E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, Microwire, SmartCard, SPI, SSP, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	26
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VQFN Exposed Pad
Supplier Device Package	32-HVQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc11u14fhi33-201

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

32-bit ARM Cortex-M0 microcontroller

- Temperature range –40 °C to +85 °C.
- Available as LQFP48, TFBGA48, and HVQFN33 packages.
- Pin compatible to the LPC134x series.

3. Applications

- Consumer peripherals
- Medical
- Industrial control

- Handheld scanners
- USB audio devices

4. Ordering information

Table 1.Ordering information

Type number	Package		
	Name	Description	Version
LPC11U12FHN33/201	HVQFN33	plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 \times 7 \times 0.85 mm	n/a
LPC11U12FBD48/201	LQFP48	plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4$ mm	SOT313-2
LPC11U13FBD48/201	LQFP48	plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4$ mm	SOT313-2
LPC11U14FHN33/201	HVQFN33	plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 \times 7 \times 0.85 mm	n/a
LPC11U14FHI33/201	HVQFN33	plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 5 \times 5 \times 0.85 mm	n/a
LPC11U14FBD48/201	LQFP48	plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4$ mm	SOT313-2
LPC11U14FET48/201	TFBGA48	plastic thin fine-pitch ball grid array package; 48 balls; body $4.5\times4.5\times0.7~\text{mm}$	SOT1155-2

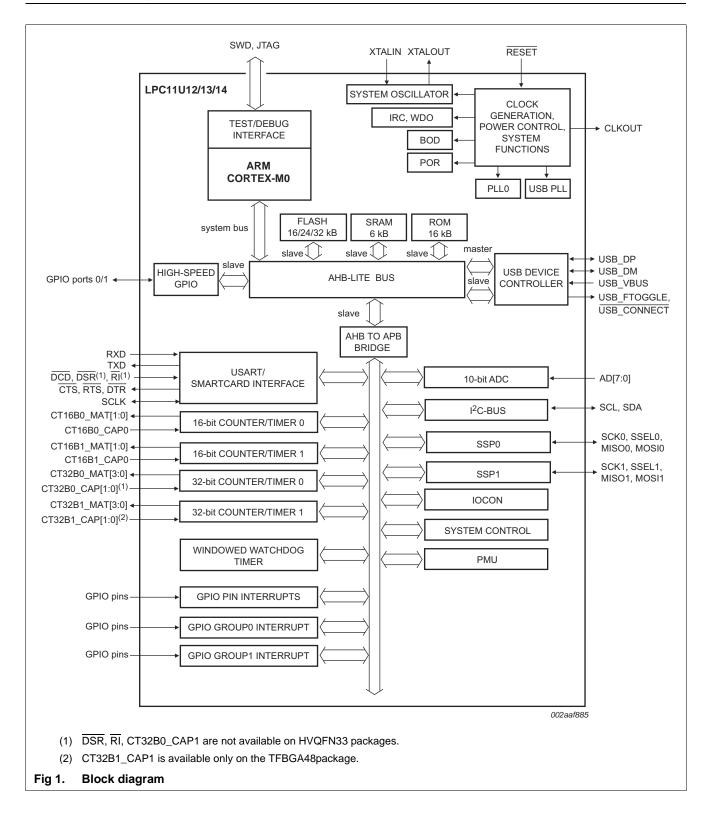

4.1 Ordering options

Table 2. Ordering options

Type number	Flash	SRAM			USART	I ² C-bus FM+	SSP	USB device	ADC channels	GPIO pins
		CPU	USB	Total						
LPC11U12FHN33/201	16 kB	4 kB	2 kB	6 kB	1	1	2	1	8	26
LPC11U12FBD48/201	16 kB	4 kB	2 kB	6 kB	1	1	2	1	8	40
LPC11U13FBD48/201	24 kB	4 kB	2 kB	6 kB	1	1	2	1	8	40
LPC11U14FHN33/201	32 kB	4 kB	2 kB	6 kB	1	1	2	1	8	26
LPC11U14FHI33/201	32 kB	4 kB	2 kB	6 kB	1	1	2	1	8	26
LPC11U14FBD48/201	32 kB	4 kB	2 kB	6 kB	1	1	2	1	8	40
LPC11U14FET48/201	32 kB	4 kB	2 kB	6 kB	1	1	2	1	8	40

32-bit ARM Cortex-M0 microcontroller

5. Block diagram

32-bit ARM Cortex-M0 microcontroller

Pinning information 6.

