
Microchip Technology - ATMEGA163L-4AC Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 4MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 32

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature 0°C ~ 70°C

Mounting Type Surface Mount

Package / Case 44-TQFP

Supplier Device Package 44-TQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega163l-4ac

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega163l-4ac-4425607
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

cycle. The resulting architecture is more code efficient while achieving throughputs up to
ten times faster than conventional CISC microcontrollers.

The ATmega163 provides the following features: 16K bytes of In-System Self-Program-
mable Flash, 512 bytes EEPROM, 1024 bytes SRAM, 32 general purpose I/O lines, 32
general purpose working registers, three flexible Timer/Counters with compare modes,
internal and external interrupts, a byte oriented Two-wire Serial Interface, an 8-channel,
10-bit ADC, a programmable Watchdog Timer with internal Oscillator, a programmable
serial UART, an SPI serial port, and four software selectable power saving modes. The
Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and inter-
rupt system to continue functioning. The Power-down mode saves the register contents
but freezes the Oscillator, disabling all other chip functions until the next interrupt or
Hardware Reset. In Power-save mode, the asynchronous Timer Oscillator continues to
run, allowing the user to maintain a timer base while the rest of the device is sleeping.
The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchro-
nous timer and ADC, to minimize switching noise during ADC conversions.

The On-chip ISP Flash can be programmed through an SPI serial interface or a conven-
tional programmer. By installing a Self-Programming Boot Loader, the microcontroller
can be updated within the application without any external components. The Boot Pro-
gram can use any interface to download the application program in the Application Flash
memory. By combining an 8-bit CPU with In-System Self-Programmable Flash on a
monolithic chip, the Atmel ATmega163 is a powerful microcontroller that provides a
highly flexible and cost effective solution to many embedded control applications.

The ATmega163 AVR is supported with a full suite of program and system development
tools including: C compilers, macro assemblers, program debugger/simulators, In-Cir-
cuit Emulators, and evaluation kits.

Pin Descriptions

VCC Digital supply voltage.

GND Digital ground.

Port A (PA7..PA0) Port A serves as the analog inputs to the A/D Converter.

Port A also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used.
Port pins can provide internal pull-up resistors (selected for each bit). The Port A output
buffers can sink 20mA and can drive LED displays directly. When pins PA0 to PA7 are
used as inputs and are externally pulled low, they will source current if the internal pull-
up resistors are activated. The Port A pins are tristated when a reset condition becomes
active, even if the clock is not running.

Port B (PB7..PB0) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port B output buffers can sink 20 mA. As inputs, Port B pins that are externally
pulled low will source current if the pull-up resistors are activated. Port B also serves the
functions of various special features of the ATmega83/163 as listed on page 117. The
Port B pins are tristated when a reset condition becomes active, even if the clock is not
running.

Port C (PC7..PC0) Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port C output buffers can sink 20 mA. As inputs, Port C pins that are externally
pulled low will source current if the pull-up resistors are activated. The Port C pins are
tristated when a reset condition becomes active, even if the clock is not running.
4 ATmega163(L)
1142E–AVR–02/03

Note: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader
address at reset, see “Boot Loader Support” on page 134.

The most typical and general program setup for the Reset and Interrupt Vector
Addresses in ATmega163 is:

Address Labels Code Comments

$000 jmp RESET ; Reset Handler

$002 jmp EXT_INT0 ; IRQ0 Handler

$004 jmp EXT_INT1 ; IRQ1 Handler

$006 jmp TIM2_COMP ; Timer2 Compare Handler

$008 jmp TIM2_OVF ; Timer2 Overflow Handler

$00a jmp TIM1_CAPT ; Timer1 Capture Handler

$00c jmp TIM1_COMPA ; Timer1 Compare A Handler

$00e jmp TIM1_COMPB ; Timer1 Compare B Handler

$010 jmp TIM1_OVF ; Timer1 Overflow Handler

$012 jmp TIM0_OVF ; Timer0 Overflow Handler

$014 jmp SPI_STC ; SPI Transfer Complete Handler

$016 jmp UART_RXC ; UART RX Complete Handler

$018 jmp UART_DRE ; UDR Empty Handler

$01a jmp UART_TXC ; UART TX Complete Handler

$01c jmp ADC ; ADC Conversion Complete Interrupt Handler

$01e jmp EE_RDY ; EEPROM Ready Handler

$020 jmp ANA_COMP ; Analog Comparator Handler

$022 jmp TWI ; Two-wire Serial Interface Interrupt Handler

;

$024 MAIN: ldi r16,high(RAMEND) ; Main program start

$025 out SPH,r16 ; Set stack pointer to top of RAM

$026 ldi r16,low(RAMEND)

$027 out SPL,r16

...

13 $018 UART, UDRE UART Data Register Empty

14 $01A UART, TXC UART, Tx Complete

15 $01C ADC ADC Conversion Complete

16 $01E EE_RDY EEPROM Ready

17 $020 ANA_COMP Analog Comparator

18 $022 TWI Two-wire Serial Interface

Table 3. Reset and Interrupt Vectors (Continued)

Vector No.
Program
Address Source Interrupt Definition
22 ATmega163(L)
1142E–AVR–02/03

ATmega163(L)
Timer/Counter2 Overflow Interrupt is executed. In up/down PWM mode, this bit is set
when Timer/Counter2 changes counting direction at $00.

