

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MIPS32
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	350MHz
Co-Processors/DSP	·
RAM Controllers	DDR
Graphics Acceleration	No
Display & Interface Controllers	·
Ethernet	10/100Mbps (1)
SATA	-
USB	·
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 85°C (TA)
Security Features	-
Package / Case	256-LBGA
Supplier Device Package	256-CABGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/79rc32h435-350bcgi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Memory and I/O Controller

The RC32435 uses a dedicated local memory/IO controller including a de-multiplexed 8-bit data and 26-bit address bus. It includes all of the signals required to interface directly to a maximum of four Intel or Motorola-style external peripherals.

DMA Controller

The DMA controller consists of 6 independent DMA channels, all of which operate in exactly the same manner. The DMA controller off-loads the CPU core from moving data among the on-chip interfaces, external peripherals, and memory. The controller supports scatter/gather DMA with no alignment restrictions, making it appropriate for communications and graphics systems.

UART Interface

The RC32435 contains a serial channel (UART) that is compatible with the industry standard 16550 UART.

I²C Interface

The standard I2C interface allows the RC32435 to connect to a number of standard external peripherals for a more complete system solution. The RC32435 supports both master and slave operations.

General Purpose I/O Controller

The RC32435 has 14 general purpose input/output pins. Each pin may be used as an active high or active low level interrupt or non-maskable interrupt input, and each signal may be used as a bit input or output port.

System Integrity Functions

The RC32435 contains a programmable watchdog timer that generates a non-maskable interrupt (NMI) when the counter expires and also contains an address space monitor that reports errors in response to accesses to undecoded address regions.

Thermal Considerations

The RC32435 is guaranteed in an ambient temperature range of 0° to +70° C for commercial temperature devices and - 40° to +85° for industrial temperature devices.

Revision History

January 19, 2006: Initial publication.

Pin Description Table

The following table lists the functions of the pins provided on the RC32435. Some of the functions listed may be multiplexed onto the same pin.

The active polarity of a signal is defined using a suffix. Signals ending with an "N" are defined as being active, or asserted, when at a logic zero (low) level. All other signals (including clocks, buses, and select lines) will be interpreted as being active, or asserted, when at a logic one (high) level.

Signal	Туре	Name/Description
Memory and Perip	heral Bus	·
BDIRN	0	External Buffer Direction . Controls the direction of the external data bus buffer for the memory and peripheral bus. If the RC32435 memory and peripheral bus is connected to the A side of a transceiver, such as an IDT74FCT245, then this pin may be directly connected to the direction control (e.g., BDIR) pin of the transceiver.
BOEN	0	External Buffer Enable . This signal provides an output enable control for an external buffer on the memory and peripheral data bus.
WEN	0	Write Enables. This signal is the memory and peripheral bus write enable signal.
CSN[3:0]	0	Chip Selects. These signals are used to select an external device on the memory and peripheral bus.
MADDR[21:0]	0	Address Bus. 22-bit memory and peripheral bus address bus. MADDR[25:22] are available as GPIO alternate functions.
MDATA[7:0]	I/O	Data Bus. 8-bit memory and peripheral data bus. During a cold reset, these pins function as inputs that are used to load the boot configuration vector.
OEN	0	Output Enable . This signal is asserted when data should be driven by an external device on the memory and peripheral bus.
RWN	0	Read Write . This signal indicates whether the transaction on the memory and peripheral bus is a read transaction or a write transaction. A high level indicates a read from an external device. A low level indicates a write to an external device.
WAITACKN	I	Wait or Transfer Acknowledge. When configured as wait, this signal is asserted during a memory and peripheral bus transaction to extend the bus cycle. When configured as a transfer acknowledge, this signal is asserted during a transaction to signal the completion of the transaction.
DDR Bus		
DDRADDR[13:0]	0	DDR Address Bus. 14-bit multiplexed DDR address bus. This bus is used to transfer the addresses to the DDR devices.
DDRBA[1:0]	0	DDR Bank Address. These signals are used to transfer the bank address to the DDRs.
DDRCASN	0	DDR Column Address Strobe. This signal is asserted during DDR transactions.
DDRCKE	0	DDR Clock Enable. The DDR clock enable signal is asserted during normal DDR operation. This signal is negated following a cold reset or during a power down operation.
DDRCKN	0	DDR Negative DDR clock. This signal is the negative clock of the differential DDR clock pair.