6.1 Pinning

32-bit ARM Cortex-M0 microcontroller

Symbol	Pin HVQFN33	Pin LQFP48	Ball TFBGA48		Reset state [1]	Туре	Description
PIO1_24/CT32B0_MAT0	-	21	G6	[3]	I; PU	I/O	PIO1_24 — General purpose digital input/output pin.
					-	0	CT32B0_MAT0 — Match output 0 for 32-bit timer 0.
PIO1_25/CT32B0_MAT1	-	1	A1	[3]	I; PU	I/O	PIO1_25 — General purpose digital input/output pin.
					-	0	CT32B0_MAT1 — Match output 1 for 32-bit timer 0.
PIO1_26/CT32B0_MAT2/ RXD	-	11	G2	<u>[3]</u>	I; PU	I/O	PIO1_26 — General purpose digital input/output pin.
					-	0	CT32B0_MAT2 — Match output 2 for 32-bit timer 0.
					-	I	RXD — Receiver input for USART.
PIO1_27/CT32B0_MAT3/ TXD	-	12	G1	[3]	I; PU	I/O	PIO1_27 — General purpose digital input/output pin.
					-	0	CT32B0_MAT3 — Match output 3 for 32-bit timer 0.
					-	0	TXD — Transmitter output for USART.
PIO1_28/CT32B0_CAP0/ SCLK	-	24	H7	[3]	I; PU	I/O	PIO1_28 — General purpose digital input/output pin.
					-	I	CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.
					-	I/O	SCLK — Serial clock input/output for USART in synchronous mode.
PIO1_29/SCK0/ CT32B0_CAP1	-	31	D7	<u>[3]</u>	I; PU	I/O	PIO1_29 — General purpose digital input/output pin.
					-	I/O	SCK0 — Serial clock for SSP0.
					-	I	CT32B0_CAP1 — Capture input 1 for 32-bit timer 0.
PIO1_31	-	25	-	[3]	I; PU	I/O	PIO1_31 — General purpose digital input/output pin.
USB_DM	13	19	G5	[8]	F	-	USB_DM — USB bidirectional D– line.
USB_DP	14	20	H5	[8]	F	-	USB_DP — USB bidirectional D+ line.
XTALIN	4	6	D1	[9]	-	-	Input to the oscillator circuit and internal clock generator circuits. Input voltage must not exceed 1.8 V.
XTALOUT	5	7	E1	[9]	-	-	Output from the oscillator amplifier.
V _{DD}	6; 29	8; 44	B4, E2		-	-	Supply voltage to the internal regulator, the external rail, and the ADC. Also used as the ADC reference voltage.
V _{SS}	33	5; 41	B5, D2		-	-	Ground.

Table 3. Pin description ...continued

32-bit ARM Cortex-M0 microcontroller

7. Functional description

7.1 On-chip flash programming memory

The LPC11U1x contain up to 32 kB on-chip flash program memory. The flash can be programmed using In-System Programming (ISP) or In-Application Programming (IAP) via the on-chip boot loader software.

7.2 SRAM

The LPC11U1x contain a total of 6 kB on-chip static RAM memory.

7.3 On-chip ROM

The on-chip ROM contains the boot loader and the following Application Programming Interfaces (APIs):

- In-System Programming (ISP) and In-Application Programming (IAP) support for flash programming
- Power profiles for configuring power consumption and PLL settings
- 32-bit integer division routines

7.4 Memory map

The LPC11U1x incorporates several distinct memory regions, shown in the following figures. <u>Figure 5</u> shows the overall map of the entire address space from the user program viewpoint following reset. The interrupt vector area supports address remapping.

The AHB peripheral area is 2 MB in size and is divided to allow for up to 128 peripherals. The APB peripheral area is 512 kB in size and is divided to allow for up to 32 peripherals. Each peripheral of either type is allocated 16 kB of space. This allows simplifying the address decoding for each peripheral.

