

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	AVR
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	32
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atmega163l-4pc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

In the different addressing modes these address registers have functions as fixed displacement, automatic increment and decrement (see the descriptions for the different instructions).

The ALU – Arithmetic Logic Unit The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers. Within a single clock cycle, ALU operations between registers in the Register File are executed. The ALU operations are divided into three main categories – arithmetic, logical, and bit-functions. ATmega163 also provides a powerful multiplier supporting both signed/unsigned multiplication and fractional format. See the Instruction Set section for a detailed description.

The In-System Self-
Programmable Flash
Program MemoryThe ATmega163 contains 16K bytes On-chip In-System Self-Programmable Flash
memory for program storage. Since all instructions are 16- or 32-bit words, the Flash is
organized as 8K x 16. The Flash Program memory space is divided in two sections,
Boot Program section and Application Program section.

The Flash memory has an endurance of at least 1,000 write/erase cycles. The ATmega163 Program Counter (PC) is 13 bits wide, thus addressing the 8,192 Program Memory locations. The operation of Boot Program section and associated Boot Lock bits for software protection are described in detail on page 134. See also page 154 for a detailed description on Flash data serial downloading.

Constant tables can be allocated within the entire Program Memory address space (see the LPM – Load Program Memory instruction description).

See also page 12 for the different Program Memory Addressing modes.

The SRAM Data Memory Figure 9 shows how the ATmega163 SRAM Memory is organized.

Figure 9. SRAM Organization

Relative Program Addressing, Figure 20. Relative Program Memory Addressing RJMP and RCALL

Program execution continues at address PC + k + 1. The relative address k is from -2,048 to 2,047.

The EEPROM DataThe ATmega163 contains 512 bytes of data EEPROM memory. It is organized as a sep-
arate data space, in which single bytes can be read and written. The EEPROM has an
endurance of at least 100,000 write/erase cycles. The access between the EEPROM
and the CPU is described on page 62 specifying the EEPROM Address Registers, the
EEPROM Data Register, and the EEPROM Control Register.

For the SPI data downloading, see page 154 for a detailed description.

Memory Access Times This section describes the general access timing concepts for instruction execution and internal memory access.

The AVR CPU is driven by the System Clock Ø, directly generated from the main Oscillator for the chip. No internal clock division is used.

Figure 21 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture and the fast-access Register File concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost, functions per clocks, and functions per power-unit.

Figure 21. The Parallel Instruction Fetches and Instruction Executions

Figure 22 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using two register operands is executed, and the result is stored back to the destination register.

Execution Timing

The Stack Pointer – SP

The ATmega163 Stack Pointer is implemented as two 8-bit registers in the I/O space locations \$3E (\$5E) and \$3D (\$5D). As the ATmega163 data memory has \$460 locations, 11 bits are used.

Bit	15	14	13	12	11	10	9	8	
\$3E (\$5E)	-	-	-	-	-	SP10	SP9	SP8	SPH
\$3D (\$5D)	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	SPL
	7	6	5	4	3	2	1	0	•
Read/Write	R	R	R	R	R	R/W	R/W	R/W	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt Stacks are located. This Stack space in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to point above \$60. The Stack Pointer is decremented by one when data is pushed onto the Stack with the PUSH instruction, and it is decremented by two when the return address is pushed onto the Stack with subroutine call and interrupt. The Stack Pointer is incremented by one when data is popped from the Stack with the POP instruction, and it is incremented by two when data is popped from the Stack with return from subroutine RET or return from interrupt RETI.

Reset and InterruptThe ATmega163 provides 17 different interrupt sources. These interrupts and the separateHandlingThe ATmega163 provides 17 different interrupt sources. These interrupts and the separateBandlingReset Vector, each have a separateProgram Vector in the Program Memoryspace. All interrupts are assigned individual enable bits which must be set (one)together with the I-bit in the Status Register in order to enable the interrupt.

The lowest addresses in the Program Memory space are automatically defined as the Reset and Interrupt Vectors. The complete list of vectors is shown in Table 3. The list also determines the priority levels of the different interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and next is INTO – the External Interrupt Request 0, etc.

Vector No.	Program Address	Source	Interrupt Definition
1	\$000 ⁽¹⁾	RESET	External Pin, Power-on Reset, Brown-out Reset and Watchdog Reset
2	\$002	INT0	External Interrupt Request 0
3	\$004	INT1	External Interrupt Request 1
4	\$006	TIMER2 COMP	Timer/Counter2 Compare Match
5	\$008	TIMER2 OVF	Timer/Counter2 Overflow
6	\$00A	TIMER1 CAPT	Timer/Counter1 Capture Event
7	\$00C	TIMER1 COMPA	Timer/Counter1 Compare Match A
8	\$00E	TIMER1 COMPB	Timer/Counter1 Compare Match B
9	\$010	TIMER1 OVF	Timer/Counter1 Overflow
10	\$012	TIMER0 OVF	Timer/Counter0 Overflow
11	\$014	SPI, STC	Serial Transfer Complete
12	\$016	UART, RXC	UART, Rx Complete

Table 3. Reset and Interrupt Vectors

Figure 24. Reset Logic

Table 4. Reset Characteristics ($V_{CC} = 5.0V$)

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{POT}	Power-on Reset Threshold Voltage (rising)		1.0	1.4	1.8	V
	Power-on Reset Threshold Voltage (falling) ⁽¹⁾		0.4	0.6	0.8	V
V _{RST}	RESET Pin Threshold Voltage		_	_	0.85 V _{CC}	V
V	Brown-out Reset Threshold	(BODLEVEL = 1)	2.4	2.7	3.2	V
^v BOT	Voltage	(BODLEVEL = 0)	3.5	4.0	4.5	v

Notes: 1. The Power-on Reset will not work unless the supply voltage has been below V_{POT} (falling).