Table 1 Pin Description (Part 1 of 6)

Signal	Туре	Name/Description
SDI	I/O	Serial Data Input. This signal is used to shift in serial data. This pin may be used as a bit input/output port.
SDO	I/O	Serial Data Output. This signal is used shift out serial data.
I ² C Bus Interface	1	
SCL	I/O	I ² C Clock. I ² C-bus clock.
SDA	I/O	I ² C Data Bus. I ² C-bus data bus.
Ethernet Interface	S	
MIICL	Ι	Ethernet MII Collision Detected. This signal is asserted by the ethernet PHY when a collision is detected.
MIICRS	I	Ethernet MII Carrier Sense. This signal is asserted by the ethernet PHY when either the transmit or receive medium is not idle.
MIIRXCLK	I	Ethernet MII Receive Clock. This clock is a continuous clock that provides a timing reference for the reception of data. This pin also functions as the RMII REF_CLK input.
MIIRXD[3:0]	I	Ethernet MII Receive Data. This nibble wide data bus contains the data received by the ethernet PHY. This pin also functions as the RMII RXD[1:0] input.
MIIRXDV	I	Ethernet MII Receive Data Valid. The assertion of this signal indicates that valid receive data is in the MII receive data bus. This pin also functions as the RMII CRS_DV input.
MIIRXER	I	Ethernet MII Receive Error. The assertion of this signal indicates that an error was detected somewhere in the ethernet frame currently being sent in the MII receive data bus. This pin also functions as the RMII RX_ER input.
MIITXCLK	I	Ethernet MII Transmit Clock. This clock is a continuous clock that provides a timing reference for the transfer of transmit data.
MIITXD[3:0]	0	Ethernet MII Transmit Data. This nibble wide data bus contains the data to be transmitted. This pin also functions as the RMII TXD[1:0] output.
MIITXENP	0	Ethernet MII Transmit Enable. The assertion of this signal indicates that data is present on the MII for transmission. This pin also functions as the RMII TX_EN output.
MIITXER	0	Ethernet MII Transmit Coding Error . When this signal is asserted together with MIITXENP, the ethernet PHY will transmit symbols which are not valid data or delimiters.
MIIMDC	0	MII Management Data Clock . This signal is used as a timing reference for transmission of data on the management interface.
MIIMDIO	I/O	MII Management Data . This bidirectional signal is used to transfer data between the station management entity and the ethernet PHY.
EJTAG / JTAG		
JTAG_TMS	I	JTAG Mode . The value on this signal controls the test mode select of the boundary scan logic or JTAG Controller. When using the EJTAG debug interface, this pin should be left disconnected (since there is an internal pull-up) or driven high.

Table 1 Pin Description (Part 5 of 6)

Signal	Туре	Name/Description
EJTAG_TMS	I	EJTAG Mode . The value on this signal controls the test mode select of the EJTAG Controller. When using the JTAG boundary scan, this pin should be left disconnected (since there is an internal pull-up) or driven high.
JTAG_TRST_N	I	JTAG Reset. This active low signal asynchronously resets the boundary scan logic, JTAG TAP Controller, and the EJTAG Debug TAP Controller. An external pull-up on the board is recommended to meet the JTAG specification in cases where the tester can access this signal. However, for systems running in func- tional mode, one of the following should occur: 1) actively drive this signal low with control logic 2) statically drive this signal low with an external pull-down on the board 3) clock JTAG_TCK while holding EJTAG_TMS and/or JTAG_TMS high.
JTAG_TCK	I	JTAG Clock. This is an input test clock used to clock the shifting of data into or out of the boundary scan logic, JTAG Controller, or the EJTAG Controller. JTAG_TCK is independent of the system and the processor clock with a nominal 50% duty cycle.
JTAG_TDO	0	JTAG Data Output . This is the serial data shifted out from the boundary scan logic, JTAG Controller, or the EJTAG Controller. When no data is being shifted out, this signal is tri-stated.
JTAG_TDI	I	JTAG Data Input . This is the serial data input to the boundary scan logic, JTAG Controller, or the EJTAG Controller.
System	L	
CLK	I	Master Clock. This is the master clock input. The processor frequency is a multiple of this clock frequency. This clock is used as the system clock for all memory and peripheral bus operations.
EXTBCV	I	Load External Boot Configuration Vector. When this pin is asserted (i.e., high) the boot configuration vector is loaded from an externally supplied value during a cold reset. When this pin is negated, the boot configuration vector is taken from the NVRAM located on-chip.
EXTCLK	0	External Clock. This clock is used for all memory and peripheral bus operations.
COLDRSTN	I	Cold Reset. The assertion of this signal initiates a cold reset. This causes the processor state to be initialized, boot configuration to be loaded, and the internal PLL to lock onto the master clock (CLK).
RSTN	I/O	Reset . The assertion of this bidirectional signal initiates a warm reset. This signal is asserted by the RC32435 during a warm reset.