32-bit ARM Cortex-M0 microcontroller

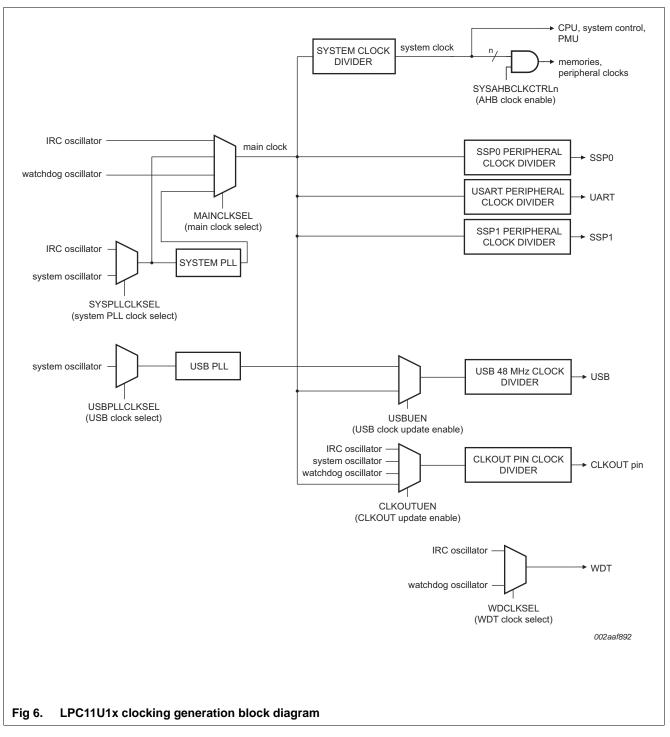
- Four match registers per timer that allow:
 - Continuous operation with optional interrupt generation on match.
 - Stop timer on match with optional interrupt generation.
 - Reset timer on match with optional interrupt generation.
- Up to four external outputs corresponding to match registers, with the following capabilities:
 - Set LOW on match.
 - Set HIGH on match.
 - Toggle on match.
 - Do nothing on match.
- The timer and prescaler may be configured to be cleared on a designated capture event. This feature permits easy pulse-width measurement by clearing the timer on the leading edge of an input pulse and capturing the timer value on the trailing edge.

7.14 System tick timer

The ARM Cortex-M0 includes a system tick timer (SYSTICK) that is intended to generate a dedicated SYSTICK exception at a fixed time interval (typically 10 ms).

7.15 Windowed WatchDog Timer (WWDT)

The purpose of the watchdog is to reset the controller if software fails to periodically service it within a programmable time window.


7.15.1 Features

- Internally resets chip if not periodically reloaded during the programmable time-out period.
- Optional windowed operation requires reload to occur between a minimum and maximum time period, both programmable.
- Optional warning interrupt can be generated at a programmable time prior to watchdog time-out.
- Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be disabled.
- Incorrect feed sequence causes reset or interrupt if enabled.
- Flag to indicate watchdog reset.
- Programmable 24-bit timer with internal prescaler.
- Selectable time period from $(T_{cy(WDCLK)} \times 256 \times 4)$ to $(T_{cy(WDCLK)} \times 2^{24} \times 4)$ in multiples of $T_{cy(WDCLK)} \times 4$.
- The Watchdog Clock (WDCLK) source can be selected from the IRC or the dedicated watchdog oscillator (WDO). This gives a wide range of potential timing choices of watchdog operation under different power conditions.

NXP Semiconductors

LPC11U1x

32-bit ARM Cortex-M0 microcontroller

7.16.1.1 Internal RC oscillator

The IRC may be used as the clock source for the WDT, and/or as the clock that drives the system PLL and subsequently the CPU. The nominal IRC frequency is 12 MHz.

Upon power-up, any chip reset, or wake-up from Deep power-down mode, the LPC11U1x use the IRC as the clock source. Software may later switch to one of the other available clock sources.

Product data sheet

32-bit ARM Cortex-M0 microcontroller

on-chip peripherals, allowing fine tuning of power consumption by eliminating all dynamic power use in any peripherals that are not required for the application. Selected peripherals have their own clock divider which provides even better power control.

7.16.5.1 Power profiles

The power consumption in Active and Sleep modes can be optimized for the application through simple calls to the power profile. The power configuration routine configures the LPC11U1x for one of the following power modes:

- Default mode corresponding to power configuration after reset.
- CPU performance mode corresponding to optimized processing capability.
- Efficiency mode corresponding to optimized balance of current consumption and CPU performance.
- Low-current mode corresponding to lowest power consumption.

In addition, the power profile includes routines to select the optimal PLL settings for a given system clock and PLL input clock.

Remark: When using the USB, configure the LPC11U1x in Default mode.

7.16.5.2 Sleep mode

When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep mode does not need any special sequence but re-enabling the clock to the ARM core.

In Sleep mode, execution of instructions is suspended until either a reset or interrupt occurs. Peripheral functions continue operation during Sleep mode and may generate interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic power used by the processor itself, memory systems and related controllers, and internal buses.

7.16.5.3 Deep-sleep mode

In Deep-sleep mode, the LPC11U1x is in Sleep-mode and all peripheral clocks and all clock sources are off with the exception of the IRC. The IRC output is disabled unless the IRC is selected as input to the watchdog timer. In addition all analog blocks are shut down and the flash is in stand-by mode. In Deep-sleep mode, the user has the option to keep the watchdog oscillator and the BOD circuit running for self-timed wake-up and BOD protection.

