

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SSC, UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	21
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-SOIC (0.295", 7.50mm Width)
Supplier Device Package	PG-DSO-24-1
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc835mt2fgiabfxuma1

Edition 2011-10

Published by
Infineon Technologies AG
81726 Munich, Germany
© 2011 Infineon Technologies AG
All Rights Resery ed.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

XC835/836 Data Sheet

Rev	ision History:	V1.4 2011-10
-----	----------------	--------------

Previous Versions: V 1.2			
Page	Subjects (major changes since last revision)		
Page 3	Added a new variant (SAF-XC836-2FRA) in Table 2.		
Page 24	Added the SAK temperature range in Table 7.		
Page 21	Updated the Chip Identification number in Table 5.		

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Data Sheet V1.4, 2011-10

General Dev

ice Information

2.3 Pin Configuration

The pin configuration of the XC835 in Figure 4.

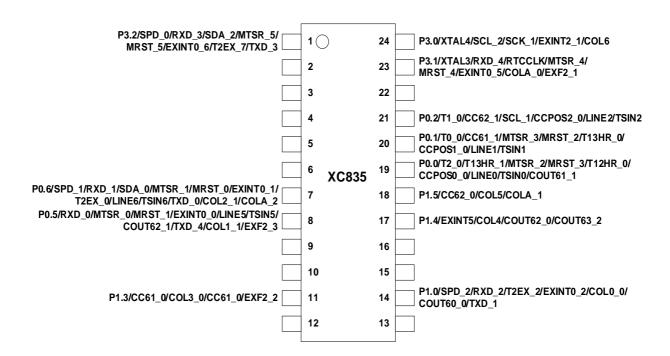


Figure 4 XC835 Pin Configuration, PG-DSO-24 Package (top view)

Data Sheet 7 V1.4, 2011-10

Electrical Parameters

Table 16 shows the maximum active current within the device in the reduced voltage condition of 2.5 V < V_{DDP} < 3.0 V. The active current consumption needs to be below the specified values as according to the V_{DDP} voltage. If the conditions are not met, a brownout reset may be triggered.

Table 16 Activ e Current Conisum e Voltage Condition

V _{DDP}	2.5 V	2.6 V	2.7 V	2.8 V
Maximum activ	₹ cu Arent	13 mA	20 mA	25 mA

Table 17 provides the active current consumption of some modules operating at 8 MHz active mode, 3 V power supply at 25 ° C. The typical values shown are used as a reference guide for device operating in reduced voltage conditions.

Table 17 Typical Activ Current Consumption 1) 2)

Activ e C	ußgenbol	Limit Values	Unit	Test Condition
Consumption		Тур.		
Baseload current ³⁾	I_{CPUDDC}	6900	μА	Modules including Core, memories, UART, T0, T1 and EVR. Disable ADC analog (GLOBCTR.ANON = 0).
ADC ⁴⁾	I_{ADCDDC}	3760	μΑ	Set PMCON1.ADC_DIS to 0 and GLOBECTR. ANON to 1
SSC ⁵⁾	$I_{ ext{SSCDDC}}$	460	μΑ	Set PMCON1.SSC_DIS to 0
CCU6 ⁶⁾	I_{CCU6DDC}	3320	μΑ	Set PMCON1.CCU_DIS to 0
Timer 2 ⁷⁾	I_{T2DDC}	200	μΑ	Set PMCON1.T2_DIS to 0
MDU ⁸⁾	I_{MDUDDC}	1260	μΑ	Set PMCON1.MDU_DIS to 0
CORDIC ⁹⁾	$I_{CORDICDDC}$	1880	μΑ	Set PMCON1.CDC_DIS to 0
LEDTSCU ¹⁰⁾	I_{LEDDDC}	850	μΑ	Set PMCON1.LTS_DIS to 0
IIC ¹¹⁾	I_{IICDDC}	580	μΑ	Set PMCON1.IIC_DIS to 0

¹⁾ Modules that are controllable by programming the register PMCON1.

- 5) SSC active curremt is measured with: module enabled, running in loop back mode at a baud rate of 1 MBaud
- 6) CCU6 active current is measured with: module enabled, all timers running in 8 MHz, 6 PWM outputs are generated.

Data Sheet 36 V1.4, 2011-10

²⁾ Not subject to production test, verified by design/characterisation.

³⁾ Baseload current is measured when the device is running in user mode with an endless loop in the flash memory. All modules in register PMCON1 are disabled.

⁴⁾ ADC active current is measured with: module enable, ADC analog clock at 8MHz, running in parallel conversion request in autoscan mode for 4 channels