The hysteresis on V_{BOT} : $V_{BOT+} = V_{BOT} + 25 \text{ mV}$, $V_{BOT-} = V_{BOT} - 25 \text{ mV}$

Watchdog Reset

When the Watchdog times out, it will generate a short reset pulse of 1 XTAL cycle duration. On the falling edge of this pulse, the delay timer starts counting the Time-out Period t_{TOUT} . Refer to page 60 for details on operation of the Watchdog Timer.

MCU Status Register – MCUSR

The MCU Status Register provides information on which reset source caused an MCU Reset.

• Bits 7..4 - Res: Reserved Bits

These bits are reserved bits in the ATmega163 and always read as zero.

• Bit 3 – WDRF: Watchdog Reset Flag

This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by writing a logic zero to the Flag.

MCU Control Register – MCUCR

The MCU Control Register contains control bits for general MCU functions.

Bit	7	6	5	4	3	2	1	0	
\$35 (\$55)	-	SE	SM1	SM0	ISC11	ISC10	ISC01	ISC00	MCUCR
Read/Write	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-
Initial Value	0	0	0	0	0	0	0	0	

• Bit 7 – Res: Reserved Bit

This bit is a reserved bit in the ATmega163 and always reads as zero.

• Bit 6 – SE: Sleep Enable

The SE bit must be set (one) to make the MCU enter the sleep mode when the SLEEP instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmers purpose, it is recommended to set the Sleep Enable SE bit just before the execution of the SLEEP instruction.

• Bits 5, 4 – SM1/SM0: Sleep Mode Select Bits 1 and 0

These bits select between the three available sleep modes as shown in Table 7.

SM1	SM0	Sleep Mode
0	0	Idle
0	1	ADC Noise Reduction
1	0	Power-down
1	1	Power-save

 Table 7.
 Sleep Mode Select

• Bits 3, 2 – ISC11, ISC10: Interrupt Sense Control 1 Bit 1 and Bit 0

The External Interrupt 1 is activated by the external pin INT1 if the SREG I-Flag and the corresponding interrupt mask in the GIMSK are set. The level and edges on the external INT1 pin that activate the interrupt are defined in Table 8. The value on the INT1 pin is sampled before detecting edges. If edge or toggle interrupt is selected, pulses that last longer than one clock period will generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level interrupt is selected, the low level must be held until the completion of the currently executing instruction to generate an interrupt.

Table 8. Interrupt 1 Sense Control

ISC11	ISC10	Description
0	0	The low level of INT1 generates an interrupt request.
0	1	Any logical change on INT1 generates an interrupt request.
1	0	The falling edge of INT1 generates an interrupt request.
1	1	The rising edge of INT1 generates an interrupt request.

Calibrated Internal RC Oscillator

The calibrated internal Oscillator provides a fixed 1 MHz (nominal) clock at 5V and 25° C. This clock may be used as the system clock. See the section "Clock Options" on page 5 for information on how to select this clock as the system clock. This Oscillator can be calibrated by writing the calibration byte to the OSCCAL Register. When this Oscillator is used as the chip clock, the Watchdog Oscillator will still be used for the Watchdog Timer and for the Reset Time-out. At 5V and 25°C, the pre-programmed calibration byte gives a frequency within $\pm 1\%$ of the nominal frequency. For details on how to use the pre-programmed calibration value, see "Calibration Byte" on page 144.

Oscillator Calibration Register – OSCCAL

Bit	7	6	5	4	3	2	1	0
\$31 (\$51)	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0
Read/Write	R/W							
Initial Value	0	0	0	0	0	0	0	0

• Bits 7..0 – CAL7..0: Oscillator Calibration Value

Writing the calibration byte to this address will trim the internal Oscillator to remove process variations from the Oscillator frequency. When OSCCAL is zero, the lowest available frequency is chosen. Writing non-zero values to this register will increase the frequency of the internal Oscillator. Writing \$FF to the register gives the highest available frequency.

The calibrated Oscillator is used to time EEPROM and Flash access. If EEPROM or Flash is written, do not calibrate to more than 10% above the nominal frequency. Otherwise, the EEPROM or Flash write operation may fail. Note that the Oscillator is intended for calibration to 1.0MHz, thus tuning to other values is not guaranteed.

Table 10. Internal RC Oscillator Frequency Range.

OSCCAL Value	Min Frequency (MHz)	Max Frequency (MHz)
\$00	0.5	1.0
\$7F	0.7	1.5
\$FF	1.0	2.0

Special Function I/O Register – SFIOR

Bit	7	6	5	4	3	2	1	0	_
\$30 (\$50)	-	-	-	-	ACME	PUD	PSR2	PSR10	SFIOR
Read/Write	R	R	R	R	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

• Bit 7..4 - Res: Reserved Bits

These bits are reserved bits in the ATmega163 and always read as zero.