The LPC11U1x can wake up from Deep-sleep mode via reset, selected GPIO pins, a watchdog timer interrupt, or an interrupt generating USB port activity.

Deep-sleep mode saves power and allows for short wake-up times.

7.16.5.4 Power-down mode

In Power-down mode, the LPC11U1x is in Sleep-mode and all peripheral clocks and all clock sources are off with the exception of watchdog oscillator if selected. In addition all analog blocks and the flash are shut down. In Power-down mode, the user has the option to keep the BOD circuit running for BOD protection.

The LPC11U1x can wake up from Power-down mode via reset, selected GPIO pins, a watchdog timer interrupt, or an interrupt generating USB port activity.

32-bit ARM Cortex-M0 microcontroller

9. Static characteristics

Table 6.Static characteristics

 $T_{amb} = -40 \$ °C to +85 °C, unless otherwise specified.

Symbol	Parameter	Conditions		Min	Typ[1]	Max	Unit
V _{DD}	supply voltage (core and external rail)		[2]	1.8	3.3	3.6	V
I _{DD}	supply current	Active mode; $V_{DD} = 3.3 V$; $T_{amb} = 25 °C$; code					
		while(1){}					
		executed from flash;					
		system clock = 12 MHz	[3][4][5] [6][7][8]	-	2	-	mA
		system clock = 50 MHz	[4][5][6] [7][8][9]	-	7	-	mA
		Sleep mode; V _{DD} = 3.3 V; T _{amb} = 25 °C;	[3][4][5] [6][7][8]	-	1	-	mA
		system clock = 12 MHz					
		Deep-sleep mode; $V_{DD} = 3.3 V$; T _{amb} = 25 °C	[4][7]	-	360	-	μA
		Power-down mode; $V_{DD} = 3.3 V$; T _{amb} = 25 °C		-	2	-	μA
		Deep power-down mode; V _{DD} = 3.3 V; T _{amb} = 25 °C	[10]	-	220	-	nA
Standard	d port pins, RESET				1]	
IIL	LOW-level input current	V _I = 0 V; on-chip pull-up resistor disabled		-	0.5	10	nA
IIH	HIGH-level input current	$V_I = V_{DD}$; on-chip pull-down resistor disabled		-	0.5	10	nA
I _{OZ}	OFF-state output current	$V_O = 0 V$; $V_O = V_{DD}$; on-chip pull-up/down resistors disabled		-	0.5	10	nA
VI	input voltage	pin configured to provide a digital function	[11][12] [13]	0	-	5.0	V
Vo	output voltage	output active		0	-	V _{DD}	V
VIH	HIGH-level input voltage			0.7V _{DD}	-	-	V
V _{IL}	LOW-level input voltage			-	-	$0.3V_{DD}$	V
V _{hys}	hysteresis voltage			-	0.4	-	V
V _{ОН}	HIGH-level output	$2.0~V \leq V_{DD} \leq 3.6~V;~I_{OH} = -4~mA$		$V_{DD}-0.4$	-	-	V
	voltage	1.8 V \leq V_{DD} < 2.0 V; I_{OH} = –3 mA		$V_{DD}-0.4$	-	-	V
V _{OL}	LOW-level output	$2.0~\text{V} \leq \text{V}_{DD} \leq 3.6~\text{V};~\text{I}_{OL}$ = 4 mA		-	-	0.4	V
	voltage	1.8 V \leq V _{DD} < 2.0 V; I _{OL} = 3 mA		-	-	0.4	V
I _{OH}	HIGH-level output current	$V_{OH} = V_{DD} - 0.4 \text{ V};$ 2.0 V $\leq V_{DD} \leq 3.6 \text{ V}$		-4	-	-	mA
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.0 \text{ V}$		-3	-	-	mA

32-bit ARM Cortex-M0 microcontroller

$I_{amb} = -4$	40 °C to +85 °C, unit	ess otherwise specified.				
Symbol	Parameter	Conditions	Min	Typ <u>[1]</u>	Max	Unit
Pin capa	acitance					
C _{io}	input/output	pins configured for analog function	-	-	7.1	pF
	capacitance	I ² C-bus pins (PIO0_4 and PIO0_5)	-	-	2.5	pF
		pins configured as GPIO	-	-	2.8	pF

Table 6. Static characteristics ...continued

 $T_{amb} = -40 \ ^{\circ}C \ to +85 \ ^{\circ}C, \ unless \ otherwise \ specified.$

[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

[2] For USB operation 3.0 V \leq V_{DD((3V3)} \leq 3.6 V. Guaranteed by design.

[3] IRC enabled; system oscillator disabled; system PLL disabled.

