

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	MIPS32
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	-
RAM Controllers	DDR
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (1)
SATA	-
JSB	-
/oltage - I/O	3.3V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	256-LBGA
Supplier Device Package	256-CABGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/79rc32h435-400bcg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Memory and I/O Controller

The RC32435 uses a dedicated local memory/IO controller including a de-multiplexed 8-bit data and 26-bit address bus. It includes all of the signals required to interface directly to a maximum of four Intel or Motorola-style external peripherals.

DMA Controller

The DMA controller consists of 6 independent DMA channels, all of which operate in exactly the same manner. The DMA controller off-loads the CPU core from moving data among the on-chip interfaces, external peripherals, and memory. The controller supports scatter/gather DMA with no alignment restrictions, making it appropriate for communications and graphics systems.

UART Interface

The RC32435 contains a serial channel (UART) that is compatible with the industry standard 16550 UART.

I²C Interface

The standard I2C interface allows the RC32435 to connect to a number of standard external peripherals for a more complete system solution. The RC32435 supports both master and slave operations.

General Purpose I/O Controller

The RC32435 has 14 general purpose input/output pins. Each pin may be used as an active high or active low level interrupt or non-maskable interrupt input, and each signal may be used as a bit input or output port.

System Integrity Functions

The RC32435 contains a programmable watchdog timer that generates a non-maskable interrupt (NMI) when the counter expires and also contains an address space monitor that reports errors in response to accesses to undecoded address regions.

Thermal Considerations

The RC32435 is guaranteed in an ambient temperature range of 0° to +70° C for commercial temperature devices and - 40° to +85° for industrial temperature devices.

Revision History

January 19, 2006: Initial publication.

Pin Description Table

The following table lists the functions of the pins provided on the RC32435. Some of the functions listed may be multiplexed onto the same pin.

The active polarity of a signal is defined using a suffix. Signals ending with an "N" are defined as being active, or asserted, when at a logic zero (low) level. All other signals (including clocks, buses, and select lines) will be interpreted as being active, or asserted, when at a logic one (high) level.

Signal	Туре	Name/Description
Memory and Perip	heral Bus	
BDIRN	0	External Buffer Direction. Controls the direction of the external data bus buffer for the memory and peripheral bus. If the RC32435 memory and peripheral bus is connected to the A side of a transceiver, such as an IDT74FCT245, then this pin may be directly connected to the direction control (e.g., BDIR) pin of the transceiver.
BOEN	0	External Buffer Enable . This signal provides an output enable control for an external buffer on the memory and peripheral data bus.
WEN	0	Write Enables. This signal is the memory and peripheral bus write enable signal.
CSN[3:0]	0	Chip Selects. These signals are used to select an external device on the memory and peripheral bus.
MADDR[21:0]	0	Address Bus. 22-bit memory and peripheral bus address bus. MADDR[25:22] are available as GPIO alternate functions.
MDATA[7:0]	I/O	Data Bus. 8-bit memory and peripheral data bus. During a cold reset, these pins function as inputs that are used to load the boot configuration vector.
OEN	0	Output Enable. This signal is asserted when data should be driven by an external device on the memory and peripheral bus.
RWN	0	Read Write. This signal indicates whether the transaction on the memory and peripheral bus is a read transaction or a write transaction. A high level indicates a read from an external device. A low level indicates a write to an external device.
WAITACKN	I	Wait or Transfer Acknowledge. When configured as wait, this signal is asserted during a memory and peripheral bus transaction to extend the bus cycle. When configured as a transfer acknowledge, this signal is asserted during a transaction to signal the completion of the transaction.
DDR Bus	I .	1
DDRADDR[13:0]	0	DDR Address Bus. 14-bit multiplexed DDR address bus. This bus is used to transfer the addresses to the DDR devices.
DDRBA[1:0]	0	DDR Bank Address. These signals are used to transfer the bank address to the DDRs.
DDRCASN	0	DDR Column Address Strobe. This signal is asserted during DDR transactions.
DDRCKE	0	DDR Clock Enable. The DDR clock enable signal is asserted during normal DDR operation. This signal is negated following a cold reset or during a power down operation.
DDRCKN	0	DDR Negative DDR clock . This signal is the negative clock of the differential DDR clock pair.

Table 1 Pin Description (Part 1 of 6)

Function	Pin Name	Туре	Buffer	I/O Type	Internal Resistor	Notes ¹
Serial Peripheral	SCK	I/O	LVTTL	High Drive	pull-up	pull-up on board
Interface	SDI	I/O	LVTTL	High Drive	pull-up	pull-up on board
	SDO	I/O	LVTTL	High Drive	pull-up	pull-up on board
I ² C-Bus Interface	SCL	I/O	LVTTL	Low Drive/STI		pull-up on board ²
	SDA	I/O	LVTTL	Low Drive/STI		pull-up on board ²
Ethernet Interfaces	MIICL	I	LVTTL	STI	pull-down	
	MIICRS	I	LVTTL	STI	pull-down	
	MIIRXCLK	I	LVTTL	STI	pull-up	
	MIIRXD[3:0]	I	LVTTL	STI	pull-up	
	MIIRXDV	1	LVTTL	STI	pull-down	
	MIIRXER	I	LVTTL	STI	pull-down	
	MIITXCLK	I	LVTTL	STI	pull-up	
	MIITXD[3:0]	0	LVTTL	Low Drive		
	MIITXENP	0	LVTTL	Low Drive		
	MIITXER	0	LVTTL	Low Drive		
	MIIMDC	0	LVTTL	Low Drive		
	MIIMDIO	I/O	LVTTL	Low Drive	pull-up	
EJTAG / JTAG	JTAG_TMS	I	LVTTL	STI	pull-up	
	EJTAG_TMS	I	LVTTL	STI	pull-up	
	JTAG_TRST_N	I	LVTTL	STI	pull-up	
	JTAG_TCK	I	LVTTL	STI	pull-up	
	JTAG_TDO	0	LVTTL	Low Drive		
	JTAG_TDI	I	LVTTL	STI	pull-up	
System	CLK		LVTTL	STI		
	EXTBCV	I	LVTTL	STI	pull-down	
	EXTCLK	0	LVTTL	High Drive		
	COLDRSTN	I	LVTTL	STI		
	RSTN	I/O	LVTTL	Low Drive / STI	pull-up	pull-up on board