• Bit 3 – ACME: Analog Comparator Multiplexer Enable

When this bit is set (one) and the ADC is switched off (ADEN in ADCSR is zero), the ADC multiplexer selects the negative input to the Analog Comparator. When this bit is cleared (zero), AIN1 is applied to the negative input of the Analog Comparator. For a detailed description of this bit, see "Analog Comparator Multiplexed Input" on page 104.

clock period. The external clock signal is sampled on the rising edge of the internal CPU clock.

The 16-bit Timer/Counter1 features both a high resolution and a high accuracy usage with the lower prescaling opportunities. Similarly, the high prescaling opportunities makes the Timer/Counter1 useful for lower speed functions or exact timing functions with infrequent actions.

The Timer/Counter1 supports two Output Compare functions using the Output Compare Register 1 A and B (OCR1A and OCR1B) as the data sources to be compared to the Timer/Counter1 contents. The Output Compare functions includes optional clearing of the counter on Compare A Match, and actions on the Output Compare pins on both compare matches.

Timer/Counter1 can also be used as an 8-, 9-, or 10-bit Pulse Width Modulator (PWM). In this mode the counter and the OCR1A/OCR1B Registers serve as a dual glitch-free stand-alone PWM with centered pulses. Alternatively, the Timer/Counter1 can be configured to operate at twice the speed in PWM mode, but without centered pulses. Refer to page 48 for a detailed description of this function.

The Input Capture function of Timer/Counter1 provides a capture of the Timer/Counter1 contents to the Input Capture Register – ICR1, triggered by an external event on the Input Capture Pin – ICP. The actual capture event settings are defined by the Timer/Counter1 Control Register – TCCR1B. In addition, the Analog Comparator can be set to trigger the Input Capture. Refer to the section, "The Analog Comparator" on page 102, for details on this. The ICP pin logic is shown in Figure 34.

ACIC: COMPARATOR IC ENABLE ACO: COMPARATOR OUTPUT

If the noise canceler function is enabled, the actual trigger condition for the capture event is monitored over four samples, and all four must be equal to activate the Capture Flag.

ATmega163(L)

Assembly Code Example – ; Part specific include file and TWI include file must be included. **Slave Transmitter Mode** ; <Initialize registers, including TWAR, TWBR and TWCR> ldi r16, (1<<TWINT) | (1<<TWEA) | (1<<TWEN) out TWCR, r16 ; Enable TWI in Slave Transmitter Mode ; <Receive START condition and SLA+R> wait14:in r16,TWCR ; Wait for TWINT flag set. This indicates that sbrs r16, TWINT ; SLA+R has been received, and ACK/NACK has rjmp wait14 ; been returned r16, TWSR ; Check value of TWI Status Register. If status in r16, ST_SLA_ACK; different from ST_SLA_ACK, go to ERROR cpi brne ERROR ldi r16, 0x33 ; Load data (here, data = 0x33) into TWDR Register out TWDR, r16 r16, (1<<TWINT) | (1<<TWEA) | (1<<TWEN) ldi out TWCR, r16 ; Clear TWINT bit in TWCR to start transmission of ; data. Setting TWEA indicates that ACK should be ; received when transfer finished ; <Send more data bytes if needed> wait15: in r16,TWCR ; Wait for TWINT flag set. This indicates that r16, TWINT ; data has been transmitted, and ACK/NACK has sbrs wait15 ; been received rjmp in r16, TWSR ; Check value of TWI Status Register. If status r16, ST_DATA_ACK ; different from ST_DATA_ACK, go to ERROR cpi brne ERROR ldi r16, 0x44 ; Load data (here, data = 0x44) into TWDR Register TWDR, r16 out ldi r16, (1<<TWINT) | (1<<TWEA) | (1<<TWEN) TWCR, r16 ; Clear TWINT bit in TWCR to start transmission of out ; data. Setting TWEA indicates that ACK should be ; received when transfer finished wait16:in r16.TWCR ; Wait for TWINT flag set. This indicates that sbrs r16, TWINT ; data has been transmitted, and ACK/NACK has wait16 ; been received rjmp in r16, TWSR ; Check value of TWI Status Register. If status r16, ST_DATA_ACK ; different from ST_DATA_ACK, go to ERROR cpi brne ERROR ldi r16, 0x55 ; Load data (here, data = 0x55) into TWDR Register out TWDR, r16 1di r16, (1<<TWINT) | (1<<TWEN) TWCR, r16 ; Clear TWINT bit in TWCR to start transmission of out ; data. Not setting TWEA indicates that NACK should

ATmega163(L)

.equ	ST_DATA_NACK	=\$C0	;Data byte has been tramsmitted and NACK ;received
.equ	ST_LAST_DATA	=\$C8	;Last byte in I2DR has been transmitted (TWEA = ;'0'), ACK has been received
;****	Slave Receiver	staus c	odes ****
.equ	SR_SLA_ACK	=\$60	;SLA+R has been received and ACK returned
.equ	SR_ARB_LOST_SI	LA_ACK=\$0	68;Arbitration lost in SLA+R/W as Master. Own ;SLA+R has been received and ACK returned
.equ	SR_GCALL_ACK	=\$70	;Generall call has been received and ACK ;returned
.equ	SR_ARB_LOST_GO	CALL_ACK:	=\$78;Arbitration lost in SLA+R/W as Master. ;General Call has been received and ACK ;returned
.equ	SR_DATA_ACK	=\$80	;Previously addressed with own SLA+W. Data byte ;has been received and ACK returned
.equ	SR_DATA_NACK	=\$88	;Previously addressed with own SLA+W. Data byte ;has been received and NACK returned
.equ	SR_GCALL_DATA_	_ACK=\$90	Previously addressed with General Call.Data ;byte has been received and ACK returned
.equ	SR_GCALL_DATA_	_NACK=\$98	8;Previously addressed with General Call. Data ;byte has been received and NACK returned
.equ	SR_STOP	=\$A0	;A STOP condition or repeated START condition ;has been received while still addressed as a ;slave
;****	Miscellanous S	tates **	***
.equ	NO_INFO	=\$F8	;No relevant state information; TWINT = '0'
.equ	BUS_ERROR	=\$00	;Bus error due to illegal START or STOP ;condition