Table 1 Pin Description (Part 6 of 6)

Pin Characteristics

Note: Some input pads of the RC32435 do not contain internal pull-ups or pull-downs. Unused inputs should be tied off to appropriate levels. This is especially critical for unused control signal inputs (such as WAITACKN) which, if left floating, could adversely affect the RC32435's operation. Also, any input pin left floating can cause a slight increase in power consumption.

Function	Pin Name	Туре	Buffer	I/О Туре	Internal Resistor	Notes ¹
Memory and Peripheral	BDIRN	0	LVTTL	High Drive		
Bus	BOEN	0	LVTTL	High Drive		
	WEN	0	LVTTL	High Drive		
	CSN[3:0]	0	LVTTL	High Drive		
	MADDR[21:0]	I/O	LVTTL	High Drive		
	MDATA[7:0]	I/O	LVTTL	High Drive		
	OEN	0	LVTTL	High Drive		
	RWN	0	LVTTL	High Drive		
	WAITACKN	I	LVTTL	STI	pull-up	
DDR Bus	DDRADDR[13:0]	0	SSTL_2			
	DDRBA[1:0]	0	SSTL_2			
	DDRCASN	0	SSTL_2			
	DDRCKE	0	SSTL_2/LVC- MOS			
	DDRCKN	0	SSTL_2			
	DDRCKP	0	SSTL_2			
	DDRCSN	0	SSTL_2			
	DDRDATA[15:0]	I/O	SSTL_2			
	DDRDM[1:0]	0	SSTL_2			
	DDRDQS[1:0]	I/O	SSTL_2			
	DDRRASN	0	SSTL_2			
	DDRVREF	1	Analog			
	DDRWEN	0	SSTL_2			
PCI Bus Interface	PCIAD[31:0]	I/O	PCI			
	PCICBEN[3:0]	I/O	PCI			
	PCICLK	1	PCI			
	PCIDEVSELN	I/O	PCI			pull-up on board
	PCIFRAMEN	I/O	PCI			pull-up on board
	PCIGNTN[3:0]	I/O	PCI			pull-up on board
	PCIIRDYN	I/O	PCI			pull-up on board
	PCILOCKN	I/O	PCI			
	PCIPAR	I/O	PCI			
	PCIPERRN	I/O	PCI			
	PCIREQN[3:0]	I/O	PCI			pull-up on board
	PCIRSTN	I/O	PCI			pull-down on board
	PCISERRN	I/O	PCI	Open Collector		pull-up on board
	PCISTOPN	I/O	PCI			pull-up on board
	PCITRDYN	I/O	PCI			pull-up on board
General Purpose I/O	GPIO[8:0]	I/O	LVTTL	High Drive	pull-up	
·	GPIO[13:9]	I/O	PCI			pull-up on board

Table 2 Pin Characteristics (Part 1 of 2)

Signal	Name/Description
MADDR[11]	Disable Watchdog Timer . When this bit is set, the watchdog timer is disabled follow- ing a cold reset. 0x0 - Watchdog timer enabled 0x1 - Watchdog timer disabled
MADDR[13:12]	Reserved. These pins must be driven low during boot configuration.
MADDR[15:14]	Reserved. Must be set to zero.

 Table 3 Boot Configuration Encoding (Part 2 of 2)

System Clock Parameters

(Values based on systems running at recommended supply voltages and operating temperatures, as shown in Tables 15 and 16.)

Parameter	Symbol	Reference		MHz	300	MHz	350	MHz	400	MHz	Units	Timing Diagram
Faranteter	E		Min	Мах	Min	Max	Min	Max	Min	Max	Onits	Reference
PCLK ¹	Frequency	none	200	266	200	300	200	350	200	400	MHz	See Figure 3.
	Tper		3.8	5.0	3.3	5.0	2.85	5.0	2.5	5.0	ns	
ICLK ^{2,3,4}	Frequency	none	100	133	100	150	100	175	100	200	MHz	
	Tper		7.5	10.0	6.7	10.0	5.7	10.0	5.0	10.0	ns	
CLK ⁵	Frequency	none	25	125	25	125	25	125	25	125	MHz	
	Tper_5a		8.0	40.0	8.0	40.0	8.0	40.0	8.0	40.0	ns	
	Thigh_5a, Tlow_5a		40	60	40	60	40	60	40	60	% of Tper_5a	
	Trise_5a, Tfall_5a		_	3.0	_	3.0	_	3.0	_	3.0	ns	
	Tjitter_5a		_	0.1		0.1	—	0.1	—	0.1	ns	

Table 5 Clock Parameters

^{1.} The CPU pipeline clock (PCLK) speed is selected during cold reset by the boot configuration vector (see Table 3). Refer to Chapter 3, Clocking and Initialization, in the RC32435 User Reference Manual for the allowable frequency ranges of CLK and PCLK.