[4] I_{DD} measurements were performed with all pins configured as GPIO outputs driven LOW and pull-up resistors disabled.

[5] BOD disabled.

- [6] All peripherals disabled in the AHBCLKCTRL register. Peripheral clocks to USART, SSP0/1 disabled in the syscon block.
- [7] USB_DP and USB_DM pulled LOW externally.
- [8] Low-current mode PWR_LOW_CURRENT selected when running the set_power routine in the power profiles.

[9] IRC disabled; system oscillator enabled; system PLL enabled.

[10] WAKEUP pin pulled HIGH externally. An external pull-up resistor is required on the RESET pin for the Deep power-down mode.

- [11] Including voltage on outputs in 3-state mode.
- [12] V_{DD} supply voltage must be present.
- [13] 3-state outputs go into 3-state mode in Deep power-down mode.
- [14] Allowed as long as the current limit does not exceed the maximum current allowed by the device.

[15] To V_{SS}.

[16] Includes external resistors of 33 $\Omega\pm$ 1 % on USB_DP and USB_DM.

32-bit ARM Cortex-M0 microcontroller

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IA}	analog input voltage		0	-	V _{DD}	V
C _{ia}	analog input capacitance		-	-	1	pF
E _D	differential linearity error	[1][2]	-	-	±1	LSB
E _{L(adj)}	integral non-linearity	[3]	-	-	±1.5	LSB
E _O	offset error	[4]	-	-	±3.5	LSB
E _G	gain error	[5]	-	-	0.6	%
ET	absolute error	[6]	-	-	±4	LSB
R _{vsi}	voltage source interface resistance		-	-	40	kΩ
R _i	input resistance	[7][8]	-	-	2.5	MΩ

Table 7. ADC static characteristics

 $T_{amb} = -40$ °C to +85 °C unless otherwise specified; ADC frequency 4.5 MHz, $V_{DD} = 2.5$ V to 3.6 V.

[1] The ADC is monotonic, there are no missing codes.

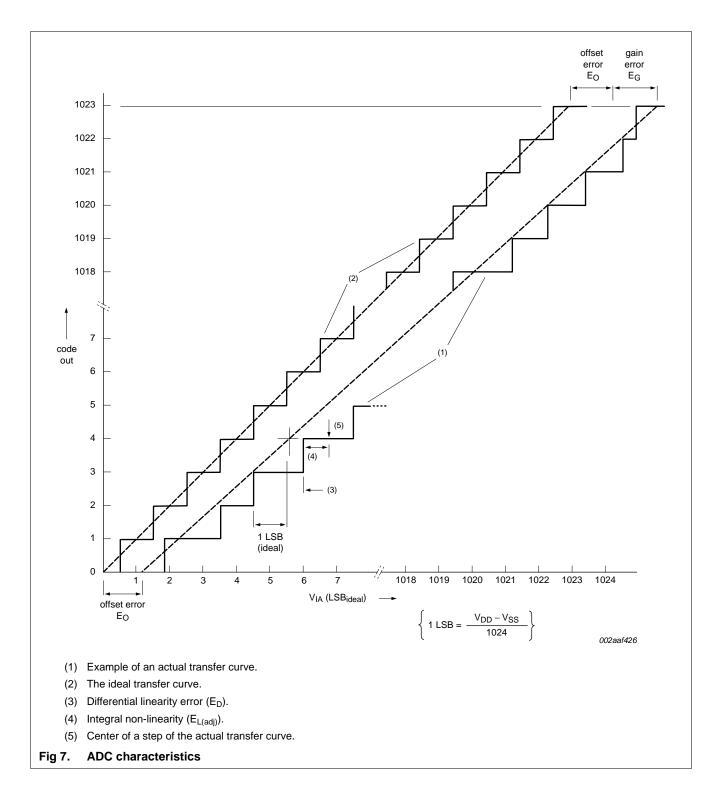
[2] The differential linearity error (E_D) is the difference between the actual step width and the ideal step width. See Figure 7.

[3] The integral non-linearity (E_{L(adj)}) is the peak difference between the center of the steps of the actual and the ideal transfer curve after appropriate adjustment of gain and offset errors. See <u>Figure 7</u>.

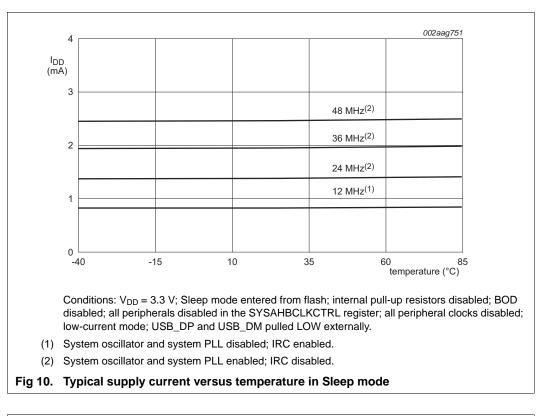
[4] The offset error (E_O) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the ideal curve. See Figure 7.