Analog Comparator Multiplexed Input

It is possible to select any of the PA7..0 (ADC7..0) pins to replace the negative input to the Analog Comparator. The ADC multiplexer is used to select this input, and consequently, the ADC must be switched off to utilize this feature. If the Analog Comparator Multiplexer Enable bit (ACME in SFIOR) is set (one) and the ADC is switched off (ADEN in ADCSR is zero), MUX2..0 in ADMUX select the input pin to replace the negative input to the Analog Comparator, as shown in Table 38. If ACME is cleared (zero) or ADEN is set (one), PB3 (AIN1) is applied to the negative input to the Analog Comparator.

ACME	ADEN	MUX20	Analog Comparator Negative Input
0	x	ххх	AIN1
1	1	ххх	AIN1
1	0	000	ADC0
1	0	001	ADC1
1	0	010	ADC2
1	0	011	ADC3
1	0	100	ADC4
1	0	101	ADC5
1	0	110	ADC6
1	0	111	ADC7

Table 38. Analog Comparator Multiplexed Input

Analog to Digital Converter

Feature List

- 10-bit Resolution
- 0.5 LSB Integral Non-linearity
- ±2 LSB Absolute Accuracy
- 65 260 µs Conversion Time
- Up to 15 kSPS at Maximum Resolution
- Up to 76 kSPS at 8-bit Resolution
- Eight Multiplexed Single Ended Input Channels
- Optional Left Adjustment for ADC Result Readout
- 0 V_{CC} ADC Input Voltage Range
- Selectable 2.56V ADC Reference Voltage
- Free Run or Single Conversion Mode
- Interrupt on ADC Conversion Complete
- Sleep Mode Noise Canceler

The ATmega163 features a 10-bit successive approximation ADC. The ADC is connected to an 8-channel Analog Multiplexer which allows each pin of Port A to be used as input for the ADC.

The ADC contains a Sample and Hold Amplifier which ensures that the input voltage to the ADC is held at a constant level during conversion. A block diagram of the ADC is shown in Figure 57.

The ADC has two separate analog supply voltage pins, AVCC and AGND. AGND must be connected to GND, and the voltage on AVCC must not differ more than ±0.3V from V_{CC} . See the paragraph ADC Noise Canceling Techniques on how to connect these pins.

Internal reference voltages of nominally 2.56V or AVCC are provided On-chip. The 2.56V reference may be externally decoupled at the AREF pin by a capacitor for better noise perfomance. See "Internal Voltage Reference" on page 29 for a description of the internal voltage reference.

The ADC Multiplexer Selection Register – ADMUX

Bit	7	6	5	4	3	2	1	0	
\$07 (\$27)	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0	ADMUX
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-
Initial Value	0	0	0	0	0	0	0	0	

• Bit 7, 6 - REFS1..0: Reference Selection Bits

These bits select the voltage reference for the ADC, as shown in Table 17. If these bits are changed during a conversion, the change will not go in effect until this conversion is complete (ADIF in ADCSR is set). The user should disregard the first conversion result after changing these bits to obtain maximum accuracy. The internal voltage reference options may not be used if an external reference voltage is being applied to the AREF pin.

Table 40. Voltage Reference Selections for ADC

REFS1	REFS0	Voltage Reference Selection
0	0	AREF, Internal Vref turned off
0	1	AVCC with external capacitor at AREF pin
1	0	Reserved
1	1	Internal 2.56V Voltage Reference with external capacitor at AREF pin

• Bit 5 – ADLAR: ADC Left Adjust Result

The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data Register. If ADLAR is cleared, the result is right adjusted. If ADLAR is set, the result is left adjusted. Changing the ADLAR bit will affect the ADC Data Register immediately, regardless of any ongoing conversions. For a complete description of this bit, see "The ADC Data Register – ADCL and ADCH" on page 112.

• Bits 4..0 – MUX4..MUX0: Analog Channel and Gain Selection Bits

The value of these bits selects which combination of analog inputs are connected to the ADC. See Table 41 for details. If these bits are changed during a conversion, the change will not go in effect until this conversion is complete (ADIF in ADCSR is set).

 Table 41. Input Channel Selections

MUX40	Single-ended Input
00000	ADC0
00001	ADC1
00010	ADC2
00011	ADC3
00100	ADC4
00101	ADC5
00110	ADC6
00111	ADC7

Port D

Port D is an 8 bit bi-directional I/O port with internal pull-up resistors.

Three I/O memory address locations are allocated for Port D, one each for the Data Register – PORTD, \$12(\$32), Data Direction Register – DDRD, \$11(\$31) and the Port D Input Pins – PIND, \$10(\$30). The Port D Input Pins address is read only, while the Data Register and the Data Direction Register are read/write.

The Port D output buffers can sink 20 mA. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. Some Port D pins have alternate functions as shown in Table 49.