• Bit 5 – ICF1: Input Capture Flag1

The ICF1 bit is set (one) to Flag an Input Capture Event, indicating that the
Timer/Counter1 value has been transferred to the Input Capture Register – ICR1. ICF1
is cleared by hardware when executing the corresponding Interrupt Handling Vector.
Alternatively, ICF1 is cleared by writing a logic one to the flag.

• Bit 4 – OCF1A: Output Compare Flag 1A

The OCF1A bit is set (one) when a Compare Match occurs between the Timer/Counter1
and the data in OCR1A – Output Compare Register 1A. OCF1A is cleared by hardware
when executing the corresponding Interrupt Handling Vector. Alternatively, OCF1A is
cleared by writing a logic one to the flag. When the I-bit in SREG, and OCIE1A
(Timer/Counter1 Compare Match Interrupt A Enable), and the OCF1A are set (one), the
Timer/Counter1A Compare Match Interrupt is executed.

• Bit 3 – OCF1B: Output Compare Flag 1B

The OCF1B bit is set (one) when a Compare Match occurs between the Timer/Counter1
and the data in OCR1B – Output Compare Register 1B. OCF1B is cleared by hardware
when executing the corresponding Interrupt Handling Vector. Alternatively, OCF1B is
cleared by writing a logic one to the flag. When the I-bit in SREG, and OCIE1B
(Timer/Counter1 Compare Match Interrupt B Enable), and the OCF1B are set (one), the
Timer/Counter1B Compare Match Interrupt is executed.

• Bit 2 – TOV1: Timer/Counter1 Overflow Flag

The TOV1 is set (one) when an overflow occurs in Timer/Counter1. TOV1 is cleared by
hardware when executing the corresponding Interrupt Handling Vector. Alternatively,
TOV1 is cleared by writing a logic one to the flag. When the I-bit in SREG, and TOIE1
(Timer/Counter1 Overf low Interrupt Enable), and TOV1 are set (one), the
Timer/Counter1 Overflow Interrupt is executed. In up/down PWM mode, this bit is set
when Timer/Counter1 changes counting direction at $0000.

• Bit 1 – Res: Reserved Bit

This bit is a reserved bit in the ATmega163 and the read value is undefined.

• Bit 0 – TOV0: Timer/Counter0 Overflow Flag

The bit TOV0 is set (one) when an overflow occurs in Timer/Counter0. TOV0 is cleared
by hardware when executing the corresponding Interrupt Handling Vector. Alternatively,
TOV0 is cleared by writing a logic one to the flag. When the SREG I-bit, and TOIE0
(Timer/Counter0 Overf low Interrupt Enable), and TOV0 are set (one), the
Timer/Counter0 Overflow interrupt is executed.

External Interrupts The external interrupts are triggered by the INT0 and INT1 pins. Observe that, if
enabled, the interrupts will trigger even if the INT0/INT1 pins are configured as outputs.
This feature provides a way of generating a software interrupt. The external interrupts
can be triggered by a falling or rising edge or a low level. This is set up as indicated in
the specification for the MCU Control Register – MCUCR. When the external interrupt is
enabled and is configured as level triggered, the interrupt will trigger as long as the pin is
held low.
33
1142E–AVR–02/03

set), the 9th bit is one for an address byte and zero for a data byte, whereas the stop bit
is always high.

The following procedure should be used to exchange data in Multi-Processor Communi-
cation mode:

1. All Slave MCUs are in Multi-Processor Communication mode (MPCM in UCSRA
is set).

2. The Master MCU sends an address byte, and all slaves receive and read this
byte. In the Slave MCUs, the RXC Flag in UCSRA will be set as normal.

3. Each Slave MCU reads the UDR Register and determines if it has been
selected. If so, it clears the MPCM bit in UCSRA, otherwise it waits for the next
address byte.

4. For each received data byte, the receiving MCU will set the Receive Complete
Flag (RXC in UCSRA). In 8-bit mode, the receiving MCU will also generate a
Framing Error (FE in UCSRA set), since the stop bit is zero. The other slave
MCUs, which still have the MPCM bit set, will ignore the data byte. In this case,
the UDR Register and the RXC or FE Flags will not be affected.

5. After the last byte has been transferred, the process repeats from step 2.

UART Control

UART I/O Data Register – UDR

The UDR Register is actually two physically separate registers sharing the same I/O
address. When writing to the register, the UART Transmit Data Register is written.
When reading from UDR, the UART Receive Data Register is read.

UART Control and Status
Register A – UCSRA

• Bit 7 – RXC: UART Receive Complete

This bit is set (one) when a received character is transferred from the Receiver Shift
Register to UDR. The bit is set regardless of any detected framing errors. When the
RXCIE bit in UCR is set, the UART Receive Complete interrupt will be executed when
RXC is set(one). RXC is cleared by reading UDR. When interrupt-driven data reception
is used, the UART Receive Complete Interrupt routine must read UDR in order to clear
RXC, otherwise a new interrupt will occur once the interrupt routine terminates.