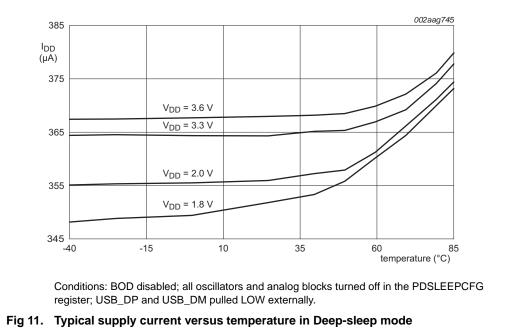
[5] The gain error (E_G) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset error, and the straight line which fits the ideal transfer curve. See <u>Figure 7</u>.

[6] The absolute error (E_T) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated ADC and the ideal transfer curve. See Figure 7.

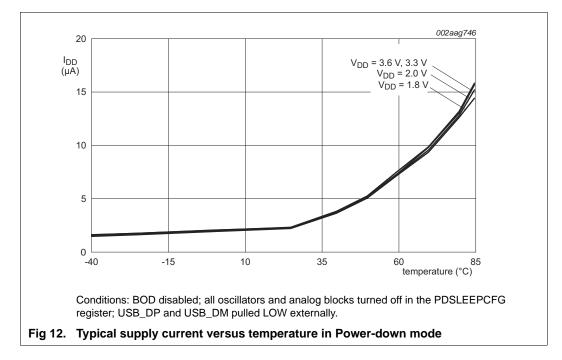

[7] $T_{amb} = 25 \text{ °C}$; maximum sampling frequency $f_s = 400 \text{kSamples/s}$ and analog input capacitance $C_{ia} = 1 \text{ pF}$.

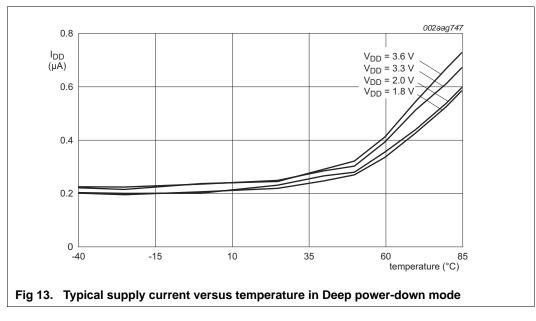
[8] Input resistance R_i depends on the sampling frequency fs: $R_i = 1 / (f_s \times C_{ia})$.