Table 2 Pin Characteristics (Part 2 of 2)

^{1.} External pull-up required in most system applications. Some applications may require additional pull-ups not identified in this table.

^{2.} Use a 2.2K pull-up resistor for I2C pins.

Signal	Name/Description
MADDR[11]	Disable Watchdog Timer. When this bit is set, the watchdog timer is disabled following a cold reset. 0x0 - Watchdog timer enabled 0x1 - Watchdog timer disabled
MADDR[13:12]	Reserved. These pins must be driven low during boot configuration.
MADDR[15:14]	Reserved. Must be set to zero.

Table 3 Boot Configuration Encoding (Part 2 of 2)

Logic Diagram — RC32435

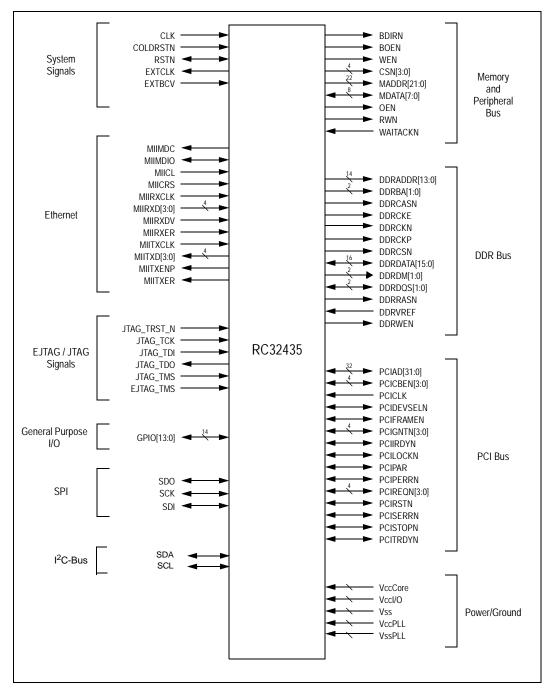


Figure 1 Logic Diagram

AC Timing Definitions

Below are examples of the AC timing characteristics used throughout this document.

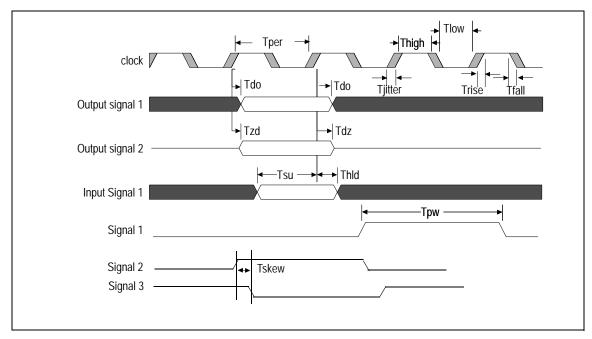


Figure 2 AC Timing Definitions Waveform

Symbol	Definition
Tper	Clock period.
Tlow	Clock low. Amount of time the clock is low in one clock period.
Thigh	Clock high. Amount of time the clock is high in one clock period.
Trise	Rise time. Low to high transition time.
Tfall	Fall time. High to low transition time.
Tjitter	Jitter. Amount of time the reference clock (or signal) edge can vary on either the rising or falling edges.
Tdo	Data out. Amount of time after the reference clock edge that the output will become valid. The minimum time represents the data output hold. The maximum time represents the earliest time the designer can use the data.
Tzd	Z state to data valid. Amount of time after the reference clock edge that the tri-stated output takes to become valid.
Tdz	Data valid to Z state. Amount of time after the reference clock edge that the valid output takes to become tri-stated.
Tsu	Input set-up. Amount of time before the reference clock edge that the input must be valid.
ThId	Input hold. Amount of time after the reference clock edge that the input must remain valid.
Tpw	Pulse width. Amount of time the input or output is active for asynchronous signals.
Tslew	Slew rate. The rise or fall rate for a signal to go from a high to low, or low to high.
X(clock)	Timing value. This notation represents a value of 'X' multiplied by the clock time period of the specified clock. Using 5(CLK) as an example: X = 5 and the oscillator clock (CLK) = 25MHz, then the timing value is 200.
Tskew	Skew. The amount of time two signal edges deviate from one another.

Table 4 AC Timing Definitions

AC Timing Characteristics

(Values given below are based on systems running at recommended operating temperatures and supply voltages, shown in Tables 15 and 16.)