• Bit 6 – TXC: UART Transmit Complete

This bit is set (one) when the entire character (including the stop bit) in the Transmit
Shift Register has been shifted out and no new data has been written to UDR. This Flag
is especially useful in half-duplex communications interfaces, where a transmitting appli-
cation must enter receive mode and free the communications bus immediately after
completing the transmission.

Bit 7 6 5 4 3 2 1 0

$0C ($2C) MSB LSB UDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$0B ($2B) RXC TXC UDRE FE OR – U2X MPCM UCSRA

Read/Write r R/W R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
74 ATmega163(L)
1142E–AVR–02/03

ATmega163(L)
number of samples are reduced, and the system clock might have some variance (this
applies especially when using resonators), it is recommended that the baud rate error is
less than 0.5%.

Table 28. UBR Settings at Various Crystal Frequencies in Double Speed Mode

1.0000 MHz % Error 1.8432 MHz % Error 2.0000 MHz % Error

UBR = 51 0.2 UBR = 95 0.0 UBR = 103 0.2

UBR = 25 0.2 UBR = 47 0.0 UBR = 51 0.2

UBR = 12 0.2 UBR = 23 0.0 UBR = 25 0.2

UBR = 8 3.7 UBR = 15 0.0 UBR = 16 2.1

UBR = 6 7.5 UBR = 11 0.0 UBR = 12 0.2

UBR = 3 7.8 UBR = 7 0.0 UBR = 8 3.7

UBR = 2 7.8 UBR = 5 0.0 UBR = 6 7.5

UBR = 1 7.8 UBR = 3 0.0 UBR = 3 7.8

UBR = 1 22.9 UBR = 2 0.0 UBR = 2 7.8

UBR = 0 84.3 UBR = 1 0.0 UBR = 1 7.8

- - UBR = 0 0.0 - -

3.2768 MHz % Error 3.6864 MHz % Error 4.0000 MHz % Error

UBR = 170 0.2 UBR = 191 0.0 UBR = 207 0.2

UBR = 84 0.4 UBR = 95 0.0 UBR = 103 0.2

UBR = 42 0.8 UBR = 47 0.0 UBR = 51 0.2

UBR = 27 1.6 UBR = 31 0.0 UBR = 34 0.8

UBR = 20 1.6 UBR = 23 0.0 UBR = 25 0.2

UBR = 13 1.6 UBR = 15 0.0 UBR = 16 2.1

UBR = 10 3.1 UBR = 11 0.0 UBR = 12 0.2

UBR = 6 1.6 UBR = 7 0.0 UBR = 8 3.7

UBR = 4 6.2 UBR = 5 0.0 UBR = 6 7.5

UBR = 3 12.5 UBR = 3 0.0 UBR = 3 7.8

UBR = 1 12.5 UBR = 1 0.0 UBR = 1 7.8

UBR = 0 12.5 UBR = 0 0.0 UBR = 0 7.8

7.3728 MHz % Error 8.0000 MHz % Error

UBR = 383 0.0 UBR = 416 0.1

UBR = 191 0.0 UBR = 207 0.2

UBR = 95 0.0 UBR = 103 0.2

UBR = 63 0.0 UBR = 68 0.6

UBR = 47 0.0 UBR = 51 0.2

UBR = 31 0.0 UBR = 34 0.8

UBR = 23 0.0 UBR = 25 0.2

UBR = 15 0.0 UBR = 16 2.1

UBR = 11 0.0 UBR = 12 0.2

UBR = 7 0.0 UBR = 8 3.7

UBR = 3 0.0 UBR = 3 7.8

UBR = 1 0.0 UBR = 1 7.8

UBR = 0 0.0 UBR = 0 7.8
79
1142E–AVR–02/03

Two-wire Serial
Interface (Byte
Oriented)

The Two-wire Serial Interface supports bi-directional serial communication. It is
designed primarily for simple but efficient integrated circuit (IC) control. The system is
comprised of two lines, SCL (Serial Clock) and SDA (Serial Data) that carry information
between the ICs connected to them. Various communication configurations can be
designed using this bus. Figure 49 shows a typical Two-wire Serial Bus configuration.
Any device connected to the bus can be master or slave. Note that all AVR devices con-
nected to the bus must be powered to allow any bus operation.

Figure 49. Two-wire Serial Bus Configuration

The Two-wire Serial Interface supports Master/Slave and Transmitter/Receiver opera-
tion at up to 217 kHz bus clock rate. The Two-wire Serial Interface has hardware
support for 7-bit addressing, but is easily extended to, e.g., a 10-bit addressing format in
software. When the Two-wire Serial Interface is enabled (TWEN in TWCR is set), a
glitch filter is enabled for the input signals from the pins PC0 (SCL) and PC1 (SDA), and
the output from these pins is slew-rate controlled. The Two-wire Serial Interface is byte
oriented. The operation of the Two-wire Serial Bus is shown as a pulse diagram in Fig-
ure 50, including the START and STOP conditions and generation of ACK signal by the
bus receiver.