^{2.} ICLK is the internal IPBus clock. It is always equal to PCLK divided by 2. This clock cannot be sampled externally.

^{3.} The ethernet clock (MIIxRXCLK and MIIxTXCLK) frequency must be equal to or less than 1/2 ICLK (MIIxRXCLK and MIIxTXCLK <= 1/2(ICLK)).

^{4.} PCICLK must be equal to or less than two times ICLK (PCICLK <= 2(ICLK)) with a maximum PCICLK of 66 MHz.

^{5.} The input clock (CLK) is input from the external oscillator to the internal PLL.

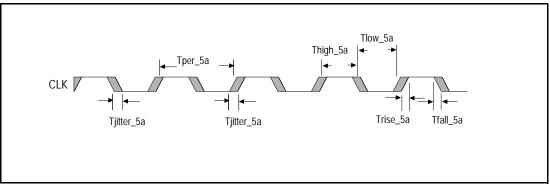
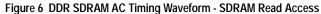


Figure 3 Clock Parameters Waveform

AC Timing Characteristics

(Values given below are based on systems running at recommended operating temperatures and supply voltages, shown in Tables 15 and 16.)

Signal	Symbol	Reference	266	MHz	300	MHz	350	MHz	400	MHz	Unit	Condi-	Timing Diagram
Signal	griai Symbol		Min	Мах	Min	Мах	Min	Мах	Min	Мах	Unit	tions	Reference
Reset													
COLDRSTN ¹	Tpw_6a ²	none	OSC	_	OSC	—	OSC	—	OSC	—	ms	Cold reset	See Figures 4
	Trise_6a	none		5.0	_	5.0	—	5.0	_	5.0	ns	Cold reset	and 5.
RSTN ³ (input)	Tpw_6b ²	none	2(CLK)	_	2(CLK)	_	2(CLK)	_	2(CLK)	_	ns	Warm reset	
RSTN ³ (output)	Tdo_6c	COLDRSTN falling	_	15.0	_	15.0	—	15.0	—	15.0	ns	Cold reset	
MADDR[15:0] (boot vector)	Tdz_6d ²	COLDRSTN falling	_	30.0	_	30.0	_	30.0	_	30.0	ns	Cold reset	
	Tdz_6d ²	RSTN falling		5(CLK)	_	5(CLK)	—	5(CLK)	_	5(CLK)	ns	Warm reset	
	Tzd_6d ²	RSTN rising	2(CLK)	-	2(CLK)		2(CLK)	_	2(CLK)	_	ns	Warm reset	


Table 6 Reset and System AC Timing Characteristics

 $^{\rm 1.}$ The COLDRSTN minimum pulse width is the oscillator stabilization time (OSC) with V $_{\rm CC}$ stable.

^{2.} The values for this symbol were determined by calculation, not by testing.

^{3.} RSTN is a bidirectional signal. It is treated as an asynchronous input.