Signal	Symbol	Reference	266	MHz	z 300MHz		350	MHz	4001	MHz	Unit	Condi-	Timing Diagram
Signal	Зуппоот	Edge	Min	Max	Min	Max	Min	Max	Min	Max	Offic	tions	Reference
Reset													
COLDRSTN ¹	Tpw_6a ²	none	OSC	_	OSC	_	OSC	_	OSC	_	ms		See Figures 4
	Trise_6a	none		5.0	_	5.0	_	5.0	_	5.0	ns	Cold reset	and 5.
RSTN ³ (input)	Tpw_6b ²	none	2(CLK)	_	2(CLK)	_	2(CLK)	_	2(CLK)		ns	Warm reset	
RSTN ³ (output)	Tdo_6c	COLDRSTN falling	_	15.0	_	15.0	_	15.0	_	15.0	ns	Cold reset	
MADDR[15:0] (boot vector)	Tdz_6d ²	COLDRSTN falling	_	30.0	_	30.0	_	30.0	_	30.0	ns	Cold reset	
	Tdz_6d ²	RSTN falling		5(CLK)	_	5(CLK)	_	5(CLK)	_	5(CLK)	ns	Warm reset	
	Tzd_6d ²	RSTN rising	2(CLK)	_	2(CLK)	_	2(CLK)	_	2(CLK)	_	ns	Warm reset	

Table 6 Reset and System AC Timing Characteristics

 $^{^{1.}}$ The COLDRSTN minimum pulse width is the oscillator stabilization time (OSC) with $\rm V_{\rm CC}$ stable.

 $^{^{2}}$. The values for this symbol were determined by calculation, not by testing.

^{3.} RSTN is a bidirectional signal. It is treated as an asynchronous input.

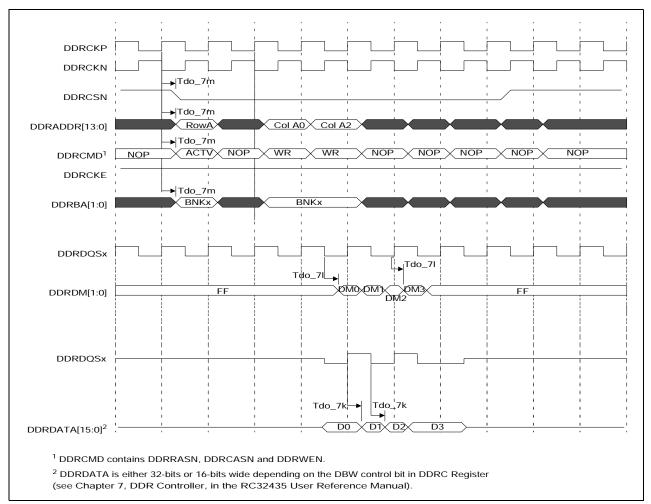


Figure 7 DDR SDRAM Timing Waveform — Write Access

Signal	Symbol	Reference	266MHz		300MHz		350MHz		400MHz		Unit	Condi-	Timing Diagram
Signal	Зуппоот	Edge	Min	Max	Min	Max	Min	Max	Min	Max	Offic	tions	Reference
Memory and P	· ·												See Figures 8
MADDR[21:0]	Tdo_8a	EXTCLK rising	0.4	4.5	0.4	4.5	0.4	4.5	0.4	4.5	ns		and 9.
	Tdz_8a ²		-	_	_	_	_	_	_	_	ns		
	Tzd_8a ²		-	_	_	_	_	_	_	_	ns		
MADDR[25:22]	Tdo_8b	EXTCLK rising	0.4	4.5	0.4	4.5	0.4	4.5	0.4	4.5	ns		
	Tdz_8b ²		-	_	_	_	_	_	_	_	ns		
	Tzd_8b ²			_	_	_	_	_	_	_	ns		

Table 8 Memory and Peripheral Bus AC Timing Characteristics (Part 1 of 2)

Signal	Symbol	ol Reference Edge	266	MHz	300	MHz	350	MHz	400	MHz	Unit	Condi-	Timing Diagram
Signal	Symbol	Edge	Min	Max	Min	Max	Min	Max	Min	Max	Offit	tions	Reference
MDATA[7:0]	Tsu_8c	EXTCLK rising	6.0	_	6.0	_	6.0	_	6.0		ns		See Figures 8
	Thld_8c		0	_	0	_	0	_	0	_	ns		and 9 (cont.).
	Tdo_8c		0.4	4.5	0.4	4.5	0.4	4.5	0.4	4.5	ns		
	Tdz_8c ²		0	0.5	0	0.5	0	0.5	0	0.5	ns		
	Tzd_8c ²		0.4	3.3	0.4	3.3	0.4	3.3	0.4	3.3	ns		
EXTCLK ³	Tper_8d	none	7.5	_	6.66	_	6.66	_	6.66	_	ns		
BDIRN	Tdo_8e	EXTCLK rising	0.4	3.8	0.4	3.8	0.4	3.8	0.4	3.8	ns		
	Tdz_8e ²		_	_	_	_	_	_	_	_	ns		
	Tzd_8e ²		_	_	_	_	_	_	_	_	ns		
BOEN	Tdo_8f	EXTCLK rising	0.4	3.8	0.4	3.8	0.4	3.8	0.4	3.8	ns		
	Tdz_8f ²		_	_	_	_	_	_	_	_	ns		
	Tzd_8f ²		_	_	_	_	_	_	_	_	ns		
WAITACKN ⁴	Tsu_8h	EXTCLK rising	6.5	_	6.5	_	6.5	_	6.5	_	ns		
	Thld_8h		0	_	0	_	0	_	0		ns		
	Tpw_8h ²	none	2(EXTCLK)	_	2(EXTCLK)	_	2(EXTCLK)	_	2(EXTCLK)	_	ns		
CSN[3:0]	Tdo_8i	EXTCLK rising	0.4	4.0	0.4	4.0	0.4	4.0	0.4	4.0	ns		
	Tdz_8i ²		_	_	_	_	_	_	_	_	ns		
	Tzd_8i ²		_	_	_	_	_	_	_	_	ns		
RWN	Tdo_8j	EXTCLK rising	0.4	3.8	0.4	3.8	0.4	3.8	0.4	3.8	ns		
	Tdz_8j ²		_	_	_	_	_	_	_	_	ns		
	Tzd_8j ²		_	_	-	_	-	_	-	_	ns		
OEN	Tdo_8k	EXTCLK rising	0.4	4.0	0.4	4.0	0.4	4.0	0.4	4.0	ns		
	Tdz_8k ²		_	_		_		_	_		ns		
	Tzd_8k ²		_	_		-		_	_	1	ns		
WEN	Tdo_8l	EXTCLK rising	0.4	3.7	0.4	3.7	0.4	3.7	0.4	3.7	ns		
	Tdz_8l ²		_	_	_	_	_	_	_	1	ns		
	Tzd_8l ²		_	_	_	-	_	_	_	ı	ns		

