
Microchip Technology - ATMEGA163-8AI Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 8MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 32

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 4V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C

Mounting Type Surface Mount

Package / Case 44-TQFP

Supplier Device Package 44-TQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega163-8ai

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega163-8ai-4425604
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Data Indirect with
Displacement

Figure 14. Data Indirect with Displacement

Operand address is the result of the Y- or Z-register contents added to the address con-
tained in 6 bits of the instruction word.

Data Indirect Figure 15. Data Indirect Addressing

Operand address is the contents of the X-, Y-, or the Z-register.

Data Indirect with Pre-
decrement

Figure 16. Data Indirect Addressing with Pre-decrement

The X-, Y-, or the Z-register is decremented before the operation. Operand address is
the decremented contents of the X-, Y-, or the Z-register.

Data Space
$0000

$045F

Y OR Z - REGISTER

OP an

0

05610

15

15

Data Space
$0000

$045F

X, Y OR Z - REGISTER

015

Data Space
$0000

$045F

X, Y OR Z - REGISTER

015

-1
14 ATmega163(L)
1142E–AVR–02/03

Note: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader
address at reset, see “Boot Loader Support” on page 134.

The most typical and general program setup for the Reset and Interrupt Vector
Addresses in ATmega163 is:

Address Labels Code Comments

$000 jmp RESET ; Reset Handler

$002 jmp EXT_INT0 ; IRQ0 Handler

$004 jmp EXT_INT1 ; IRQ1 Handler

$006 jmp TIM2_COMP ; Timer2 Compare Handler

$008 jmp TIM2_OVF ; Timer2 Overflow Handler

$00a jmp TIM1_CAPT ; Timer1 Capture Handler

$00c jmp TIM1_COMPA ; Timer1 Compare A Handler

$00e jmp TIM1_COMPB ; Timer1 Compare B Handler

$010 jmp TIM1_OVF ; Timer1 Overflow Handler

$012 jmp TIM0_OVF ; Timer0 Overflow Handler

$014 jmp SPI_STC ; SPI Transfer Complete Handler

$016 jmp UART_RXC ; UART RX Complete Handler

$018 jmp UART_DRE ; UDR Empty Handler

$01a jmp UART_TXC ; UART TX Complete Handler

$01c jmp ADC ; ADC Conversion Complete Interrupt Handler

$01e jmp EE_RDY ; EEPROM Ready Handler

$020 jmp ANA_COMP ; Analog Comparator Handler

$022 jmp TWI ; Two-wire Serial Interface Interrupt Handler

;

$024 MAIN: ldi r16,high(RAMEND) ; Main program start

$025 out SPH,r16 ; Set stack pointer to top of RAM

$026 ldi r16,low(RAMEND)

$027 out SPL,r16

...

13 $018 UART, UDRE UART Data Register Empty

14 $01A UART, TXC UART, Tx Complete

15 $01C ADC ADC Conversion Complete

16 $01E EE_RDY EEPROM Ready

17 $020 ANA_COMP Analog Comparator

18 $022 TWI Two-wire Serial Interface

Table 3. Reset and Interrupt Vectors (Continued)

Vector No.
Program
Address Source Interrupt Definition
22 ATmega163(L)
1142E–AVR–02/03

ATmega163(L)
• Bit 2 – BORF: Brown-out Reset Flag

This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the Flag.

• Bit 1 – EXTRF: External Reset Flag

This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

• Bit 0 – PORF: Power-on Reset Flag

This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to
the flag.

To make use of the Reset Flags to identify a reset condition, the user should read and
then reset the MCUSR as early as possible in the program. If the register is cleared
before another reset occurs, the source of the reset can be found by examining the
Reset Flags.

Internal Voltage Reference ATmega163 features an internal bandgap reference with a nominal voltage of 1.22V.
This reference is used for Brown-out Detection, and it can be used as an input to the
Analog Comparator and ADC. The 2.56V reference to the ADC is also generated from
the internal bandgap reference.