Signal	Symbol	Reference	266	MHz	300	MHz	350	MHz	400	MHz	Unit	Condi-	Timing Diagram
Signal	Symbol	Edge	Min	Мах	Min	Max	Min	Мах	Min	Max	Unit	tions	Reference
Ethernet	I	II										L	
MIIMDC	Tper_9a	None	30.0	_	30.0	_	30.0	_	30.0	_	ns		See Figure 10.
	Thigh_9a, Tlow_9a		12.0	—	12.0	_	12.0		12.0	_	ns		
MIIMDIO	Tsu_9b	MIIMDC rising	10.0	_	10.0	_	10.0	_	10.0	_	ns		-
	Thld_9b		0.0	_	0.0	_	0.0	_	0.0	_	ns		
	Tdo_9b ¹		10	300	10	300	10	300	10	300	ns		
Ethernet — MI	I Mode	<u> </u>	1										1
MIRXCLK,	Tper_9c	None	399.96	400.4	399.96	400.4	399.96	400.4	399.96	400.4	ns	10 Mbps	See Figure 10.
MIITXCLK ²	Thigh_9c, Tlow_9c		140	260	140	260	140	260	140	260	ns		
	Trise_9c, Tfall_9c		—	3.0	—	3.0	—	3.0	_	3.0	ns		
MIRXCLK,	Tper_9d	None	39.9	40.0	39.9	40.0	39.9	40.0	39.9	40.0	ns	100 Mbps	
MIITXCLK ²	Thigh_9d, Tlow_9d		14.0	26.0	14.0	26.0	14.0	26.0	14.0	26.0	ns		
	Trise_9d, Tfall_9d		—	2.0	—	2.0	—	2.0	—	2.0	ns		
MIIRXD[3:0],	Tsu_9e	MIIxRXCLK	10.0	_	10.0	_	10.0		10.0	_	ns		
MIIRXDV, MIIRXER	Thld_9e	rising	10.0	_	10.0	_	10.0	_	10.0	_	ns		_
MIITXD[3:0], MIITXENP, MIITXER	Tdo_9f	MIIxTXCLK rising	0.0	25.0	0.0	25.0	0.0	25.0	0.0	25.0	ns		-
Ethernet — RM	/III Mode	II	I				11					1	_
RMIIREFCLK	Tper_9i	None	19.9	20.1	19.9	20.1	19.9	20.1	19.9	20.1	ns		See Figure 10.
	Thigh_9i, Tlow_9i		7.0	13.0	7.0	13.0	7.0	13.0	7.0	13.0	ns		
RMIITXEN, RMIITXD[1:0]	Tdo_9j	MIIRXCLK rising	2.0	—	2.0	—	2.0	_	2.0	—	ns		
rmiicrsdv, rmiirxer, rmiirxd[1:0]	Tsu_9k		5.5	14.5	5.5	14.5	5.5	14.5	5.5	14.5	ns		

Table 9 Ethernet AC Timing Characteristics

^{1.} The values for this symbol were determined by calculation, not by testing.

^{2.} The ethernet clock (MIIRXCLK and MIITXCLK) frequency must be equal to or less than 1/2 ICLK (MIIRXCLK and MIITXCLK <= 1/2(ICLK)).

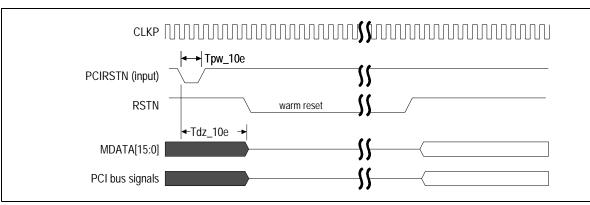


Figure 13 PCI AC Timing Waveform — PCI Reset in Satellite Mode

		Reference	266	MHz	300	MHz	350	MHz	400	MHz			Timing
Signal	Symbol	Edge	Min	Мах	Min	Мах	Min	Max	Min	Max	Unit	Conditions	Diagram Reference
I ² C ¹													
SCL	Frequency	none	0	100	0	100	0	100	0	100	kHz	100 KHz	See Figure 14.
	Thigh_12a, Tlow_12a		4.0	Ι	4.0	-	4.0		4.0	Ι	μs		
	Trise_12a		_	1000	_	1000	_	1000	_	1000	ns		
	Tfall_12a		_	300	_	300	_	300	_	300	ns		
SDA	Tsu_12b	SCL rising	250	—	250	—	250	—	250	—	ns		
	Thld_12b		0	3.45	0	3.45	0	3.45	0	3.45	μs		
	Trise_12b		_	1000	_	1000	_	1000	—	1000	ns		
	Tfall_12b			300		300		300	—	300	ns		
Start or repeated start	Tsu_12c	SDA falling	4.7	_	4.7	—	4.7	—	4.7	—	μs		
condition	Thld_12c		4.0	_	4.0	—	4.0	—	4.0	—	μs		
Stop condition	Tsu_12d	SDA rising	4.0	_	4.0	—	4.0	—	4.0	—	μs		
Bus free time between a stop and start condi- tion	Tdelay_12e		4.7	-	4.7	_	4.7	—	4.7	_	μs		
SCL	Frequency	none	0	400	0	400	0	400	0	400	kHz	400 KHz	
	Thigh_12a, Tlow_12a		0.6	-	0.6	_	0.6	_	0.6	_	μs		
	Trise_12a			300		300		300	_	300	ns		
	Tfall_12a			300		300		300	_	300	ns		
SDA	Tsu_12b	SCL rising	100	_	100	—	100	—	100	-	ns		
	Thld_12b		0	0.9	0	0.9	0	0.9	0	0.9	μs		
	Trise_12b		-	300	-	300	_	300	-	300	ns		
	Tfall_12ba		—	300		300		300	_	300	ns		