Figure 50. Two-wire Serial Bus Timing Diagram

The block diagram of the Two-wire Serial Interface is shown in Figure 51.

Device 1 Device 2 Device 3 Device n.......

V
CC

R1 R2

SCL

SDA

SDA

SCL

MSB R/W
BIT

STOP CONDITION

START
CONDITION

REPEATED START
CONDITION

1 2 7 8 9 1 2 8 9
ACK ACK

ACKNOWLEDGE
FROM RECEIVER
80 ATmega163(L)
1142E–AVR–02/03

• Bit 0 – TWIE: Two-wire Serial Interface Interrupt Enable

When this bit is enabled, and the I-bit in SREG is set, the Two-wire Serial Interface inter-
rupt will be activated for as long as the TWINT Flag is high.

The TWCR is used to control the operation of the Two-wire Serial Interface. It is used to
enable the Two-wire Serial Interface, to initiate a Master access by applying a START
condition to the bus, to generate a receiver acknowledge, to generate a stop condition,
and to control halting of the bus while the data to be written to the bus are written to the
TWDR. It also indicates a write collision if data is attempted written to TWDR while the
register is inaccessible.

The Two-wire Serial Interface
Status Register – TWSR

• Bits 7..3 – TWS: Two-wire Serial Interface Status

These five bits reflect the status of the Two-wire Serial Interface logic and the Two-wire
Serial Bus.

• Bits 2..0 – Res: Reserved bits

These bits are reserved in ATmega163 and will always read as zero

The TWSR is read only. It contains a status code which reflects the status of the Two-
wire Serial Interface logic and the Two-wire Serial Bus. There are 26 possible status
codes. When TWSR contains $F8, no relevant state information is available and no
Two-wire Serial Interface interrupt is requested. A valid status code is available in
TWSR one CPU clock cycle after the Two-wire Serial Interface Interrupt Flag (TWINT) is
set by hardware and is valid until one CPU clock cycle after TWINT is cleared by soft-
ware. Table 32 to Table 36 give the status information for the various modes.

The Two-wire Serial Interface
Data Register – TWDR

• Bits 7..0 – TWD: Two-wire Serial Interface Data Register

These eight bits constitute the next data byte to be transmitted, or the latest data byte
received on the Two-wire Serial Bus.

In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode, the
TWDR contains the last byte received. It is writeable while the Two-wire Serial Interface
is not in the process of shifting a byte. This occurs when the Two-wire Serial Interface
Interrupt Flag (TWINT) is set by hardware. Note that the Data Register cannot be initial-
ized by the user before the first interrupt occurs. The data in TWDR remain stable as
long as TWINT is set. While data is shifted out, data on the bus is simultaneously shifted
in. TWDR always contains the last byte present on the bus, except after a wake up from
ADC Noise Reduction mode, Power-down mode, or Power-save mode by the Two-wire
Serial Interface interrupt. For example, in the case of a lost bus arbitration, no data is
lost in the transition from Master to Slave. Handling of the ACK Flag is controlled auto-
matically by the Two-wire Serial Interface logic, the CPU cannot access the ACK bit
directly.

Bit 7 6 5 4 3 2 1 0

$01 ($21) TWS7 TWS6 TWS5 TWS4 TWS3 – – – TWSR

Read/Write R R R R R R R R

Initial Value 1 1 1 1 1 0 0 0

Bit 7 6 5 4 3 2 1 0

$03 ($23) TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWD0 TWDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1
84 ATmega163(L)
1142E–AVR–02/03

ATmega163(L)
Assembly Code Example –
Master Receiver Mode

;Part specific include file and TWI include file must be included.

; <Initialize registers TWAR and TWBR>

ldi r16, (1<<TWINT) | (1<<TWSTA) | (1<<TWEN)

out TWCR, r16 ;Send START condition

wait5:in r16,TWCR ; Wait for TWINT flag set. This indicates that

sbrs r16, TWINT ; the START condition has been transmitted

rjmp wait5

in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, START ; different from START, go to ERROR

brne ERROR

ldi r16, 0xc9 ; Load SLA+R into TWDR Register

out TWDR, r16

ldi r16, (1<<TWINT) | (1<<TWEN)

out TWCR, r16 ; Clear TWINT bit in TWCR to start transmission of
; SLA+R

wait6:in r16,TWCR ; Wait for TWINT flag set. This indicates that

sbrs r16, TWINT ; SLA+R has been transmitted, and ACK/NACK has

rjmp wait6 ; been received

in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, MR_SLA_ACK; different from MR_SLA_ACK, go to ERROR

brne ERROR

ldi r16, (1<<TWINT) | (1<<TWEA) | (1<<TWEN)

out TWCR, r16 ; Clear TWINT bit in TWCR to start reception of
; data.
; Setting TWEA causes ACK to be returned after
; reception of data byte

wait7:in r16,TWCR ; Wait for TWINT flag set. This indicates that

sbrs r16, TWINT ; data has been received and ACK returned

rjmp wait7

in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, MR_DATA_ACK ; different from MR_DATA_ACK, go to ERROR

brne ERROR

in r16, TWDR ; Input received data from TWDR.