Voltage Reference Enable
Signals and Start-up Time

To save power, the reference is not always turned on. The reference is on during the fol-
lowing situations:

1. When the BOD is enabled (by programming the BODEN Fuse)

2. When the bandgap reference is connected to the Analog Comparator (by setting
the ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit, the user must always
allow the reference to start up before the output from the Analog Comparator is used.
The bandgap reference uses typically 10 µA, and to reduce power consumption in
Power-down mode, the user can avoid the three conditions above to ensure that the ref-
erence is turned off before entering Power-down mode.

Interrupt Handling The ATmega163 has two 8-bit Interrupt Mask Control Registers: GIMSK – General
Interrupt Mask Register and TIMSK – Timer/Counter Interrupt Mask Register.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared (zero) and all inter-
rupts are disabled. The user software must set (one) the I-bit to enable nested
interrupts. The I-bit is set (one) when a Return from Interrupt instruction – RETI – is
executed.

When the Program Counter is vectored to the actual Interrupt Vector in order to execute
the interrupt handling routine, hardware clears the corresponding flag that generated the
interrupt. Some of the interrupt flags can also be cleared by writing a logic one to the flag
bit position(s) to be cleared.

If an interrupt condition occurs when the corresponding interrupt enable bit is cleared
(zero), the Interrupt Flag will be set and remembered until the interrupt is enabled, or the
flag is cleared by software.
29
1142E–AVR–02/03

ATmega163(L)
Figure 32. Timer/Counter0 Block Diagram

Timer/Counter0 Control
Register – TCCR0

• Bits 7..3 – Res: Reserved Bits

These bits are reserved bits in the ATmega163 and always read as zero.

• Bits 2..0 – CS02, CS01, CS00: Clock Select0, Bit 2, 1, and 0

The Clock Select0 bits 2,1, and 0 define the prescaling source of Timer0.

The Stop condition provides a Timer Enable/Disable function. The prescaled CK modes
are scaled directly from the CK Oscillator clock. If the external pin modes are used for
Timer/Counter0, transitions on PB0/(T0) will clock the counter even if the pin is config-
ured as an output. This feature can give the user SW control of the counting.

8-
B

IT
 D

A
TA

 B
U

S
T/C0 CONTROL

REGISTER (TCCR0)

TIMER/COUNTER0
(TCNT0)

07
T/C CLK SOURCE CONTROL

LOGIC

C
S

02

C
S

01

C
S

00

CK

T/C0 OVER-
FLOW IRQ

TIMER INT. MASK
REGISTER (TIMSK)

T
O

IE
0

T
O

IE
1

O
C

IE
1A

O
C

IE
1B

T
IC

IE
1

T
O

IE
2

O
C

IE
2

TIMER INT. FLAG
REGISTER (TIFR)

T
O

V
0

T
O

V
1

O
C

F
1A

O
C

F
1B

IC
F

1

T
O

V
2

O
C

F
2

Bit 7 6 5 4 3 2 1 0

$33 ($53) – – – – – CS02 CS01 CS00 TCCR0

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 11. Clock0 Prescale Select

CS02 CS01 CS00 Description

0 0 0 Stop, Timer/Counter0 is stopped.

0 0 1 CK

0 1 0 CK/8

0 1 1 CK/64

1 0 0 CK/256

1 0 1 CK/1024

1 1 0 External Pin T0, falling edge

1 1 1 External Pin T0, rising edge
41
1142E–AVR–02/03

ATmega163(L)
• Bit 3 – CTC2: Clear Timer/Counter on Compare Match

When the CTC2 control bit is set (one), Timer/Counter2 is Reset to $00 in the CPU clock
cycle following a Compare Match. If the control bit is cleared, the Timer/Counter2 contin-
ues counting and is unaffected by a Compare Match. When a prescaling of 1 is used,
and the Compare Register is set to C, the Timer will count as follows if CTC2 is set:

... | C-1 | C | 0 | 1 |...

When the prescaler is set to divide by eight, the Timer will count like this:

... | C-1, C-1, C-1, C-1, C-1, C-1, C-1, C-1 | C, C, C, C, C, C, C, C | 0, 0, 0, 0, 0, 0, 0, 0 |
1, 1, 1, ...