Table 11 I²C AC Timing Characteristics (Part 1 of 2)

Signal	Symbol	Reference Edge	266MHz		300MHz		350MHz		400MHz		Upit	Conditions	Timing Diagram
Signal	Symbol		Min	Мах	Min	Max	Min	Max	Min	Max	Unit	Conditions	Reference
Start or repeated start	Tsu_12c	SDA falling	0.6	—	0.6	—	0.6	_	0.6	_	μs	400 KHz	See Figure 14.
condition	Thld_12c		0.6	—	0.6	_	0.6	_	0.6	_	μs		
Stop condition	Tsu_12d	SDA rising	0.6	—	0.6	—	0.6	_	0.6	_	μs		
Bus free time between a stop and start condi- tion	Tdelay_12e		1.3	—	1.3	_	1.3	_	1.3	_	μs		

Table 11 I²C AC Timing Characteristics (Part 2 of 2)

 $^{1\cdot}$ For more information, see the I^2C-Bus specification by Philips Semiconductor.

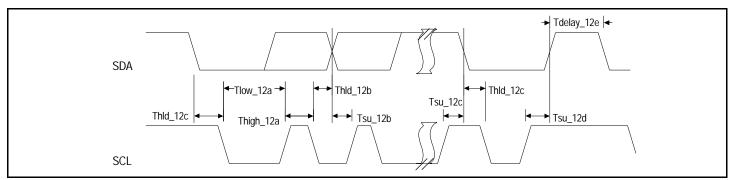


Figure 14 I2C AC Timing Waveform

Signal I Sympoli	Reference	266MHz		300MHz		350MHz		400MHz		Unit	Condi-	Timing Diagram	
Signar	Symbol	Edge	Min	Max	Min	Max	Min	Max	Min	Max	Onit	tions	Reference
GPIO													
GPIO[13:0]	Tpw_13b ¹	None	2(ICLK)	—	2(ICLK)	_	2(ICLK)	_	2(ICLK)	_	ns		See Figure 15.

Table 12 GPIO AC Timing Characteristics

^{1.} The values for this symbol were determined by calculation, not by testing.

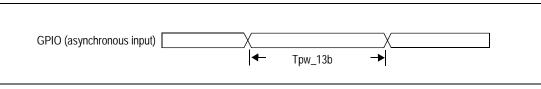


Figure 15 GPIO AC Timing Waveform

SCK, SDI, SDO (input) X X	
I ← Tpw_15e →	

Signal	Signal Symbol	Symbol Reference	266	MHz	300	MHz	350	MHz	400	MHz	Unit	Condi-	Timing Diagram
Signar	Symbol	Edge	Min	Max	Min	Max	Min	Max	Min	Max	Onit	tions	Reference
EJTAG and JT	EJTAG and JTAG												
JTAG_TCK	Tper_16a	none	25.0	50.0	25.0	50.0	25.0	50.0	25.0	50.0	ns		See Figure 19.
	Thigh_16a, Tlow_16a		10.0	25.0	10.0	25.0	10.0	25.0	10.0	25.0	ns		
JTAG_TMS ¹ ,	Tsu_16b	JTAG_TCK	2.4	—	2.4	—	2.4	—	2.4	—	ns		
JTAG_TDI	Thld_16b	rising	1.0	-	1.0	-	1.0	-	1.0	-	ns		
JTAG_TDO	Tdo_16c	JTAG_TCK fall-	—	11.3		11.3	_	11.3		11.3	ns		
	Tdz_16c ²	ing	—	11.3		11.3	-	11.3	_	11.3	ns		
JTAG_TRST_ N	Tpw_16d ²	none	25.0		25.0		25.0		25.0	_	ns		
EJTAG_TMS ¹	Tsu_16e	JTAG_TCK	2.0	-	2.0	-	2.0		2.0	-	ns		
	Thld_6e	rising	1.0		1.0	_	1.0	_	1.0		ns		1

Table 14 JTAG AC Timing Characteristics

^{1.} The JTAG specification, IEEE 1149.1, recommends that both JTAG_TMS and EJTAG_TMS should be held at 1 while the signal applied at JTAG_TRST_N changes from 0 to 1. Otherwise, a race may occur if JTAG_TRST_N is deasserted (going from low to high) on a rising edge of JTAG_TCK when either JTAG_TMS or EJTAG_TMS is low, because the TAP controller might go to either the Run-Test/Idle state or stay in the Test-Logic-Reset state.