nop ;<do something with received data>

ldi r16, (1<<TWINT) | (1<<TWEA) | (1<<TWEN)

out TWCR, r16 ; Clear TWINT bit in TWCR to start reception of
; data. Setting TWEA causes ACK to be returned
; after reception of data byte

;<Receive more data bytes if needed>

;receive next to last data byte.

wait8:in r16,TWCR ; Wait for TWINT flag set. This indicates that
93
1142E–AVR–02/03

Figure 55. Formats and States in the Slave Transmitter Mode

Table 35. Status Codes for Slave Transmitter Mode

Status Code
(TWSR)

Status of the Two-wire Serial Bus
and Two-wire Serial Interface
hardware

Application Software Response

Next Action Taken by Two-wire Serial Interface Hard-
ware

To/from TWDR
To TWCR

STA STO TWINT TWEA

$A8 Own SLA+R has been received;
ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

$B0 Arbitration lost in SLA+R/W as
master; own SLA+R has been
received; ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

$B8 Data byte in TWDR has been
transmitted; ACK has been
received

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

$C0 Data byte in TWDR has been
transmitted; NOT ACK has been
received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

$C8 Last data byte in TWDR has been
transmitted (TWEA = “0”); ACK
has been received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

S SLA R A DATA A

$A8 $B8

A

$B0

Reception of the Own
Slave Address and One or
More Data Bytes

Last Data Byte Transmitted.
Switched to not Addressed
Slave (TWEA = "0")

Arbitration Lost as Master
and Addressed as Slave

n

From Master to Slave

From Slave to Master

Any Number of Data Bytes
and their Associated Acknowledge Bits

This Number (Contained in TWSR) Corresponds
to a Defined State of the Two-wire Serial Bus

P or SDATA

$C0

DATA A

A

$C8

P or SAll 1's

A

98 ATmega163(L)
1142E–AVR–02/03

; be received after data byte Master signalling end
; of transmission)

wait17:in r16,TWCR ; Wait for TWINT flag set. This indicates that

sbrs r16, TWINT ; data has been transmitted, and ACK/NACK has

rjmp wait17 ; been received

in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, ST_LAST_DATA ; different from ST_LAST_DATA, go to ERROR

brne ERROR

ldi r16, (1<<TWINT) | (1<<TWEA) | (1<<TWEN)

out TWCR, r16 ; Continue address reckognition in Slave
Transmitter mode

TWI Include File ;***** General Master staus codes *****

.equ START =$08 ;START has been
transmitted

.equ REP_START =$10 ;Repeated START has been
transmitted

;***** Master Transmitter staus codes *****

.equ MT_SLA_ACK =$18 ;SLA+W has been tramsmitted and ACK received

.equ MT_SLA_NACK =$20 ;SLA+W has been tramsmitted and NACK received

.equ MT_DATA_ACK =$28 ;Data byte has been tramsmitted and ACK
;received

.equ MT_DATA_NACK =$30 ;Data byte has been tramsmitted and NACK
received

.equ MT_ARB_LOST =$38 ;Arbitration lost in SLA+W or data bytes

;***** Master Receiver staus codes *****

.equ MR_ARB_LOST =$38 ;Arbitration lost in SLA+R or NACK bit

.equ MR_SLA_ACK =$40 ;SLA+R has been tramsmitted and ACK received

.equ MR_SLA_NACK =$48 ;SLA+R has been tramsmitted and NACK received

.equ MR_DATA_ACK =$50 ;Data byte has been received and ACK returned

.equ MR_DATA_NACK =$58 ;Data byte has been received and NACK
; tramsmitted

;***** Slave Transmitter staus codes *****

.equ ST_SLA_ACK =$A8 ;Own SLA+R has been received and ACK returned

.equ ST_ARB_LOST_SLA_ACK=$B0;Arbitration lost in SLA+R/W as Master. Own
; SLA+W has been received and ACK returned

.equ ST_DATA_ACK =$B8 ;Data byte has been tramsmitted and ACK
;received

Table 36. Status Codes for Miscellaneous States

Status Code
(TWSR)

Status of the Two-wire Serial
Bus and Two-wire Serial Inter-
face hardware

Application Software Response

Next Action Taken by Two-wire Serial Interface Hard-
ware

To/from TWDR To TWCR

STA STO TWINT TWEA

$F8 No relevant state information
available; TWINT = “0”

No TWDR action No TWCR action Wait or proceed current transfer

$00 Bus error due to an illegal
START or STOP condition

No TWDR action 0 1 1 X Only the internal hardware is affected, no STOP condi-
tion is sent on the bus. In all cases, the bus is released
and TWSTO is cleared.
100 ATmega163(L)
1142E–AVR–02/03

ATmega163(L)
Figure 61. ADC Timing Diagram, Free Run Conversion

ADC Noise Canceler
Function

The ADC features a Noise Canceler that enables conversion during ADC Noise Reduc-
tion mode (see “Sleep Modes” on page 35) to reduce noise induced from the CPU core
and other I/O peripherals. If other I/O peripherals must be active during conversion, this
mode works equivalently for Idle mode. To make use of this feature, the following proce-
dure should be used:

1. Make sure that the ADC is enabled and is not busy converting. Single Conver-
sion Mode must be selected and the ADC conversion complete interrupt must be
enabled.