In PWM mode, this bit has a different function. If the CTC2 bit is cleared in PWM mode,
the Timer/Counter acts as an up/down counter. If the CTC2 bit is set (one), the
Timer/Counter wraps when it reaches $FF. Refer to page 54 for a detailed description.

• Bits 2, 1, 0 – CS22, CS21, CS20: Clock Select Bits 2, 1, and 0

The Clock Select bits 2, 1, and 0 define the prescaling source of Timer/Counter2.

The Stop condition provides a Timer Enable/Disable function. The prescaled modes are
scaled directly from the PCK2 clock.

Timer/Counter2 – TCNT2

This 8-bit register contains the value of Timer/Counter2.

Timer/Counters2 is implemented as an up or up/down (in PWM mode) counter with read
and write access. If the Timer/Counter2 is written to and a clock source is selected, it
continues counting in the timer clock cycle following the write operation.

Table 20. Timer/Counter2 Prescale Select

CS22 CS21 CS20 Description

0 0 0 Timer/Counter2 is stopped.

0 0 1 PCK2

0 1 0 PCK2/8

0 1 1 PCK2/32

1 0 0 PCK2/64

1 0 1 PCK2/128

1 1 0 PCK2/256

1 1 1 PCK2/1024

Bit 7 6 5 4 3 2 1 0

$24 ($44) MSB LSB TCNT2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
53
1142E–AVR–02/03

The user should poll the EEWE bit before starting the read operation. If a write operation
is in progress, it is not possible to set the EERE bit, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 24 lists the typi-
cal programming time for EEPROM access from the CPU

Preventing EEPROM
Corruption

During periods of low VCC, the EEPROM data can be corrupted because the supply volt-
age is too low for the CPU and the EEPROM to operate properly. These issues are the
same as for board level systems using the EEPROM, and the same design solutions
should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too
low. First, a regular write sequence to the EEPROM requires a minimum voltage to
operate correctly. Secondly, the CPU itself can execute instructions incorrectly, if the
supply voltage for executing instructions is too low.

EEPROM data corruption can easily be avoided by following these design recommen-
dations (one is sufficient):

1. Keep the AVR RESET active (low) during periods of insufficient power supply
voltage. This can be done by enabling the internal Brown-out Detector (BOD) if
the operating voltage matches the detection level. If not, an external low VCC
Reset Protection circuit can be used. If a Reset occurs while a write operation is
in progress, the write operation will be completed provided that the power supply
is voltage is sufficient.

2. Keep the AVR core in Power-down Sleep Mode during periods of low VCC. This
will prevent the CPU from attempting to decode and execute instructions, effec-
tively protecting the EEPROM Registers from unintentional writes.

3. Store constants in Flash memory if the ability to change memory contents from
software is not required. Flash memory can not be updated by the CPU unless
the boot loader software supports writing to the Flash and the Boot Lock bits are
configured so that writing to the Flash memory from CPU is allowed. See “Boot
Loader Support” on page 134 for details.

Table 24. EEPROM Programming Time.

Symbol
Number of Calibrated
RC Oscillator Cycles

Min Programmingn
Time

Max Programming
Time

EEPROM write
(from CPU)

2048 1.9 ms 3.8 ms
64 ATmega163(L)
1142E–AVR–02/03

ATmega163(L)
When data is transferred from UDR to the Shift Register, the UDRE (UART Data Regis-
ter Empty) bit in the UART Status Register, USR, is set. When this bit is set (one), the
UART is ready to receive the next character. At the same time as the data is transferred
from UDR to the 10(11)-bit Shift Register, bit 0 of the Shift Register is cleared (start bit)
and bit 9 or 10 is set (stop bit). If 9-bit data word is selected (the CHR9 bit in the UART
Control Register, UCR is set), the TXB8 bit in UCR is transferred to bit 9 in the Transmit
Shift Register.