Port Pin	Alternate Function
PD0	RXD (UART Input Pin)
PD1	TXD (UART Output Pin)
PD2	INT0 (External Interrupt 0 Input)
PD3	INT1 (External Interrupt 1 Input)
PD4	OC1B (Timer/Counter1 Output CompareB Match Output)
PD5	OC1A (Timer/Counter1 Output CompareA Match Output)
PD6	ICP (Timer/Counter1 Input Capture Pin)
PD7	OC2 (Timer/Counter2 Output Compare Match Output)

Table 49. Port D Pins Alternate Functions

Bit	7	6	5	4	3	2	1	0	
\$12 (\$32)	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	PORTD
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-
Initial Value	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
\$11 (\$31)	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	DDRD
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	_
\$10 (\$30)	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	PIND
Read/Write	R	R	R	R	R	R	R	R	
Initial Value	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
	Bit \$12 (\$32) Read/Write Initial Value Bit \$11 (\$31) Read/Write Initial Value Bit \$10 (\$30) Read/Write Initial Value	Bit7\$12 (\$32)PORTD7Read/WriteR/WInitial Value0Bit7\$11 (\$31)DDD7Read/WriteR/WInitial Value0Bit7\$10 (\$30)PIND7Read/WriteRInitial ValueN/A	Bit76\$12 (\$32)PORTD7PORTD6Read/WriteR/WR/WInitial Value00Bit76\$111 (\$31)DDD7DDD6Read/WriteR/WR/WInitial Value00Bit76\$10 (\$30)PIND7PIND6Read/WriteRRInitial ValueN/AN/A	Bit765\$12 (\$32)PORTD7PORTD6PORTD5Read/WriteR/WR/WR/WInitial Value000Bit765\$11 (\$31)DD7DD06DD05Read/WriteR/WR/WR/WInitial Value000Bit765\$10 (\$30)PIND7PIND6PIND5Read/WriteRRRInitial ValueN/AN/AN/A	Bit7654\$12 (\$32)PORTD7PORTD6PORTD5PORT04Read/WriteR/WR/WR/WR/WInitial Value0000Bit7654\$111 (\$31)DD7DD6DD5DD04Read/WriteR/WR/WR/WR/WInitial Value0000Bit7654\$110 (\$30)PIND7PIND6PIND5PIND4Read/WriteRRRRInitial ValueN/AN/AN/AN/A	Bit76543\$12 (\$32)PORTD7PORTD6PORTD5PORTD4PORTD3Read/WriteR/WR/WR/WR/WR/WR/WInitial Value00000Bit76543\$11 (\$31)DD7DD6DD5DD4DD3Read/WriteR/WR/WR/WR/WR/WInitial Value0000Bit76543\$10 (\$30)PIND7PIND6PIND5PIND4PIND3Read/WriteRRRRRInitial ValueN/AN/AN/AN/A	Bit765432\$12 (\$32)PORTD7PORTD6PORTD5PORTD4PORTD3PORTD2Read/WriteR/WR/WR/WR/WR/WR/WR/WInitial Value000000Bit765432\$111 (\$31)DD7DD6DD5DD4DD3DD2Read/WriteR/WR/WR/WR/WR/WR/WInitial Value00000Bit765432\$10 (\$30)RRRRRRRead/WriteRRRRRRInitial ValueN/AN/AN/AN/AN/A	Bit \$12 (\$32)7654321PORTD7PORTD6PORTD5PORTD4PORTD3PORTD2PORTD1Read/Write Initial ValueR/WR/WR/WR/WR/WR/WR/WR/WBit \$111 (\$31) Read/Write Initial Value7654321Bit \$111 (\$31) Read/Write Initial Value7654321Bit \$111 (\$31) Read/Write Initial Value7654321Bit \$111 (\$31) Read/Write Initial Value7654321Bit \$10 (\$30) Read/Write Initial Value7654321Bit \$10 (\$30) Read/Write Initial Value7654321Read/Write Initial Value7677711PIND5PIND4PIND3PIND2PIND111Read/Write Initial ValueRR	Bit 7 6 5 4 3 2 1 0 \$12 (\$32) PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 Read/Write R/W R/W

The Port D Input Pins Address – PIND – is not a register, and this address enables access to the physical value on each Port D pin. When reading PORTD, the PORTD Data Latch is read, and when reading PIND, the logical values present on the pins are read.