ADEN = 1

ADSC = 0

ADFR = 0

ADIE = 1

2. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conver-
sion once the CPU has been halted.

3. If no other interrupts occur before the ADC conversion completes, the ADC inter-
rupt will wake up the CPU and execute the ADC Conversion Complete interrupt
routine.

Table 39. ADC Conversion Time

Condition

Sample & Hold (Cycles
from Start of
Conversion)

Conversion Time
(Cycles)

Conversion Time
(µs)

Extended Conversion 13.5 25 125 - 500

Normal Conversions 1.5 13 65 - 260

11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number
1 2

One Conversion Next Conversion

3 4

Conversion
Complete

Sample & Hold

MUX and REFS
Update
109
1142E–AVR–02/03

Port B As General Digital I/O All eight bits in Port B are equal when used as digital I/O pins. PBn, General I/O pin: The
DDBn bit in the DDRB Register selects the direction of this pin, if DDBn is set (one), PBn
is configured as an output pin. If DDBn is cleared (zero), PBn is configured as an input
pin. If PORTBn is set (one) when the pin configured as an input pin, the MOS pull up
resistor is activated. To switch the pull up resistor off, the PORTBn has to be cleared
(zero), the pin has to be configured as an output pin, or the PUD bit has to be set. The
Port B pins are tri-stated when a reset condition becomes active, even if the clock is not
running.

Note: 1. n: 7,6…0, pin number.

Alternate Functions Of
PORTB

The alternate pin configuration is as follows:

• SCK – PORTB, Bit 7

SCK: Master Clock output, Slave Clock input pin for SPI channel. When the SPI is
enabled as a Slave, this pin is configured as an input regardless of the setting of DDB7.
When the SPI is enabled as a Master, the data direction of this pin is controlled by
DDB7. When the pin is forced to be an input, the pull-up can still be controlled by the
PORTB7 bit. See the description of the SPI port for further details.

• MISO – PORTB, Bit 6

MISO: Master Data input, Slave Data output pin for SPI channel. When the SPI is
enabled as a Master, this pin is configured as an input regardless of the setting of
DDB6. When the SPI is enabled as a Slave, the data direction of this pin is controlled by
DDB6. When the pin is forced to be an input, the pull-up can still be controlled by the
PORTB6 bit. See the description of the SPI port for further details.

• MOSI – PORTB, Bit 5

MOSI: SPI Master Data output, Slave Data input for SPI channel. When the SPI is
enabled as a Slave, this pin is configured as an input regardless of the setting of DDB5.
When the SPI is enabled as a Master, the data direction of this pin is controlled by
DDB5. When the pin is forced to be an input, the pull-up can still be controlled by the
PORTB5 bit. See the description of the SPI port for further details.

• SS – PORTB, Bit 4

SS: Slave Port Select input. When the SPI is enabled as a Slave, this pin is configured
as an input regardless of the setting of DDB4. As a slave, the SPI is activated when this
pin is driven low. When the SPI is enabled as a Master, the data direction of this pin is
controlled by DDB4. When the pin is forced to be an input, the pull-up can still be con-
trolled by the PORTB4 bit. See the description of the SPI port for further details.

Table 46. DDBn Effects on Port B Pins(1)

DDBn PORTBn PUD I/O Pull Up Comment

0 0 x Input No Tri-state (Hi-Z)

0 1 1 Input No Tri-state (Hi-Z)

0 1 0 Input Yes PBn will source current if ext. pulled low.

1 0 x Output No Push-pull Zero Output

1 1 x Output No Push-pull One Output
118 ATmega163(L)
1142E–AVR–02/03

Figure 69. PORTB Schematic Diagram (Pin PB7)

D
A

TA
 B

U
S

D

D

Q

Q

RESET

RESET

C

C

WD

WP

RD

MOS
PULL-
UP

PB7

R

R

WP:
WD:
RL:
RP:
RD:
SPE:
MSTR

WRITE PORTB
WRITE DDRB
READ PORTB LATCH
READ PORTB PIN
READ DDRB
SPI ENABLE
MASTER SELECT

DDB7

PORTB7

SPE
MSTR

SPI ClLOCK
OUT

SPI CLOCK
IN

RL

RP

PUD

PUD: PULL-UP DISABLE
122 ATmega163(L)
1142E–AVR–02/03

Port D Port D is an 8 bit bi-directional I/O port with internal pull-up resistors.

Three I/O memory address locations are allocated for Port D, one each for the Data
Register – PORTD, $12($32), Data Direction Register – DDRD, $11($31) and the Port D
Input Pins – PIND, $10($30). The Port D Input Pins address is read only, while the Data
Register and the Data Direction Register are read/write.