On the Baud Rate clock following the transfer operation to the Shift Register, the start bit
is shifted out on the TXD pin. Then follows the data, LSB first. When the stop bit has
been shifted out, the Shift Register is loaded if any new data has been written to the
UDR during the transmission. During loading, UDRE is set. If there is no new data in the
UDR Register to send when the stop bit is shifted out, the UDRE Flag will remain set
until UDR is written again. When no new data has been written, and the stop bit has
been present on TXD for one bit length, the Transmit Complete Flag, TXC, in USR is
set.

The TXEN bit in UCR enables the UART transmitter when set (one). When this bit is
cleared (zero), the PD1 pin can be used for general I/O. When TXEN is set, the UART
Transmitter will be connected to PD1, which is forced to be an output pin regardless of
the setting of the DDD1 bit in DDRD.
71
1142E–AVR–02/03

• Bit 0 – TWIE: Two-wire Serial Interface Interrupt Enable

When this bit is enabled, and the I-bit in SREG is set, the Two-wire Serial Interface inter-
rupt will be activated for as long as the TWINT Flag is high.

The TWCR is used to control the operation of the Two-wire Serial Interface. It is used to
enable the Two-wire Serial Interface, to initiate a Master access by applying a START
condition to the bus, to generate a receiver acknowledge, to generate a stop condition,
and to control halting of the bus while the data to be written to the bus are written to the
TWDR. It also indicates a write collision if data is attempted written to TWDR while the
register is inaccessible.

The Two-wire Serial Interface
Status Register – TWSR

• Bits 7..3 – TWS: Two-wire Serial Interface Status

These five bits reflect the status of the Two-wire Serial Interface logic and the Two-wire
Serial Bus.

• Bits 2..0 – Res: Reserved bits

These bits are reserved in ATmega163 and will always read as zero

The TWSR is read only. It contains a status code which reflects the status of the Two-
wire Serial Interface logic and the Two-wire Serial Bus. There are 26 possible status
codes. When TWSR contains $F8, no relevant state information is available and no
Two-wire Serial Interface interrupt is requested. A valid status code is available in
TWSR one CPU clock cycle after the Two-wire Serial Interface Interrupt Flag (TWINT) is
set by hardware and is valid until one CPU clock cycle after TWINT is cleared by soft-
ware. Table 32 to Table 36 give the status information for the various modes.

The Two-wire Serial Interface
Data Register – TWDR

• Bits 7..0 – TWD: Two-wire Serial Interface Data Register

These eight bits constitute the next data byte to be transmitted, or the latest data byte
received on the Two-wire Serial Bus.

In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode, the
TWDR contains the last byte received. It is writeable while the Two-wire Serial Interface
is not in the process of shifting a byte. This occurs when the Two-wire Serial Interface
Interrupt Flag (TWINT) is set by hardware. Note that the Data Register cannot be initial-
ized by the user before the first interrupt occurs. The data in TWDR remain stable as
long as TWINT is set. While data is shifted out, data on the bus is simultaneously shifted
in. TWDR always contains the last byte present on the bus, except after a wake up from
ADC Noise Reduction mode, Power-down mode, or Power-save mode by the Two-wire
Serial Interface interrupt. For example, in the case of a lost bus arbitration, no data is
lost in the transition from Master to Slave. Handling of the ACK Flag is controlled auto-
matically by the Two-wire Serial Interface logic, the CPU cannot access the ACK bit
directly.

Bit 7 6 5 4 3 2 1 0

$01 ($21) TWS7 TWS6 TWS5 TWS4 TWS3 – – – TWSR

Read/Write R R R R R R R R

Initial Value 1 1 1 1 1 0 0 0

Bit 7 6 5 4 3 2 1 0

$03 ($23) TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWD0 TWDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1
84 ATmega163(L)
1142E–AVR–02/03

Slave Transmitter Mode In the Slave Transmitter mode, a number of data bytes are transmitted to a Master
Receiver (see Figure 55). The transfer is initialized as in the Slave Receiver mode.
When TWAR and TWCR have been initialized, the Two-wire Serial Interface waits until
it is addressed by its own slave address (or the general call address if enabled) followed
by the Data Direction bit which must be “1” (read) for the Two-wire Serial Interface to
operate in the Slave Transmitter mode. After its own slave address and the read bit
have been received, the Two-wire Serial Interface Interrupt Flag is set and a valid status
code can be read from TWSR. The status code is used to determine the appropriate
software action. The appropriate action to be taken for each status code is detailed in
Table 35. The slave transmitter mode may also be entered if arbitration is lost while the
Two-wire Serial Interface is in the Master mode (see state $B0).