Table 8 Memory and Peripheral Bus AC Timing Characteristics (Part 2 of 2)

^{1.} The RC32435 provides bus turnaround cycles to prevent bus contention when going from read to write, write to read, and during external bus ownership. For example, there are no cycles where an external device and the RC32435 are both driving. See Chapter 6, Device Controller, in the RC32435 User Reference Manual.

^{2.} The values for this symbol were determined by calculation, not by testing.

^{3.} The frequency of EXTCLK is programmable. See the External Clock Divider (MDATA[5:4]) description in Table 3 of this data sheet.

^{4.} WAITACKN must meet the setup and hold times if it is synchronous or the minimum pulse width if it is asynchronous.

Signal	Symbol	Reference	266	MHz	300	MHz	350	MHz	400	MHz	Unit	Condi-	Timing Diagram
Signal	Symbol	Edge	Min	Max	Min	Max	Min	Max	Min	Max	Offic	tions	Reference
Ethernet	<u> </u>										l	l	<u>I</u>
MIIMDC	Tper_9a	None	30.0	_	30.0	_	30.0	_	30.0	_	ns		See Figure 10.
	Thigh_9a, Tlow_9a		12.0	_	12.0	_	12.0	_	12.0	_	ns		
MIIMDIO	Tsu_9b	MIIMDC rising	10.0	_	10.0	_	10.0	_	10.0	_	ns		
	Thld_9b		0.0	_	0.0	_	0.0	_	0.0	_	ns		
	Tdo_9b ¹		10	300	10	300	10	300	10	300	ns		
Ethernet — MI	I Mode												
MIIRXCLK,	Tper_9c	None	399.96	400.4	399.96	400.4	399.96	400.4	399.96	400.4	ns	10 Mbps	See Figure 10.
MIITXCLK ²	Thigh_9c, Tlow_9c		140	260	140	260	140	260	140	260	ns		
	Trise_9c, Tfall_9c		_	3.0	_	3.0	_	3.0	_	3.0	ns		
MIIRXCLK,	Tper_9d	None	39.9	40.0	39.9	40.0	39.9	40.0	39.9	40.0	ns	100 Mbps	
MIITXCLK ²	Thigh_9d, Tlow_9d		14.0	26.0	14.0	26.0	14.0	26.0	14.0	26.0	ns		
	Trise_9d, Tfall_9d		_	2.0	_	2.0	_	2.0	_	2.0	ns		
MIIRXD[3:0],	Tsu_9e	MIIxRXCLK	10.0	_	10.0	_	10.0	_	10.0	_	ns		
MIIRXDV, MIIRXER	Thld_9e	rising	10.0	_	10.0	_	10.0	_	10.0	_	ns		
MIITXD[3:0], MIITXENP, MIITXER	Tdo_9f	MIIxTXCLK rising	0.0	25.0	0.0	25.0	0.0	25.0	0.0	25.0	ns		-
Ethernet — RI	MII Mode				<u> </u>				<u> </u>		<u> </u>		
RMIIREFCLK	Tper_9i	None	19.9	20.1	19.9	20.1	19.9	20.1	19.9	20.1	ns		See Figure 10.
	Thigh_9i, Tlow_9i		7.0	13.0	7.0	13.0	7.0	13.0	7.0	13.0	ns		-
RMIITXEN, RMIITXD[1:0]	Tdo_9j	MIIRXCLK rising	2.0	_	2.0	_	2.0	_	2.0	_	ns		
RMIICRSDV, RMIIRXER, RMIIRXD[1:0]	Tsu_9k		5.5	14.5	5.5	14.5	5.5	14.5	5.5	14.5	ns		

Table 9 Ethernet AC Timing Characteristics

^{1.} The values for this symbol were determined by calculation, not by testing.

^{2.} The ethernet clock (MIIRXCLK and MIITXCLK) frequency must be equal to or less than 1/2 ICLK (MIIRXCLK and MIITXCLK <= 1/2(ICLK)).