The Port D output buffers can sink 20 mA. As inputs, Port D pins that are externally
pulled low will source current if the pull-up resistors are activated. Some Port D pins
have alternate functions as shown in Table 49.

The Port D Data Register –
PORTD

The Port D Data Direction
Register – DDRD

The Port D Input Pins Address
– PIND

The Port D Input Pins Address – PIND – is not a register, and this address enables
access to the physical value on each Port D pin. When reading PORTD, the PORTD
Data Latch is read, and when reading PIND, the logical values present on the pins are
read.

Table 49. Port D Pins Alternate Functions

Port Pin Alternate Function

PD0 RXD (UART Input Pin)

PD1 TXD (UART Output Pin)

PD2 INT0 (External Interrupt 0 Input)

PD3 INT1 (External Interrupt 1 Input)

PD4 OC1B (Timer/Counter1 Output CompareB Match Output)

PD5 OC1A (Timer/Counter1 Output CompareA Match Output)

PD6 ICP (Timer/Counter1 Input Capture Pin)

PD7 OC2 (Timer/Counter2 Output Compare Match Output)

Bit 7 6 5 4 3 2 1 0

$12 ($32) PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 PORTD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$11 ($31) DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 DDRD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$10 ($30) PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 PIND

Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
128 ATmega163(L)
1142E–AVR–02/03

Reading the Signature Bytes The algorithm for reading the Signature bytes is as follows (refer to Programming the
Flash for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. C: Load Address Low Byte ($00 - $02).

3. Set OE to “0”, and BS to “0”. The selected Signature byte can now be read at
DATA.

4. Set OE to “1”.

Reading the Calibration Byte The algorithm for reading the Calibration byte is as follows (refer to Programming the
Flash for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. C: Load Address Low Byte, $00.

Set OE to “0”, and BS1 to “1”. The Calibaration byte can now be read at DATA.

3. Set OE to “1”.
152 ATmega163(L)
1142E–AVR–02/03

Instruction Set Summary
Mnemonics Operands Description Operation Flags #Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS
ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1
ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1
ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2
SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1
SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1
SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1
SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1
SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2
AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1
ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1
OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1
ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1
EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1
COM Rd One’s Complement Rd ← $FF − Rd Z,C,N,V 1
NEG Rd Two’s Complement Rd ← $00 − Rd Z,C,N,V,H 1
SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1
CBR Rd,K Clear Bit(s) in Register Rd ← Rd • ($FF - K) Z,N,V 1
INC Rd Increment Rd ← Rd + 1 Z,N,V 1
DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1
TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1
CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1
SER Rd Set Register Rd ← $FF None 1
MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C 2
MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2
MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2
FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2
FMULS Rd, Rr Fractional Multiply Signed R1:R0 ← (Rd x Rr) << 1 Z,C 2
FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2
BRANCH INSTRUCTIONS
RJMP k Relative Jump PC ← PC + k + 1 None 2
IJMP Indirect Jump to (Z) PC ← Z None 2
JMP k Direct Jump PC ← k None 3
RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3
ICALL Indirect Call to (Z) PC ← Z None 3
CALL k Direct Subroutine Call PC ← k None 4
RET Subroutine Return PC ← STACK None 4
RETI Interrupt Return PC ← STACK I 4
CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1 / 2 / 3
CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1
CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1
CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1
SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1 / 2 / 3
SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1 / 2 / 3
SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1 / 2 / 3
SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1 / 2 / 3
BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1 / 2
BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1 / 2
BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1 / 2
BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1 / 2
BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1 / 2
BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1 / 2
BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1 / 2
BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1 / 2
BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1 / 2
BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1 / 2
BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1 / 2
BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1 / 2
BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1 / 2
BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1 / 2
BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1 / 2
BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1 / 2
BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1 / 2
BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1 / 2
174 ATmega163(L)
1142E–AVR–02/03