If the TWEA bit is reset during a transfer, the Two-wire Serial Interface will transmit the
last byte of the transfer and enter state $C0 or state $C8. the Two-wire Serial Interface
is switched to the not addressed Slave mode, and will ignore the Master if it continues
the transfer. Thus the Master Receiver receives all “1” as serial data. While TWEA is
reset, the Two-wire Serial Interface does not respond to its own slave address. How-
ever, the Two-wire Serial Bus is still monitored and address recognition may resume at
any time by setting TWEA. This implies that the TWEA bit may be used to temporarily
isolate the Two-wire Serial Interface from the Two-wire Serial Bus.

Assembly code illustrating operation of the Slave Receiver mode is given at the end of
the TWI section.

Miscellaneous States There are two status codes that do not correspond to a defined Two-wire Serial Inter-
face state, see Table 36.

Status $F8 indicates that no relevant information is available because the Two-wire
Serial Interface Interrupt Flag (TWINT) is not set yet. This occurs between other states,
and when the Two-wire Serial Interface is not involved in a serial transfer.

Status $00 indicates that a bus error has occured during a Two-wire Serial Bus transfer.
A bus error occurs when a START or STOP condition occurs at an illegal position in the
format frame. Examples of such illegal positions are during the serial transfer of an
address byte, a data byte or an acknowledge bit. When a bus error occurs, TWINT is
set. To recover from a bus error, the TWSTO Flag must set and TWINT must be cleared
by writing a logic one to it. This causes the Two-wire Serial Interface to enter the not
addressed Slave mode and to clear the TWSTO Flag (no other bits in TWCR are
affected). The SDA and SCL lines are released and no STOP condition is transmitted.
88 ATmega163(L)
1142E–AVR–02/03

Figure 53. Formats and States in the Master Receiver Mode

Table 33. Status Codes for Master Receiver Mode

Status Code
(TWSR)

Status of the Two-wire Serial
Bus and Two-wire Serial Inter-
face hardware

Application Software Response

Next Action Taken by Two-wire Serial Interface Hard-
ware

To/from TWDR
To TWCR

STA STO TWINT TWEA

$08 A START condition has been
transmitted

Load SLA+R X 0 1 X SLA+R will be transmitted
ACK or NOT ACK will be received

$10 A repeated START condition
has been transmitted

Load SLA+R or

Load SLA+W

X

X

0

0

1

1

X

X

SLA+R will be transmitted
ACK or NOT ACK will be received
SLA+W will be transmitted
Logic will switch to Master Transmitter mode.

$38 Arbitration lost in SLA+R or
NOT ACK bit

No TWDR action or

No TWDR actio

0

1

0

0

1

1

X

X

Two-wire Serial Bus will be released and not addressed
Slave mode will be entered
A START condition will be transmitted when the bus
becomes free

$40 SLA+R has been transmitted;
ACK has been received

No TWDR action or

No TWDR action

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

$48 SLA+R has been transmitted;
NOT ACK has been received

No TWDR action or
No TWDR action or

No TWDR action

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO Flag
will be Reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be Reset

$50 Data byte has been received;
ACK has been returned

Read data byte or

Read data byte

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

$58 Data byte has been received;
NOT ACK has been returned

Read data byte or
Read data byte or

Read data byte

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO Flag
will be Reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be Reset

