDRBA[1]	0	M14	
DDRCASN	0	L15	
DDRCKE	0	K13	
DDRCKN	0	J13	
DDRCKP	0	J15	
DDRCSN	0	P16	
DDRDATA[0]	I/O	C16	
DDRDATA[1]	I/O	D16	
DDRDATA[2]	I/O	D14	
DDRDATA[3]	I/O	D15	
DDRDATA[4]	I/O	E16	
DDRDATA[5]	I/O	E14	
DDRDATA[6]	I/O	E13	
DDRDATA[7]	I/O	F16	
DDRDATA[8]	I/O	F14	
DDRDATA[9]	I/O	F13	
DDRDATA[10]	I/O	G15	
DDRDATA[11]	I/O	G16	
DDRDATA[12]	I/O	H15	
DDRDATA[13]	I/O	H16	
DDRDATA[14]	I/O	H14	

Table 24 RC32435 Alphabetical Signal List (Part 2 of 7)

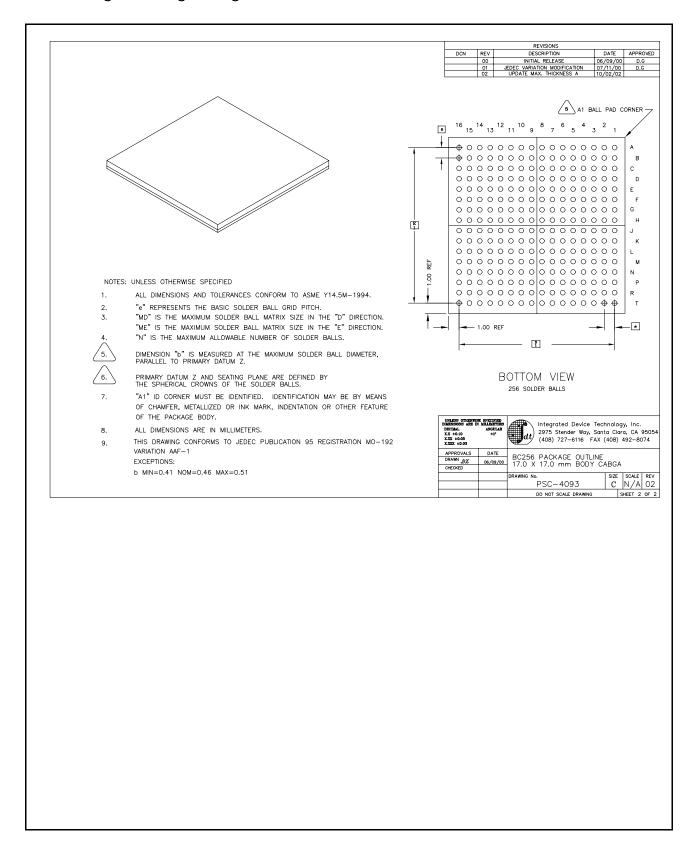

Signal Name	I/O Type	Location	Signal Category
MADDR[0]	0	C15	Memory and Peripheral Bus
MADDR[1]	0	B16	
MADDR[2]	0	A16	
MADDR[3]	0	B15	
MADDR[4]	0	C14	
MADDR[5]	0	A15	
MADDR[6]	0	B14	
MADDR[7]	0	A14	
MADDR[8]	0	B13	
MADDR[9]	0	A13	
MADDR[10]	0	A 5	
MADDR[11]	0	B5	
MADDR[12]	0	B10	
MADDR[13]	0	A10	
MADDR[14]	0	C10	
MADDR[15]	0	D10	
MADDR[16]	0	А9	
MADDR[17]	0	В9	
MADDR[18]	0	C9	
MADDR[19]	0	D9	
MADDR[20]	0	D8	
MADDR[21]	0	C8	
MDATA[0]	I/O	D7	
MDATA[1]	I/O	В6	
MDATA[2]	I/O	D6	
MDATA[3]	I/O	C5	
MDATA[4]	I/O	В7	
MDATA[5]	I/O	C6	
MDATA[6]	I/O	A6	
MDATA[7]	I/O	D5	

Table 24 RC32435 Alphabetical Signal List (Part 4 of 7)

Signal Name	I/O Type	Location	Signal Category
MIICL	I	D2	Ethernet Interface
MIICRS	I	D3	
MIIMDC	0	H2	
MIIMDIO	I/O	H1	
MIIRXCLK	I	F2	
MIIRXD[0]	I	D1	
MIIRXD[1]	I	D4	
MIIRXD[2]	I	E2	
MIIRXD[3]	I	E1	
MIIRXDV	I	G1	
MIIRXER	I	G3	
MIITXCLK	I	G4	
MIITXD[0]	0	E3	
MIITXD[1]	0	E4	
MIITXD[2]	0	F1	
MIITXD[3]	0	F3	
MIITXENP	0	F4	
MIITXER	0	G2	
OEN	0	A2	Memory and Peripheral Bus
PCIAD[0]	I/O	R14	PCI Bus Interface
PCIAD[1]	I/O	T14	
PCIAD[2]	I/O	T13	
PCIAD[3]	I/O	R13	
PCIAD[4]	I/O	P13	
PCIAD[5]	I/O	R12	
PCIAD[6]	I/O	T12	
PCIAD[7]	I/O	P12	
PCIAD[8]	I/O	R11	
PCIAD[9]	I/O	T11	
PCIAD[10]	I/O	P11	
PCIAD[11]	I/O	N11	
PCIAD[12]	I/O	R10	
PCIAD[13]	I/O	T10	
PCIAD[14]	I/O	P10	
PCIAD[15]	I/O	N10	
PCIAD[16]	I/O	T5	

Table 24 RC32435 Alphabetical Signal List (Part 5 of 7)

RC32435 Package Drawing — Page Two