ATmega163(L)
BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1 / 2
BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None 1 / 2
DATA TRANSFER INSTRUCTIONS
MOV Rd, Rr Move Between Registers Rd ← Rr None 1
MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1
LDI Rd, K Load Immediate Rd ← K None 1
LD Rd, X Load Indirect Rd ← (X) None 2
LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2
LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2
LD Rd, Y Load Indirect Rd ← (Y) None 2
LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2
LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2
LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2
LD Rd, Z Load Indirect Rd ← (Z) None 2
LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2
LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2
LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2
LDS Rd, k Load Direct from SRAM Rd ← (k) None 2
ST X, Rr Store Indirect (X) ← Rr None 2
ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2
ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2
ST Y, Rr Store Indirect (Y) ← Rr None 2
ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2
ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2
STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2
ST Z, Rr Store Indirect (Z) ← Rr None 2
ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2
ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2
STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2
STS k, Rr Store Direct to SRAM (k) ← Rr None 2
LPM Load Program Memory R0 ← (Z) None 3
LPM Rd, Z Load Program Memory Rd ← (Z) None 3
LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3
SPM Store Program Memory (Z) ← R1:R0 None -
IN Rd, P In Port Rd ← P None 1
OUT P, Rr Out Port P ← Rr None 1
PUSH Rr Push Register on Stack STACK ← Rr None 2
POP Rd Pop Register from Stack Rd ← STACK None 2
BIT AND BIT-TEST INSTRUCTIONS
SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2
CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2
LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1
LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1
ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1
ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1
ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1
SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1
BSET s Flag Set SREG(s) ← 1 SREG(s) 1
BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1
BST Rr, b Bit Store from Register to T T ← Rr(b) T 1
BLD Rd, b Bit load from T to Register Rd(b) ← T None 1
SEC Set Carry C ← 1 C 1
CLC Clear Carry C ← 0 C 1
SEN Set Negative Flag N ← 1 N 1
CLN Clear Negative Flag N ← 0 N 1
SEZ Set Zero Flag Z ← 1 Z 1
CLZ Clear Zero Flag Z ← 0 Z 1
SEI Global Interrupt Enable I ← 1 I 1
CLI Global Interrupt Disable I ← 0 I 1
SES Set Signed Test Flag S ← 1 S 1
CLS Clear Signed Test Flag S ← 0 S 1
SEV Set Twos Complement Overflow. V ← 1 V 1
CLV Clear Twos Complement Overflow V ← 0 V 1
SET Set T in SREG T ← 1 T 1
CLT Clear T in SREG T ← 0 T 1
SEH Set Half Carry Flag in SREG H ← 1 H 1

Instruction Set Summary (Continued)
175
1142E–AVR–02/03

Erratas

ATmega163(L) Errata
Rev. F

• Increased Interrupt Latency
• Interrupts Abort TWI Power-down
• TWI Master Does not Accept Spikes on Bus Lines
• TWCR Write Operations Ignored
• PWM not Phase Correct
• TWI is Speed Limited in Slave Mode

6. Increased Interrupt Latency

In this device, some instructions are not interruptable, and will cause the interrupt
latency to increase. The only practical problem concerns a loop followed by a two-
word instruction while waiting for an interrupt. The loop may consist of a branch
instruction or an absolute or relative jump back to itself like this:
loop: rjmp loop

<Two-word instruction>

In this case, a dead-lock situation arises.

Problem Fix/Workaround

In assembly, insert a nop instruction immediately after a loop to itself. The problem
will normally be detected during development. In C, the only construct that will give
this problem is an empty “for” loop; “for(;;)”. Use “while(1)” or “do{} while (1)” to avoid
the problem.

5. Interrupts Abort TWI Power-down

TWI Power-down operation may be aborted by other interrupts. If an interrupt (e.g.,
INT0) occurs during TWI Power-down address watch and wakes the CPU up, the
TWI aborts operation and returns to its idle state.

Problem Fix/Workaround

Ensure that the TWI Address Match is the only enabled interrupt when entering
Power-down.

4. TWI Master Does not Accept Spikes on Bus Lines

When the part operates as Master, and the bus is idle (SDA = 1; SCL = 1), generat-
ing a short spike on SDA (SDA = 0 for a short interval), no interrupt is generated,
and the status code is still $F8 (idle). But when the software initiates a new start
condition and clears TWINT, nothing happens on SDA or SCL, and TWINT is never
set again.

Problem Fix/Workaround

Either of the following:

1. Ensure that no spikes occur on SDA or SCL lines.

2. Receiving a valid START condition followed by a STOP condition provokes a
bus error reported as a TWI interrupt with status code $00.

3. In a Single Master systems, the user should write the TWSTO bit immedi-
ately before writing the TWSTA bit.

3. TWCR Write Operation Ignored

Repeated write to TWCR must be delayed. If a write operation to TWCR is immedi-
ately followed by another write operation to TWCR, the first write operation may be
ignored.
180 ATmega163(L)
1142E–AVR–02/03

ATmega163(L)
Problem Fix/Workaround

Ensure at least one instruction (e.g., nop) is executed between two writes to TWCR.

2. PWM not Phase Correct

In Phase-correct PWM mode, a change from OCRx = TOP to anything less than
TOP does not change the OCx output. This gives a phase error in the following
period.

Problem Fix/Workaround

Make sure this issue is not harmful to the application.

1. TWI is Speed Limited in Slave Mode

When the two-wire Serial Interface operates in Slave mode, frames may be unde-
tected if the CPU frequency is less than 64 times the bus frequency.

Problem Fix/Workaround

Ensure that the CPU frequency is at least 64 times the TWI bus frequency.
181
1142E–AVR–02/03

ATmega163(L)
Two-wire Serial Interface Characteristics 163

Typical Characteristics .. 165

Register Summary .. 172

Instruction Set Summary ... 174

Ordering Information.. 177

Packaging Information ... 178
44A ... 178
40P6 ... 179

Erratas ... 180
ATmega163(L) Errata Rev. F ... 180

Change Log... 182
Changes from Rev. 1142C-09/01 to Rev. 1142D-09/02................................... 182
Changes from Rev. 1142D-09/09 to Rev. 1142E-02/03 182

Table of Contents .. i
iii
1142E–AVR–02/03