S SLA R A DATA A

$08 $40 $50

S SLA R

$10

A P

$48

A or A

$38

Other Master
Continues

$38

Other Master
Continues

W

A

$68

Other Master
Continues

$78 $B0
To corresponding
states in slave mode

MR

MT

Successfull
Reception
From a Slave
Receiver

Next Transfer
Started with a
Repeated Start
Condition

Not Acknowledge
Received After the
Slave Address

Arbitration Lost in Slave
Address or Data Byte

Arbitration Lost and
Addressed as Slave

DATA A

n

From Master to Slave

From Slave to Master

Any Number of Data Bytes
and their Associated Acknowledge Bits

This Number (Contained in TWSR) Corresponds
to a Defined State of the Two-wire Serial Bus

PDATA A

$58

A

92 ATmega163(L)
1142E–AVR–02/03

Figure 55. Formats and States in the Slave Transmitter Mode

Table 35. Status Codes for Slave Transmitter Mode

Status Code
(TWSR)

Status of the Two-wire Serial Bus
and Two-wire Serial Interface
hardware

Application Software Response

Next Action Taken by Two-wire Serial Interface Hard-
ware

To/from TWDR
To TWCR

STA STO TWINT TWEA

$A8 Own SLA+R has been received;
ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

$B0 Arbitration lost in SLA+R/W as
master; own SLA+R has been
received; ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

$B8 Data byte in TWDR has been
transmitted; ACK has been
received

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

$C0 Data byte in TWDR has been
transmitted; NOT ACK has been
received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

$C8 Last data byte in TWDR has been
transmitted (TWEA = “0”); ACK
has been received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

S SLA R A DATA A

$A8 $B8

A

$B0

Reception of the Own
Slave Address and One or
More Data Bytes

Last Data Byte Transmitted.
Switched to not Addressed
Slave (TWEA = "0")

Arbitration Lost as Master
and Addressed as Slave

n

From Master to Slave

From Slave to Master

Any Number of Data Bytes
and their Associated Acknowledge Bits

This Number (Contained in TWSR) Corresponds
to a Defined State of the Two-wire Serial Bus

P or SDATA

$C0

DATA A

A

$C8

P or SAll 1's

A

98 ATmega163(L)
1142E–AVR–02/03

Analog Comparator
Multiplexed Input

It is possible to select any of the PA7..0 (ADC7..0) pins to replace the negative input to
the Analog Comparator. The ADC multiplexer is used to select this input, and conse-
quently, the ADC must be switched off to utilize this feature. If the Analog Comparator
Multiplexer Enable bit (ACME in SFIOR) is set (one) and the ADC is switched off (ADEN
in ADCSR is zero), MUX2..0 in ADMUX select the input pin to replace the negative input
to the Analog Comparator, as shown in Table 38. If ACME is cleared (zero) or ADEN is
set (one), PB3 (AIN1) is applied to the negative input to the Analog Comparator.

Table 38. Analog Comparator Multiplexed Input

ACME ADEN MUX2..0 Analog Comparator Negative Input

0 x xxx AIN1

1 1 xxx AIN1

1 0 000 ADC0

1 0 001 ADC1

1 0 010 ADC2

1 0 011 ADC3

1 0 100 ADC4

1 0 101 ADC5

1 0 110 ADC6

1 0 111 ADC7
104 ATmega163(L)
1142E–AVR–02/03

ATmega163(L)
Analog to Digital
Converter

Feature List • 10-bit Resolution
• 0.5 LSB Integral Non-linearity
• ±2 LSB Absolute Accuracy
• 65 - 260 µs Conversion Time
• Up to 15 kSPS at Maximum Resolution
• Up to 76 kSPS at 8-bit Resolution
• Eight Multiplexed Single Ended Input Channels
• Optional Left Adjustment for ADC Result Readout
• 0 - VCC ADC Input Voltage Range
• Selectable 2.56V ADC Reference Voltage
• Free Run or Single Conversion Mode
• Interrupt on ADC Conversion Complete
• Sleep Mode Noise Canceler

The ATmega163 features a 10-bit successive approximation ADC. The ADC is con-
nected to an 8-channel Analog Multiplexer which allows each pin of Port A to be used as
input for the ADC.

The ADC contains a Sample and Hold Amplifier which ensures that the input voltage to
the ADC is held at a constant level during conversion. A block diagram of the ADC is
shown in Figure 57.