NXP Semiconductors

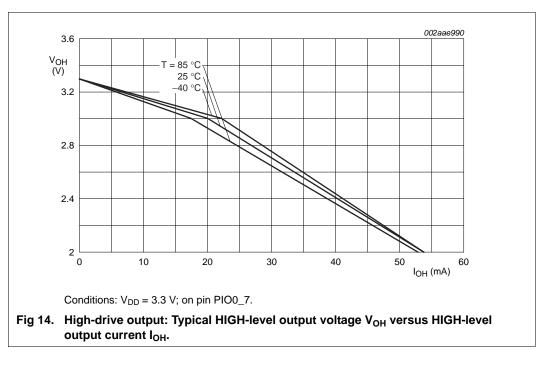

LPC11U1x

32-bit ARM Cortex-M0 microcontroller

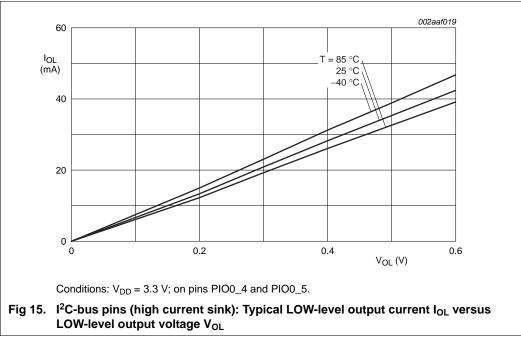



32-bit ARM Cortex-M0 microcontroller

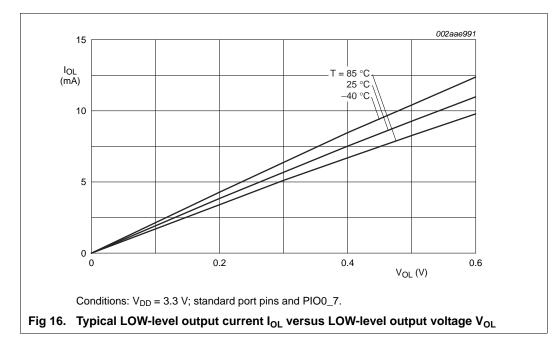
32-bit ARM Cortex-M0 microcontroller

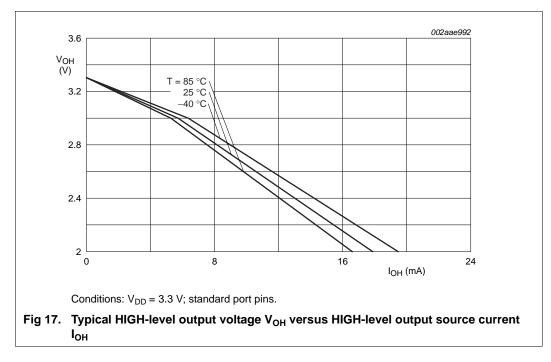


9.3 Peripheral power consumption


The supply current per peripheral is measured as the difference in supply current between the peripheral block enabled and the peripheral block disabled in the SYSAHBCLKCFG and PDRUNCFG (for analog blocks) registers. All other blocks are disabled in both registers and no code is executed. Measured on a typical sample at $T_{amb} = 25$ °C. Unless noted otherwise, the system oscillator and PLL are running in both measurements.

The supply currents are shown for system clock frequencies of 12 MHz and 48 MHz.


32-bit ARM Cortex-M0 microcontroller



9.4 Electrical pin characteristics

32-bit ARM Cortex-M0 microcontroller

32-bit ARM Cortex-M0 microcontroller

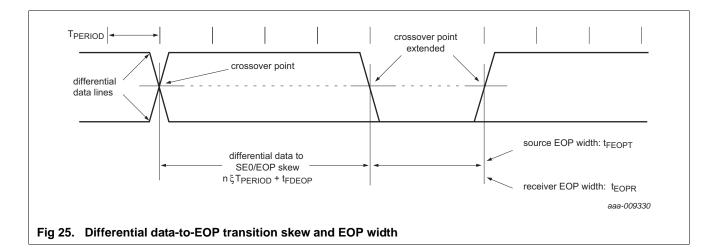

10.7 USB interface

Table 17. Dynamic characteristics: USB pins (full-speed)

 $C_L = 50 \text{ pF}; R_{pu} = 1.5 \text{ k}\Omega \text{ on } D + \text{ to } V_{DD}; 3.0 \text{ V} \le V_{DD} \le 3.6 \text{ V}.$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _r	rise time	10 % to 90 %	8.5	-	13.8	ns
t _f	fall time	10 % to 90 %	7.7	-	13.7	ns
t _{FRFM}	differential rise and fall time matching	t _r / t _f	-	-	109	%
V _{CRS}	output signal crossover voltage		1.3	-	2.0	V
t _{FEOPT}	source SE0 interval of EOP	see Figure 25	160	-	175	ns
t _{FDEOP}	source jitter for differential transition to SE0 transition	see Figure 25	-2	-	+5	ns
t _{JR1}	receiver jitter to next transition		-18.5	-	+18.5	ns
t _{JR2}	receiver jitter for paired transitions	10 % to 90 %	-9	-	+9	ns
t _{EOPR}	EOP width at receiver	must accept as [1 EOP; see Figure 25	1 82	-	-	ns

[1] Characterized but not implemented as production test. Guaranteed by design.

11. Application information

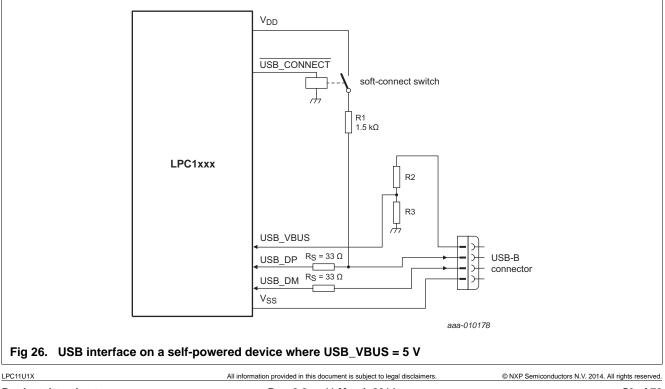
11.1 Suggested USB interface solutions

The USB device can be connected to the USB as self-powered device (see Figure 26) or bus-powered device (see Figure 27).