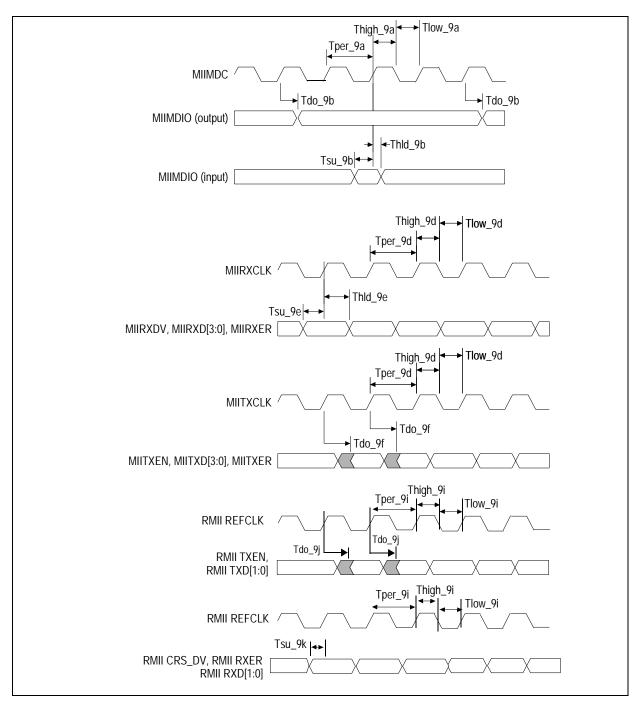


Figure 10 Ethernet AC Timing Waveform

Ciamal	Cy year la col	Reference	266	MHz	300	MHz	350	MHz	400	MHz	l lmit	Condi-	Timing Diagram
Signal	Symbol	Edge	Min	Max	Min	Max	Min	Max	Min	Max	Unit	tions	Reference
PCI ¹	<u> </u>											l	
PCICLK ²	Tper_10a	none	15.0	30.0	15.0	30.0	15.0	30.0	15.0	30.0	ns	66 MHz PCI	See Figure 11.
	Thigh_10a, Tlow_10a		6.0	_	6.0	_	6.0	_	6.0	_	ns		
	Tslew_10a		1.5	4.0	1.5	4.0	1.5	4.0	1.5	4.0	V/ns		
PCIAD[31:0],	Tsu_10b	PCICLK rising	3.0	_	3.0	_	3.0	_	3.0	_	ns		
PCIBEN[3:0], PCIDEVSELN,	Thld_10b		0	_	0	_	0	_	0	_	ns		
PCIFRA-	Tdo_10b		2.0	6.0	2.0	6.0	2.0	6.0	2.0	6.0	ns		
MEN,PCIIR- DYN,	Tdz_10b ³		_	14.0	_	14.0	_	14.0	_	14.0	ns		
PCILOCKN, PCIPAR, PCI- PERRN, PCIS- TOPN, PCITRDY	Tzd_10b ³		2.0	_	2.0	_	2.0	_	2.0	_	ns		
PCIGNTN[3:0],	Tsu_10c	PCICLK rising	5.0	_	5.0	_	5.0	_	5.0	_	ns		
PCIREQN[3:0]	Thld_10c		0	_	0	_	0	_	0	_	ns		
	Tdo_10c		2.0	6.0	2.0	6.0	2.0	6.0	2.0	6.0	ns		
PCIRSTN (output) ⁴	Tpw_10d ³	None	4000 (CLK)	_	4000 (CLK)	_	4000 (CLK)	_	4000 (CLK)	_	ns		See Figures 15 and 16
PCIRSTN	Tpw_10e ³	None	2(CLK)	_	2(CLK)	_	2(CLK)	_	2(CLK)	_	ns		
(input) ^{4,5}	Tdz_10e ³	PCIRSTN falling	6(CLK)	_	6(CLK)	_	6(CLK)	_	6(CLK)	_	ns		
PCISERRN ⁶	Tsu_10f	PCICLK rising	3.0	_	3.0	_	3.0	_	3.0	_	ns		See Figure 11
	Thld_10f		0	_	0	_	0	_	0	_	ns		1
	Tdo_10f		2.0	6.0	2.0	6.0	2.0	6.0	2.0	6.0	ns		1
PCIMUINTN ⁶	Tdo_10g	PCICLK rising	4.7	11.1	4.7	11.1	4.7	11.1	4.7	11.1	ns		

Table 10 PCI AC Timing Characteristics

 $^{^{\}rm 1.}$ This PCI interface conforms to the PCI Local Bus Specification, Rev 2.2.

 $^{^{2}}$ PCICLK must be equal to or less than two times ICLK (PCICLK <= 2(ICLK)) with a maximum PCICLK of 66 MHz.

 $^{^{\}rm 3.}$ The values for this symbol were determined by calculation, not by testing.

 $^{^{\}rm 4.}$ PCIRSTN is an output in host mode and an input in satellite mode.

^{5.} To meet the PCI delay specification from reset asserted to outputs floating, the PCI reset should be logically combined with the COLDRSTN input, instead of input on PCIRSTN.

^{6.} PCISERRN and PCIMUINTN use open collector I/O types.