^{2.} The values for this symbol were determined by calculation, not by testing.

AC Test Conditions

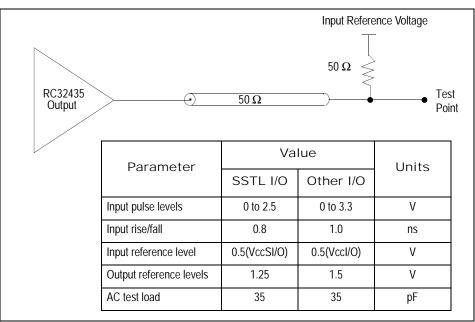


Figure 23 AC Test Conditions

Absolute Maximum Ratings

Symbol	Parameter	Min ¹	Max ¹	Unit
V _{cc} I/O	I/O supply except for SSTL_2 ²	-0.6	4.0	V
V _{CC} SI/O (DDR)	I/O supply for SSTL_2 ²	-0.6	4.0	V
V _{cc} Core	Core Supply Voltage	-0.6	2.0	V
V _{CC} PLL	PLL supply (digital)	-0.6	2.0	V
V _{CC} APLL	PLL supply (analog)	-0.6	4.0	V
VinI/O	I/O Input Voltage except for SSTL_2	-0.6	V _{cc} I/O+ 0.5	V
VinSI/O	I/O Input Voltage for SSTL_2	-0.6	V _{cc} SI/O+ 0.5	V
T _a Industrial	Ambient Operating Temperature	-40	+85	°C
T _a Commercial	Ambient Operating Temperature	0	+70	°C
Ts	Storage Temperature	-40	+125	°C

Table 19 Absolute Maximum Ratings

^{1.} Functional and tested operating conditions are given in Table 15. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

^{2.} SSTL_2 I/Os are used to connect to DDR SDRAM.

RC32435 Alternate Signal Functions

Pin	GPIO	Alternate	Pin	GPIO	Alternate
A7	GPIO[7]	MADDR[25]	J3	GPIO[2]	UORTSN
A8	GPIO[4]	MADDR[22]	L3	GPIO[8]	CPU
B8	GPIO[5]	MADDR[23]	M1	GPIO[12]	PCIGNTN[5]
C7	GPIO[6]	MADDR[24]	M3	GPIO[11]	PCIREQN[5]
H3	GPIO[0]	U0SOUT	M4	GPIO[9]	PCIREQN[4]
H4	GPIO[1]	UOSINP	P3	GPIO[10]	PCIGNTN[4]
J1	GPIO[3]	UOCTSN	T2	GPIO[13]	PCIMUINTN

Table 21 RC32435 Alternate Signal Functions

RC32435 Power Pins

V _{cc} I/O	V _{cc} DDR	V _{cc} Core	V _{cc} PLL	V _{CC} APLL
E5	E11	E8	B11	C12
E6	E12	E9		
E7	F12	F9		
E10	G12	H5		
F5	K12	H6		
G5	L12	H12		
K5	M11	J5		
K6	M12	J11		
L5		J12		
M5		L8		
M6		M8]	
M7		M9	1	
M10			1	

Table 22 RC32435 Power Pins

RC32435 Ground Pins

V _{ss}	V _{ss}	V _{SS} PLL
F6	J6	A11, B12
F7	J7	
F8	J8	
F10	J9	
F11	J10	
G6	K7	
G7	K8	
G8	К9	
G9	K10	
G10	K11	
G11	L6	
H7	L7	
H8	L9	
H9	L10	
H10	L11	
H11		

Table 23 RC32435 Ground Pins

RC32435 Signals Listed Alphabetically

The following table lists the RC32435 pins in alphabetical order.