The ADC has two separate analog supply voltage pins, AVCC and AGND. AGND must
be connected to GND, and the voltage on AVCC must not differ more than ±0.3V from
VCC. See the paragraph ADC Noise Canceling Techniques on how to connect these
pins.

Internal reference voltages of nominally 2.56V or AVCC are provided On-chip. The
2.56V reference may be externally decoupled at the AREF pin by a capacitor for better
noise perfomance. See “Internal Voltage Reference” on page 29 for a description of the
internal voltage reference.
105
1142E–AVR–02/03

• Bits 2..0 – ADPS2..0: ADC Prescaler Select Bits

These bits determine the division factor between the XTAL frequency and the input
clock to the ADC.

The ADC Data Register –
ADCL and ADCH

ADLAR = 0

ADLAR = 1

When an ADC conversion is complete, the result is found in these two registers.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Conse-
quently, if the result is left adjusted and no more than 8-bit precision is required, it is
sufficient to read ADCH. Otherwise, ADCL must be read first, then ADCH.

The ADLAR bit in ADMUX affects the way the result is read from the registers. If ADLAR
is set, the result is left adjusted. If ADLAR is cleared (default), the result is right adjusted.

• ADC9..0: ADC Conversion result

These bits represent the result from the conversion. $000 represents analog ground,
and $3FF represents the selected reference voltage minus one LSB.

Table 42. ADC Prescaler Selections

ADPS2 ADPS1 ADPS0 Division Factor

0 0 0 2

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

Bit 15 14 13 12 11 10 9 8

$05 ($25) SIGN – – – – – ADC9 ADC8 ADCH

$04 ($24) ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

$05 ($25) ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH

$04 ($24) ADC1 ADC0 – – – – – – ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
112 ATmega163(L)
1142E–AVR–02/03

ATmega163(L)
Scanning Multiple
Channels

Since change of analog channel always is delayed until a conversion is finished, the
Free Running mode can be used to scan multiple channels without interrupting the con-
verter. Typically, the ADC Conversion Complete interrupt will be used to perform the
channel shift. However, the user should take the following fact into consideration:

The interrupt triggers once the result is ready to be read. In Free Running mode, the
next conversion will start immediately when the interrupt triggers. If ADMUX is changed
after the interrupt triggers, the next conversion has already started, and the old setting is
used.

ADC Noise Canceling
Techniques

Digital circuitry inside and outside the ATmega163 generates EMI which might affect the
accuracy of analog measurements. If conversion accuracy is critical, the noise level can
be reduced by applying the following techniques:

1. The analog part of the ATmega163 and all analog components in the application
should have a separate analog ground plane on the PCB. This ground plane is
connected to the digital ground plane via a single point on the PCB.

2. Keep analog signal paths as short as possible. Make sure analog tracks run over
the analog ground plane, and keep them well away from high-speed switching
digital tracks.

3. The AVCC pin on the ATmega163 should be connected to the digital VCC supply
voltage via an LC network as shown in Figure 62.

4. Use the ADC noise canceler function to reduce induced noise from the CPU.

5. If some Port A pins are used as digital outputs, it is essential that these do not
switch while a conversion is in progress.

Figure 62. ADC Power Connections

G
N

D

V
C

C

P
A

0
(A

D
C

0)

P
A

1
(A

D
C

1)

P
A

2
(A

D
C

2)

P
A

3
(A

D
C

3)

PA4 (ADC4)

PA5 (ADC5)

PA6 (ADC6)

PA7 (ADC7)

AREF

AVCC

AGND

PC7 (TOSC2)

10
µΗ

10
0n

F
A

na
lo

g
G

ro
un

d
P

la
ne

A
T

m
eg

a1
63

33

29

31

27

26

32

28

30

37 3536 343839
113
1142E–AVR–02/03

Figure 71. PORTC Schematic Diagram (Pins PC2 - PC5)

Figure 72. PORTC Schematic Diagram (Pins PC6)