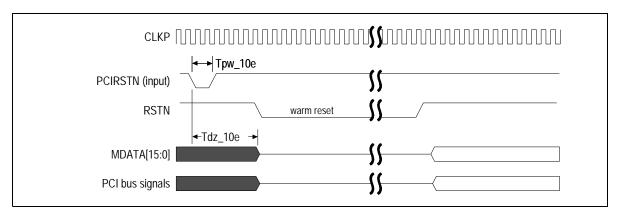


Figure 13 $\,$ PCI AC Timing Waveform — PCI Reset in Satellite Mode

Ci I	Cl	Reference	266	MHz	300	MHz	350	MHz	400	MHz	11	Conditions	Timing
Signal	Symbol	Edge	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Conditions	Diagram Reference
I ² C ¹													
SCL	Frequency	none	0	100	0	100	0	100	0	100	kHz	100 KHz	See Figure 14.
	Thigh_12a, Tlow_12a		4.0	ı	4.0	1	4.0	1	4.0	1	μs		
	Trise_12a		_	1000	_	1000	_	1000	_	1000	ns		
	Tfall_12a		_	300	_	300	_	300	_	300	ns		
SDA	Tsu_12b	SCL rising	250	_	250	_	250	_	250	_	ns		
	Thld_12b		0	3.45	0	3.45	0	3.45	0	3.45	μs		
	Trise_12b		_	1000	_	1000	_	1000	_	1000	ns		
	Tfall_12b		_	300	_	300	_	300	_	300	ns		
Start or repeated start	Tsu_12c	SDA falling	4.7	_	4.7	-	4.7	-	4.7		μs		
condition	Thld_12c		4.0	_	4.0	_	4.0	_	4.0	_	μs		
Stop condition	Tsu_12d	SDA rising	4.0	_	4.0	_	4.0	_	4.0	_	μs		
Bus free time between a stop and start condition	Tdelay_12e		4.7		4.7		4.7	_	4.7		μs		
SCL	Frequency	none	0	400	0	400	0	400	0	400	kHz	400 KHz	
	Thigh_12a, Tlow_12a		0.6	_	0.6	_	0.6	_	0.6	_	μs		
	Trise_12a		_	300	_	300	_	300	_	300	ns		
	Tfall_12a		_	300	_	300	_	300	_	300	ns		
SDA	Tsu_12b	SCL rising	100	_	100	1	100	_	100	_	ns		
	Thld_12b		0	0.9	0	0.9	0	0.9	0	0.9	μs		
	Trise_12b		_	300	_	300	_	300	_	300	ns		
	Tfall_12ba		_	300	_	300	_	300	_	300	ns		

Table 11 I²C AC Timing Characteristics (Part 1 of 2)

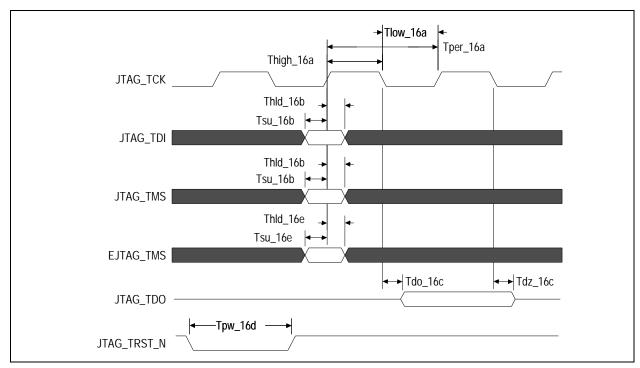


Figure 19 JTAG AC Timing Waveform

The IEEE 1149.1 specification requires that the JTAG and EJTAG TAP controllers be reset at power-up whether or not the interfaces are used for a boundary scan or a probe. Reset can occur through a pull-down resistor on JTAG_TRST_N if the probe is not connected. However, on-chip pull-up resistors are implemented on the RC32435 due to an IEEE 1149.1 requirement. Having on-chip pull-up and external pull-down resistors for the JTAG_TRST_N signal requires special care in the design to ensure that a valid logical level is provided to JTAG_TRST_N, such as using a small external pull-down resistor to ensure this level overrides the on-chip pull-up. An alternative is to use an active power-up reset circuit for JTAG_TRST_N, which drives JTAG_TRST_N low only at power-up and then holds JTAG_TRST_N high afterwards with a pull-up resistor.

Figure 20 shows the electrical connection of the EJTAG probe target system connector.

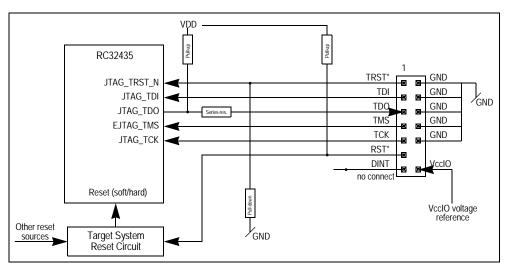


Figure 20 Target System Electrical EJTAG Connection

Using the EJTAG Probe

In Figure 20, the pull-up resistors for JTAG_TDO and RST*, the pull-down resistor for JTAG_TRST_N, and the series resistor for JTAG_TDO must be adjusted to the specific design. However, the recommended pull-up/down resistor is 1.0 k Ω because a low value reduces crosstalk on the cable to the connector, allowing higher JTAG_TCK frequencies. A typical value for the series resistor is 33 Ω . Recommended resistor values have \pm 5% tolerance.

If a probe is used, the pull-up resistor on JTAG_TDO must ensure that the JTAG_TDO level is high when no probe is connected and the JTAG_TDO output is tri-stated. This requirement allows reliable connection of the probe if it is hooked-up when the power is already on (hot plug). The pull-up resistor value of around $47 \text{ k}\Omega$ should be sufficient. Optional diodes to protect against overshoot and undershoot voltage can be added on the signals of the chip with EJTAG.

If a probe is used, the RST* signal must have a pull-up resistor because it is controlled by an open-collector (OC) driver in the probe, and thus is actively pulled low only. The pull-up resistor is responsible for the high value when not driven by the probe of 25pF. The input on the target system reset circuit must be able to accept the rise time when the pull-up resistor charges the capacitance to a high logical level. Vcc I/O must connect to a voltage reference that drops rapidly to below 0.5V when the target system loses power, even with a capacitive load of 25pF. The probe can thus detect the lost power condition.