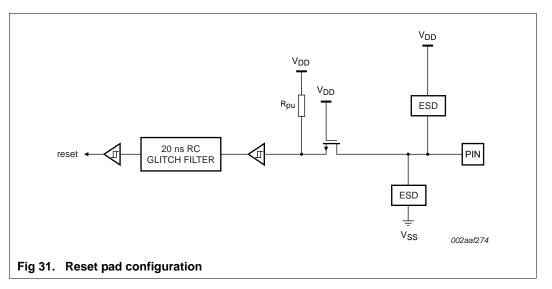
On the LPC11U1x, the PIO0_3/USB_VBUS pin is 5 V tolerant only when V_{DD} is applied and at operating voltage level. Therefore, if the USB_VBUS function is connected to the USB connector and the device is self-powered, the USB VBUS pin must be protected for situations when $V_{DD} = 0$ V.

If V_{DD} is always greater than 0 V while VBUS = 5 V, the USB_VBUS pin can be connected directly to the VBUS pin on the USB connector.

For systems where V_{DD} can be 0 V and VBUS is directly applied to the VBUS pin, precautions must be taken to reduce the voltage to below 3.6 V, which is the maximum allowable voltage on the USB_VBUS pin in this case.

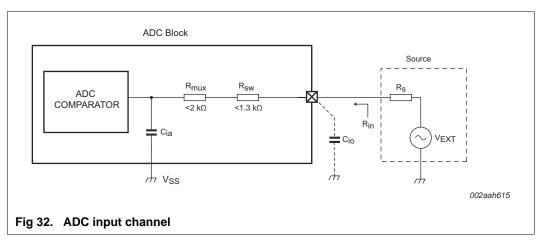

One method is to use a voltage divider to connect the USB_VBUS pin to the VBUS on the USB connector. The voltage divider ratio should be such that the USB_VBUS pin will be greater than 0.7V_{DD} to indicate a logic HIGH while below the 3.6 V allowable maximum voltage.

For the following operating conditions


VBUS_{max} = 5.25 V

$$V_{DD} = 3.6 V,$$

the voltage divider should provide a reduction of 3.6 V/5.25 V or ~0.686 V.


32-bit ARM Cortex-M0 microcontroller

11.5 Reset pad configuration

11.6 ADC effective input impedance

A simplified diagram of the ADC input channels can be used to determine the effective input impedance seen from an external voltage source. See <u>Figure 32</u>.

The effective input impedance, R_{in}, seen by the external voltage source, V_{EXT}, is the parallel impedance of $((1/f_s \times C_{ia}) + R_{mux} + R_{sw})$ and $(1/f_s \times C_{io})$, and can be calculated using Equation 1 with

fs = sampling frequency

Cia = ADC analog input capacitance

R_{mux} = analog mux resistance

R_{sw} = switch resistance

Cio = pin capacitance

$$R_{in} = \left(\frac{1}{f_s \times C_{ia}} + R_{mux} + R_{sw}\right) \| \left(\frac{1}{f_s \times C_{io}}\right)$$
(1)

© NXP Semiconductors N.V. 2014. All rights reserved.

32-bit ARM Cortex-M0 microcontroller

16. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
LPC11U1X v.2.2	20140311	Product data sheet	-	LPC11U1X v.2.1
Modifications:	Updated Sec	tion 11.1 "Suggested USB inte	rface solutions" for c	larity.
	Open-drain I	2C-bus and RESET pin descrip	tions updated for cla	arity. See <u>Table 3</u> .
LPC11U1X v.2.1	20130924	Product data sheet	-	LPC11U1X v.2
Modifications:	 Table 3: Added Ta Added Ta Table 8: Rem Added Section Programmab Table 6 "State Updated Section Table 5 "Liminitian" Updated Version Changed title with soft-condition 	V _{DD} min and max. V _I conditions. e of Figure 28 from "USB interfa	RESET/PIO0_0. oader version 7.0" pedance". ault. See Section 7.6 apacitance section. rface solutions".	5.1. d device" to "USB interface
LPC11U1X v.2	20120111	Product data sheet	-	LPC11U1X v.1
Modifications:	 Use of JTAG Sampling fre Conditions for Part LPC11L Editorial upd ROM-based Use of USB Power consult SSP dynamic IRC dynamic 	hysical and logical endpoints of updated in Section 2 (for BSD) quency corrected in Table note or parameter T _{stg} updated in Table 114FHI33/201 added. ates. integer division routines added with power profiles specified (S umption data added in Section S c characteristics added (Table 1 c characteristics added (Table 1 tatus changed to Product data	L only). 7 of Table 7. ble 5. (Section 2). ection 7.8). 9.2. 16). 2).	.8.1.
	Section 13 a	-	Or this sis is not use	

Table 21.Revision history