D
A

TA
 B

U
S

D

D

Q

Q

RESET

RESET

C

C

WD

WP

RD

MOS
PULL-
UP

PCn

R

R

WP:
WD:
RL:
RP:
RD:

WRITE PORTC
WRITE DDRC
READ PORTC LATCH
READ PORTC PIN
READ DDRC

DDCn

PORTCn

RL

RP

PUD

PUD: PULL-UP DISABLE
n: 2..5

D
A

TA
 B

U
S

D

D

Q

Q

RESET

RESET

C

C

WD

WP

RD

MOS
PULL-
UP

PC6

R

R

WP:
WD:
RL:
RP:
RD:
AS2:

WRITE PORTC
WRITE DDRC
READ PORTC LATCH
READ PORTC PIN
READ DDRC
ASYNCH SELECT T/C2

DDC6

PORTC6

RL

RP

AS2
T/C2 OSC
AMP INPUT

PUD

0

1

PUD: PULL-UP DISABLE
126 ATmega163(L)
1142E–AVR–02/03

ATmega163(L)
Figure 83. Programming the Flash Waveforms (continued)

Programming the EEPROM The programming algorithm for the EEPROM Data Memory is as follows (refer to “Pro-
gramming the Flash” on page 147 for details on Command, Address and Data loading):

1. A: Load Command “0001 0001”.

2. H: Load Address High Byte ($00 - $01)

3. B: Load Address Low Byte ($00 - $FF)

4. E: Load Data Low Byte ($00 - $FF)

L: Write Data Low Byte

1. Set BS to “0”. This selects low data.

2. Give WR a negative pulse. This starts programming of the data byte.
RDY/BSY goes low.

3. Wait until to RDY/BSY goes high before programming the next byte.
(See Figure 84 for signal waveforms)

The loaded command and address are retained in the device during programming. For
efficient programming, the following should be considered.

• The command needs only be loaded once when writing or reading multiple memory
locations.

• Address high byte needs only be loaded before programming a new 256 word page
in the EEPROM.

• Skip writing the data value $FF, that is the contents of the entire EEPROM after a
Chip Erase.

These considerations also applies to Flash, EEPROM and Signature bytes reading.

DATA HIGHDATA

XA1

XA0

BS1

XTAL1

WR

RDY/BSY

RESET +12V

OE

BS2

PAGEL
149
1142E–AVR–02/03

Reading the Signature Bytes The algorithm for reading the Signature bytes is as follows (refer to Programming the
Flash for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. C: Load Address Low Byte ($00 - $02).

3. Set OE to “0”, and BS to “0”. The selected Signature byte can now be read at
DATA.

4. Set OE to “1”.

Reading the Calibration Byte The algorithm for reading the Calibration byte is as follows (refer to Programming the
Flash for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. C: Load Address Low Byte, $00.

Set OE to “0”, and BS1 to “1”. The Calibaration byte can now be read at DATA.

3. Set OE to “1”.
152 ATmega163(L)
1142E–AVR–02/03

External Clock Drive

Note: R should be in the range 3kΩ - 100kΩ, and C should be at least 20pF. The C values
given in the table includes pin capacitance. This will vary with package type.

Table 63. External Clock Drive

Symbol Parameter

VCC = 2.7V to 5.5V VCC = 4.0V to 5.5V

UnitsMin Max Min Max

1/tCLCL Oscillator Frequency 0 4 0 8 MHz

tCLCL Clock Period 250 125 ns

tCHCX High Time 100 50 ns

tCLCX Low Time 100 50 ns

tCLCH Rise Time 1.6 0.5 µs

tCHCL Fall Time 1.6 0.5 µs

Table 64. External RC Oscillator, typical frequencies

R [kΩ] C [pF] f

100 70 100 kHz

31.5 20 1.0 MHz

6.5 20 4.0 MHz
162 ATmega163(L)
1142E–AVR–02/03

ATmega163(L)
Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

2. Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on
all bits in the I/O Register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions
work with registers $00 to $1F only.

$00 ($20) TWBR Two-wire Serial Interface Bit Rate Register 82

Register Summary (Continued)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
173
1142E–AVR–02/03