For additional information on EJTAG, refer to Chapter 17 of the RC32435 User Reference Manual.

Phase-Locked Loop (PLL)

The phase-locked loop (PLL) multiplies the external oscillator input (pin CLK) according to the parameter provided by the boot configuration vector to create the processor clock (PCLK). Inherently, PLL circuits are only capable of generating clock frequencies within a limited range.

PLL Filters

It is recommended that the system designer provide a filter network of passive components for the PLL analog and digital power supplies. The PLL circuit power and PLL circuit ground should be isolated from power and ground with a filter circuit such as the one shown in Figure 21. Because the optimum values for the filter components depend upon the application and the system noise environment, these values should be considered as starting points for further experimentation within your specific application.

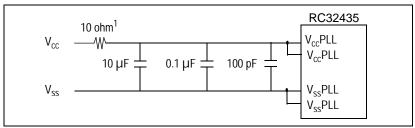


Figure 21 PLL Filter Circuit for Noisy Environments

Power Consumption

Paran	Parameter		MHz	300	MHz	350	350MHz		MHz	Unit	Conditions
		Тур.	Max.	Тур.	Max.	Тур.	Max.	Тур.	Max.		GONGINIONS
I _{cc} I/O		215	270	220	275	225	280	230	285	mA	C _L = 35 pF
I _{cc} SI/O (DD	R)	70	85	75	90	85	100	95	110	mA	T _{ambient} = 25°C Max. values use the maximum volt-
I _{cc} Core, I _{cc} PLL	Normal mode	325	510	350	550	400	610	450	670	mA	ages listed in Table 15. Typical values use the typical voltages listed
	Standby mode ¹	220	_	240	_	260	_	280	_	mA	in that table. Note: For additional information, see Power Considerations for IDT
Power Dissipation	Normal mode	1.27	1.82	1.36	1.90	1.45	2.02	1.54	2.15	W	Processors on the IDT web site www.idt.com.
	Standby mode ¹	0.73	_	0.78	_	0.84	_	0.90	_	W	

Table 17 RC32435 Power Consumption

Power Curve

The following graph contains a power curve that shows power consumption at various core frequencies.

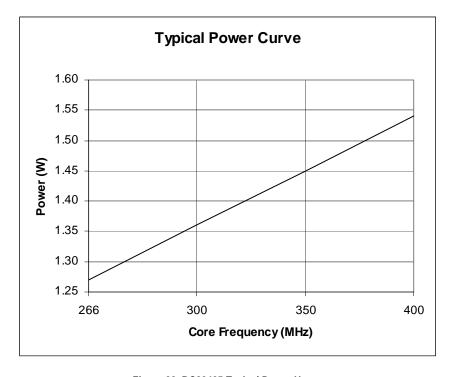


Figure 22 RC32435 Typical Power Usage

^{1.} The RC32435 enter Standby mode by executing WAIT instructions. Minimal I/O switching is assumed. On-chip logic outside the CPU core continues to function.