Perform a Page Write	To execute Page Write, set up the address in the Z-pointer, write "00101" to the five LSB in SPMCR and execute SPM within four clock cycles after writing SPMCR. The data in R1 and R0 is ignored. The page address must be written to Z13:Z7. During this operation, Z6:Z0 must be zero to ensure that the page is written correctly. It is recommended that the interrupts are disabled during the page write operation.
Consideration while Updating the Boot Loader Section	Special care must be taken if the user allows the Boot Loader section to be updated by leaving Boot Lock bit 11 unprogrammed. An accidental write to the Boot Loader itself can corrupt the entire Boot Loader, and further software updates might be impossible. If it is not necessary to change the Boot Loader software itself, it is recommended to program the Boot Lock Bit 11 to protect the Boot Loader software from any internal software changes.
Wait for SPM Instruction to Complete	Though the CPU is halted during Page Write, Page Erase or Lock bit write, for future compatibility, the user software must poll for SPM complete by reading the SPMCR Register and loop until the SPMEN bit is cleared after a programming operation. See "Assembly code example for a Boot Loader" on page 141 for a code example.
Instruction Word Read after Page Erase, Page Write, and Lock Bit Write	To ensure proper instruction pipelining after programming action (Page Erase, Page Write, or Lock bit write), the SPM instruction must be followed with the sequence (.dw \$FFFF - NOP) as shown below:
Avoid Reading the Application Section During Self- Programming	During Self-Programming (either Page Erase or Page Write), the user software should not read the application section. The user software itself must prevent addressing this section during the Self-Programming operations. This implies that interrupts must be disabled. Before addressing the application section after the programming is completed, for future compatibility, the user software must write "10001" to the five LSB in SPMCR and execute SPM within four clock cycles. Then the user software should verify that the ASB bit is cleared. See "Assembly code example for a Boot Loader" on page 141 for an example. Though the ASB and ASRE bits have no special function in this device, it is important for future code compatibility that they are treated as described above.
Boot Loader Lock Bits	 ATmega163 has two separate sets of Boot Lock bits which can be set independently. This gives the user a unique flexibility to select different levels of protection. The user can select: To protect the entire Flash from a software update by the MCU To only protect the Boot Loader Flash section from a software update by the MCU To only protect application Flash section from a software update by the MCU
	 Allowing software update in the entire Flash See Table and Table for further details. The Boot Lock bits can be set in software and in Serial or Parallel Programming mode, but they can only be cleared by a chip erase
	command.

sbrc	temp1,	SPMEN
rjmp	Wait_s	pm
ret		

Program and Data Memory Lock Bits

The ATmega163 provides six Lock bits which can be left unprogrammed ("1") or can be programmed ("0") to obtain the additional features listed in Table 55. The Lock bits can only be erased to "1" with the Chip Erase command.

Table 55. Lock Bit Protection Modes

Memory Lock Bits			
LB mode	LB1	LB2	Protection Type
1	1	1	No memory lock features enabled for Parallel and Serial Programming.
2	0	1	Further programming of the Flash and EEPROM is disabled in Parallel and Serial Programming mode. The Fuse bits are locked in both Serial and Parallel Programming mode. ⁽¹⁾
3	0	0	Further programming and verification of the Flash and EEPROM is disabled in Parallel and Serial Programming mode. The Fuse bits are locked in both Serial and Parallel Programming mode. ⁽¹⁾
BLB0 mode	BLB01	BLB02	
1	1	1	No restrictions for SPM, LPM accessing the Application section.
2	0	1	SPM is not allowed to write to the Application section.
3	0	0	SPM is not allowed to write to the Application section, and LPM executing from the Boot Loader section is not allowed to read from the Application section.
4	1	0	LPM executing from the Boot Loader section is not allowed to read from the Application section.
BLB1 mode	BLB11	BLB12	
1	1	1	No restrictions for SPM, LPM accessing the Boot Loader section.
2	0	1	SPM is not allowed to write to the Boot Loader section.
3	0	0	SPM is not allowed to write to the Boot Loader section, and LPM executing from the Application section is not allowed to read from the Boot Loader section. If code executed from the Boot Section, the interrupts are disabled when BLB12 is programmed.
4	1	0	LPM executing from the Application section is not allowed to read from the Boot Loader section. If code executed from the Boot Section, the interrupts are disabled when BLB12 is programmed.

Note: 1. Program the Fuse bits before programming the Lock bits.

Data Polling Flash When a page is being programmed into the Flash, reading an address location within the page being programmed will give the value \$FF. At the time the device is ready for a new page, the programmed value will read correctly. This is used to determine when the next page can be written. Note that the entire page is written simultaneously and any address within the page can be used for polling. Data polling of the Flash will not work for the value \$FF, so when programming this value, the user will have to wait for at least t_{WD_FLASH} before programming the next page. As a chip-erased device contains \$FF in all locations, programming of addresses that are meant to contain \$FF, can be skipped. See Table 60 for t_{WD_FLASH} value.

Data Polling EEPROM When a new byte has been written and is being programmed into EEPROM, reading the address location being programmed will give the value \$FF. At the time the device is ready for a new byte, the programmed value will read correctly. This is used to determine when the next byte can be written. This will not work for the value \$FF, but the user should have the following in mind: As a chip-erased device contains \$FF in all locations, programming of addresses that are meant to contain \$FF, can be skipped. This does not apply if the EEPROM is re-programmed without chip-erasing the device. In this case, data polling cannot be used for the value \$FF, and the user will have to wait at least t_{WD EEPROM} before programming the next byte. See Table 60 for t_{WD EEPROM} value.

Programming Times for Nonvolatile Memory The internal RC Oscillator is used to control programming time when programming or erasing Flash, EEPORM, Fuses, and Lock bits. During Parallel or Serial Programming, the device is in reset, and this Oscillator runs at its initial, uncalibrated frequency, which may vary from 0.5 MHz to 1.0 MHz. In software it is possible to calibrate this Oscillator to 1.0 MHz (see "Calibrated Internal RC Oscillator" on page 37). Consequently, programming times will be shorter and more accurate when Programming or erasing non-volatile memory from software, using SPM or the EEPROM interface. See Table 60 for a summary of programming times.