Signal Name	I/О Туре	Location	Signal Category
BDIRN	0	C2	Memory and Peripheral Bus
BOEN	0	B1	
CLK	I	C13	System
COLDRSTN	I	C3	
CSN[0]	0	A4	Memory and Peripheral Bus
CSN[1]	0	B4	
CSN[2]	0	A3	
CSN[3]	0	B3	

Table 24 RC32435 Alphabetical Signal List (Part 1 of 7)

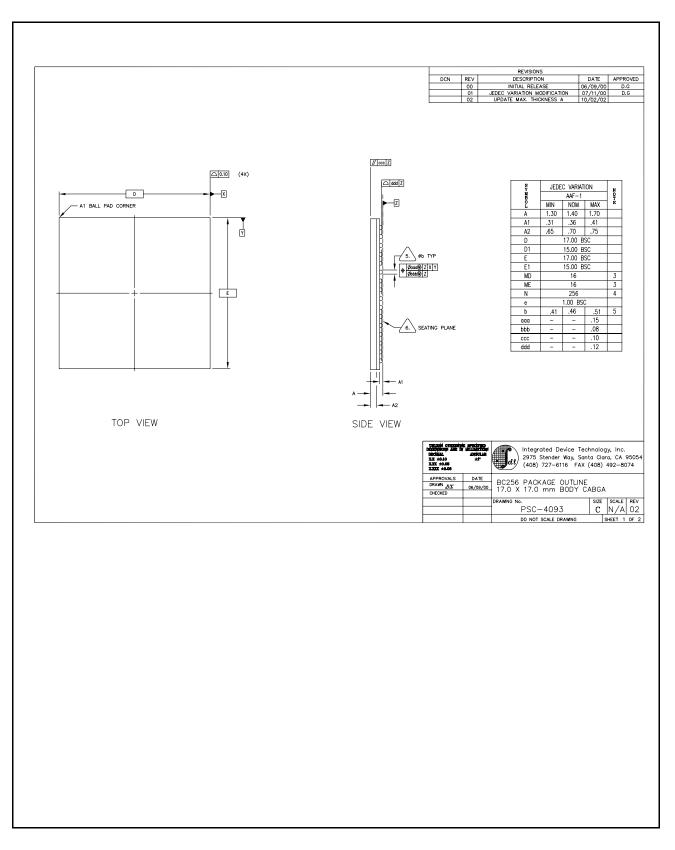

Signal Name	I/О Туре	Location	Signal Category
MADDR[0]	0	C15	Memory and Peripheral Bus
MADDR[1]	0	B16	
MADDR[2]	0	A16	
MADDR[3]	0	B15	
MADDR[4]	0	C14	
MADDR[5]	0	A15	
MADDR[6]	0	B14	
MADDR[7]	0	A14	
MADDR[8]	0	B13	
MADDR[9]	0	A13	
MADDR[10]	0	A5	
MADDR[11]	0	B5	
MADDR[12]	0	B10	
MADDR[13]	0	A10	
MADDR[14]	0	C10	
MADDR[15]	0	D10	
MADDR[16]	0	А9	
MADDR[17]	0	В9	
MADDR[18]	0	С9	
MADDR[19]	0	D9	
MADDR[20]	0	D8	
MADDR[21]	0	C8	
MDATA[0]	I/O	D7	
MDATA[1]	I/O	B6	
MDATA[2]	I/O	D6	
MDATA[3]	I/O	C5	
MDATA[4]	I/O	B7	
MDATA[5]	I/O	C6	
MDATA[6]	I/O	A6	
MDATA[7]	I/O	D5	

Table 24 RC32435 Alphabetical Signal List (Part 4 of 7)

Signal Name	I/О Туре	Location	Signal Category
PCISTOPN	I/O	P8	PCI Bus Interface
PCITRDYN	I/O	R8	
RSTN	I/O	B2	System
RWN	0	A1	Memory and Peripheral Bus
SCK	I/O	К2	Serial Peripheral Interface
SCL	I/O	L2	l ² C
SDA	I/O	L1	
SDI	I/O	L4	Serial Peripheral Interface
SDO	I/O	К4	
Vcc APLL		C12	Power
Vcc Core		E8, E9, F9, H5, H6, H12, J5, J11, J12, L8, M8, M9	
Vcc DDR		E11, E12, F12, G12, K12, L12, M11, M12	
Vcc I/O		E5, E6, E7, E10, F5, G5, K5, K6, L5, M5, M6, M7, M10	
Vcc PLL		B11	
Vss		F6, F7, F8, F10, F11, G6, G7, G8, G9, G10, G11, H7, H8, H9, H10, H11, J6, J7, J8, J9, J10, K7, K8, K9, K10, K11, L6, L7, L9, L10, L11	Ground
Vss APLL		B12	
Vss PLL		A11	
WAITACKN	I	D13	Memory and Peripheral Bus
WEN	0	C4	
Reserved		K3, L1, L2	

Table 24 RC32435 Alphabetical Signal List (Part 7 of 7)

RC32435 Package Drawing — 256-pin CABGA