AC Test Conditions

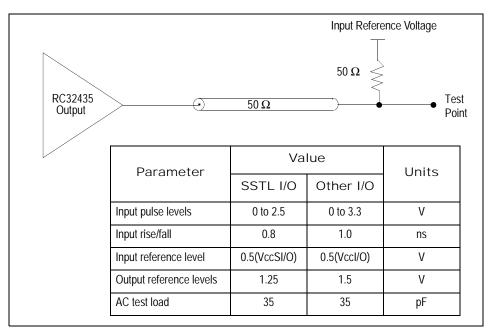


Figure 23 AC Test Conditions

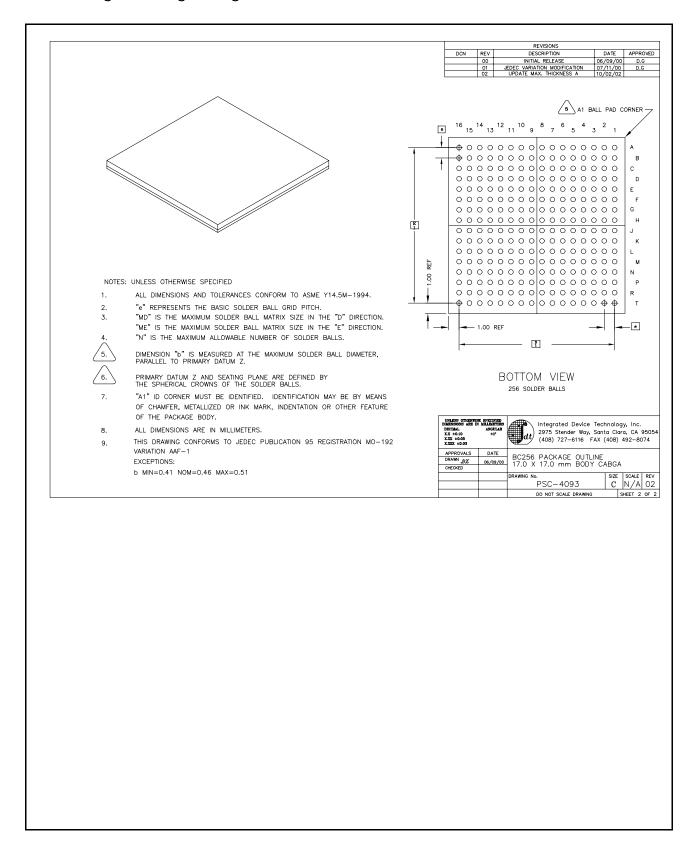
Absolute Maximum Ratings

Symbol	Parameter	Min ¹	Max ¹	Unit
V _{CC} I/O	I/O supply except for SSTL_2 ²	-0.6	4.0	V
V _{CC} SI/O (DDR)	I/O supply for SSTL_2 ²	-0.6	4.0	V
V _{CC} Core	Core Supply Voltage	-0.6	2.0	V
V _{CC} PLL	PLL supply (digital)	-0.6	2.0	V
V _{CC} APLL	PLL supply (analog)	-0.6	4.0	V
VinI/O	I/O Input Voltage except for SSTL_2	-0.6	V _{cc} I/O+ 0.5	V
VinSI/O	I/O Input Voltage for SSTL_2	-0.6	V _{cc} SI/O+ 0.5	V
T _a Industrial	Ambient Operating Temperature	-40	+85	°C
T _a Commercial	Ambient Operating Temperature	0	+70	°C
T _s	Storage Temperature	-40	+125	°C

Table 19 Absolute Maximum Ratings

^{1.} Functional and tested operating conditions are given in Table 15. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

 $^{^{2\}cdot}$ SSTL_2 I/Os are used to connect to DDR SDRAM.


Package Pin-out — 256-BGA Signal Pinout for the RC32435

The following table lists the pin numbers, signal names, and number of alternate functions for the RC32435 device. Signal names ending with an "_n" or "n" are active when low.

Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt
A1	RWN		E1	MIIRXD[3]		J1	GPIO[3]	1	N1	PCIAD[29]	
A2	OEN		E2	MIIRXD[2]		J2	JTAG_TCK		N2	PCIAD[28]	
A3	CSN[2]		E3	MIITXD[0]		J3	GPIO[2]	1	N3	PCIAD[30]	
A4	CSN[0]		E4	MIITXD[1]		J4	EJTAG_TMS		N4	PCIAD[18]	
A5	MADDR[10]		E5	V _{cc} I/0		J5	V _{cc} CORE		N5	PCIREQN[1]	
A6	MDATA[6]		E6	V _{cc} I/0		J6	V _{SS}		N6	PCIREQN[2]	
A7	GPIO[7]	1	E7	V _{cc} I/0		J7	V _{SS}		N7	PCIIRDYN	
A8	GPIO[4]	1	E8	V _{cc} CORE		J8	V _{SS}		N8	PCILOCKN	
A9	MADDR[16]		E9	V _{cc} CORE		J9	V _{SS}		N9	PCIPERRN	
A10	MADDR[13]		E10	V _{cc} I/0		J10	V _{SS}		N10	PCIAD[15]	
A11	V _{ss} PLL		E11	V _{cc} DDR		J11	V _{CC} CORE		N11	PCIAD[11]	
A12	JTAG_TDI		E12	V _{cc} DDR		J12	V _{cc} CORE		N12	PCICBEN[0]	
A13	MADDR[9]		E13	DDRDATA[6]		J13	DDRCKN		N13	DDRADDR[5]	
A14	MADDR[7]		E14	DDRDATA[5]		J14	DDRVREF		N14	DDRADDR[4]	
A15	MADDR[5]		E15	DDRADDR[13]		J15	DDRCKP		N15	DDRADDR[3]	
A16	MADDR[2]		E16	DDRDATA[4]		J16	DDRDQS[0]		N16	DDRBA[0]	
B1	BOEN		F1	MIITXD[2]		K1	JTG_TDO		P1	PCIAD[27]	
B2	RSTN		F2	MIIRXCLK		K2	SCK		P2	PCIAD[26]	
В3	CSN[3]		F3	MIITXD[3]		К3	Reserved		P3	GPIO[10]	1
B4	CSN[1]		F4	MIITXENP		K4	SDO		P4	PCIAD[20]	
B5	MADDR[11]		F5	V _{cc} I/0		K5	V _{cc} I/0		P5	PCIREQN[3]	
B6	MDATA[1]		F6	V _{ss}		K6	V _{cc} I/0		P6	PCIREQN[0]	
В7	MDATA[4]		F7	V _{ss}		K7	V _{SS}		P7	PCIFRAMEN	
B8	GPIO[5]	1	F8	V _{ss}		K8	V _{SS}		P8	PCISTOPN	
В9	MADDR[17]		F9	V _{cc} CORE		К9	V _{SS}		P9	PCISERRN	
B10	MADDR[12]		F10	V _{ss}		K10	V _{SS}		P10	PCIAD[14]	
B11	V _{cc} PLL		F11	V _{SS}		K11	V _{SS}		P11	PCIAD[10]	
B12	V _{SS} APLL		F12	V _{cc} DDR		K12	V _{cc} DDR		P12	PCIAD[7]	
B13	MADDR[8]		F13	DDRDATA[9]		K13	DDRCKE		P13	PCIAD[4]	
B14	MADDR[6]		F14	DDRDATA[8]		K14	DDRADDR[11]		P14	DDRADDR[0]	
B15	MADDR[3]		F15	DDRDM[0]		K15	DDRADDR[10]		P15	DDRADDR[2]	
B16	MADDR[1]		F16	DDRDATA[7]		K16	DDRADDR[12]		P16	DDRCSN	
C1	EXTCLK		G1	MIIRXDV		L1	SDA		R1	PCIAD[25]	

Table 20 RC32435 Pinout (Part 1 of 2)

RC32435 Package Drawing — Page Two