	Number of RC		Paralle Progra		
Operation	Symbol	Oscillator Cycles	2.7V	5.0V	Self- Programming ⁽¹⁾
Chip Erase	t _{WD_CE}	16K	32 ms	30 ms	17 ms
Flash Write ⁽³⁾	t _{WD_FLASH}	8K	16 ms	15 ms	8.5 ms
EEPROM Write ⁽²⁾	t _{WD_EEPROM}	2K	4 ms	3.8 ms	2.2 ms
Fuse/lock bit write	t _{WD_FUSE}	1K	2 ms	1.9 ms	1.1 ms

Table 60. Maximum Programming Times for Non-volatile Memory

Notes: 1. Includes variation over voltage and temperature after RC Oscillator has been calibrated to 1.0 MHz

2. Parallel EEPROM Programming takes 1K cycles

3. Per page

DC Characteristics (Continued)

Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{CC}		Active 4 MHz, V _{CC} = 3V (ATmega163L)			5.0	mA
	Power Supply Current	Active 8 MHz, V _{CC} = 5V (ATmega163)			15.0	mA
		Idle 4 MHz, V _{CC} = 3V (ATmega163L)			2.5	mA
		Idle 8 MHz, V _{CC} = 5V (ATmega163)			8	mA
	Power-down mode ⁽⁵⁾	WDT enabled, $V_{CC} = 3V$		9	15.0	μA
		WDT disabled, $V_{CC} = 3V$		<1	4.0	μA
V _{ACIO}	Analog Comparator Input Offset Voltage	$V_{CC} = 5V$ $V_{in} = V_{CC}/2$			40	mV
I _{ACLK}	Analog Comparator Input Leakage Current	$V_{CC} = 5V$ $V_{in} = V_{CC}/2$	-50		50	nA
t _{ACID}	Analog Comparator Initialization Delay	$V_{CC} = 2.7V$ $V_{CC} = 4.0V$		750 500		ns

 $T_A = -40^{\circ}C$ to $85^{\circ}C$, $V_{CC} = 2.7V$ to 5.5V (unless otherwise noted)

Notes: 1. "Max" means the highest value where the pin is guaranteed to be read as low

2. "Min" means the lowest value where the pin is guaranteed to be read as high

3. Although each I/O port can sink more than the test conditions (20 mA at Vcc = 5V, 10 mA at Vcc = 3V) under steady state conditions (non-transient), the following must be observed:

1] The sum of all $I_{\text{OL}},$ for all ports, should not exceed 200 mA.

2] The sum of all I_{OL}, for ports B0 - B7, D0 - D7 and XTAL2, should not exceed 100 mA.

3] The sum of all I_{OL}, for ports A0 - A7 and C0 - C7 should not exceed 100 mA.

If IOL exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition.

- 4. Although each I/O port can source more than the test conditions (3 mA at Vcc = 5V, 1.5 mA at Vcc = 3V) under steady state conditions (non-transient), the following must be observed:
 - 1] The sum of all $I_{\rm OH},$ for all ports, should not exceed 200 mA.
 - 2] The sum of all I_{OH} , for ports B0 B7, D0 D7 and XTAL2, should not exceed 100 mA.

3] The sum of all I_{OH}, for ports A0 - A7 and C0 - C7 should not exceed 100 mA.

If IOH exceeds the test condition, V_{OH} may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition.

5. Minimum V_{CC} for Power-down is 2.5V.

External Clock Drive Figure 89. External Clock Drive Waveforms

Instruction Set Summary (Continued)

BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC \leftarrow PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if $(1 = 0)$ then PC \leftarrow PC + k + 1	None	1/2
DATA TRANSFE		Branon in interrupt Bloablea		110110	./-
MOV	Rd Pr	Move Between Registers	Rd — Pr	None	1
MOV/W/	Rd, Ri	Copy Register Word		None	1
				None	1
	Ru, K		$RU \leftarrow K$	None	1
	Ra, X		$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Ra \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1, Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1, Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	RdZ	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$. Rd $\leftarrow (Z)$	None	2
LDD	Rd. Z+a	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
	Rd k	Load Direct from SRAM	$Rd \leftarrow (k)$	None	2
ST	X Rr	Store Indirect	$(X) \leftarrow Rr$	None	2
от ет		Store Indirect and Post Inc.	$(X) \leftarrow R(I)$	None	2
51 CT		Store Indirect and Pro Dec	$(X) \leftarrow (X), X \leftarrow X + 1$	None	2
91 97		Store indirect	$ \land \leftarrow \land \neg i, (\land) \leftarrow \land i $	None	2
01			$(1) \leftarrow KI$	None	2
SI	Y+, Rr	Store Indirect and Post-Inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect with Displacement	$(Y + q) \leftarrow Rr$	None	2
ST	Z, Rr	Store Indirect	$(Z) \leftarrow Rr$	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, (Z) $\leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect with Displacement	$(Z + q) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	$(k) \leftarrow Rr$	None	2
LPM		Load Program Memory	$R0 \leftarrow (Z)$	None	3
IPM	Rd Z	Load Program Memory	$Rd \leftarrow (Z)$	None	3
LPM	Rd Z+	Load Program Memory and Post-Inc	$\operatorname{Rd} \leftarrow (7) 7 \leftarrow 7+1$	None	3
SPM		Store Program Memory	$(Z) \leftarrow R1 \cdot R0$	None	-
	Rd P	In Port	$Pd \leftarrow P$	None	1
		Out Port		None	1
	Г, КІ Dr	Duck Degister en Steek		None	1
PUSH	RI	Push Register on Stack		None	2
PUP	KU	Pop Register from Stack	RU ~ STACK	None	2
BIT AND BIT-TES					_
SBI	P,b	Set Bit in I/O Register	$I/O(P,b) \leftarrow 1$	None	2
CBI	P,b	Clear Bit in I/O Register	$I/O(P,b) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	S	Flag Set	$SREG(s) \leftarrow 1$	SREG(s)	1
BCLR	S	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	Т	1
BLD	Rd. b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC	,	0-+ 0		C	1
		Set Carry	$\downarrow \downarrow \leftarrow \downarrow$		
010		Clear Carry		C C	1
SEN		Set Carry Clear Carry Set Negative Flag	$C \leftarrow 1$ $C \leftarrow 0$ $N \leftarrow 1$	C N	1
SEN		Set Carry Clear Carry Set Negative Flag	$C \leftarrow 1$ $C \leftarrow 0$ $N \leftarrow 1$ $N \leftarrow 0$	C N	1 1 1
SEN CLN		Set Carry Clear Carry Set Negative Flag Clear Negative Flag	$C \leftarrow 1$ $C \leftarrow 0$ $N \leftarrow 1$ $N \leftarrow 0$ $Z \leftarrow 1$	C N N	1 1 1
SEN CLN SEZ		Set Carry Clear Carry Set Negative Flag Clear Negative Flag Set Zero Flag	$C \leftarrow 0$ $N \leftarrow 1$ $N \leftarrow 0$ $Z \leftarrow 1$ $Z \leftarrow 0$	C N N Z	1 1 1 1
SEN CLN SEZ CLZ		Set Carry Clear Carry Set Negative Flag Clear Negative Flag Set Zero Flag Clear Zero Flag	$C \leftarrow 0$ $N \leftarrow 1$ $N \leftarrow 0$ $Z \leftarrow 1$ $Z \leftarrow 0$	C N N Z Z	1 1 1 1 1
SEN CLN SEZ CLZ SEI		Set Carry Clear Carry Set Negative Flag Clear Negative Flag Set Zero Flag Clear Zero Flag Global Interrupt Enable	$C \leftarrow 1$ $C \leftarrow 0$ $N \leftarrow 1$ $N \leftarrow 0$ $Z \leftarrow 1$ $Z \leftarrow 0$ $I \leftarrow 1$	C N N Z Z I	1 1 1 1 1 1 1
SEN CLN SEZ CLZ SEI CLI		Set Carry Clear Carry Set Negative Flag Clear Negative Flag Set Zero Flag Clear Zero Flag Global Interrupt Enable Global Interrupt Disable	$C \leftarrow 1$ $C \leftarrow 0$ $N \leftarrow 1$ $N \leftarrow 0$ $Z \leftarrow 1$ $Z \leftarrow 0$ $I \leftarrow 1$ $I \leftarrow 0$	C N N Z Z I I	1 1 1 1 1 1 1 1
SEN CLN SEZ CLZ SEI CLI SES		Set Carry Clear Carry Set Negative Flag Clear Negative Flag Set Zero Flag Clear Zero Flag Global Interrupt Enable Global Interrupt Disable Set Signed Test Flag	$C \leftarrow 0$ $N \leftarrow 1$ $N \leftarrow 0$ $Z \leftarrow 1$ $Z \leftarrow 0$ $I \leftarrow 1$ $I \leftarrow 0$ $S \leftarrow 1$	C N N Z Z I I S	1 1 1 1 1 1 1 1 1 1 1
SEN CLN SEZ CLZ SEI CLI SES CLS		Set Carry Clear Carry Set Negative Flag Clear Negative Flag Set Zero Flag Clear Zero Flag Global Interrupt Enable Global Interrupt Disable Set Signed Test Flag Clear Signed Test Flag	$C \leftarrow 0$ $N \leftarrow 1$ $C \leftarrow 0$ $Z \leftarrow 1$ $Z \leftarrow 0$ $I \leftarrow 1$ $I \leftarrow 0$ $S \leftarrow 1$ $S \leftarrow 0$	C N N Z Z I I S S	1 1 1 1 1 1 1 1 1 1 1 1
SEN CLN SEZ CLZ SEI CLI SES CLS SEV		Set Carry Clear Carry Set Negative Flag Clear Negative Flag Set Zero Flag Global Interrupt Enable Global Interrupt Disable Set Signed Test Flag Clear Signed Test Flag Set Twos Complement Overflow.	$ \begin{array}{c} C \leftarrow 0 \\ N \leftarrow 1 \\ N \leftarrow 0 \\ Z \leftarrow 1 \\ Z \leftarrow 0 \\ I \leftarrow 1 \\ I \leftarrow 0 \\ S \leftarrow 1 \\ S \leftarrow 0 \\ V \leftarrow 1 \\ \end{array} $	C N N Z Z I I S S V	1 1 1 1 1 1 1 1 1 1 1 1
SEN CLN SEZ CLZ SEI CLI SES CLS SEV CLV		Set Carry Clear Carry Set Negative Flag Clear Negative Flag Set Zero Flag Global Interrupt Enable Global Interrupt Disable Set Signed Test Flag Clear Signed Test Flag Set Twos Complement Overflow. Clear Twos Complement Overflow	$ \begin{array}{c} C \leftarrow 1 \\ C \leftarrow 0 \\ N \leftarrow 1 \\ N \leftarrow 0 \\ Z \leftarrow 1 \\ Z \leftarrow 0 \\ I \leftarrow 1 \\ I \leftarrow 0 \\ S \leftarrow 1 \\ S \leftarrow 0 \\ V \leftarrow 1 \\ V \leftarrow 0 \\ \end{array} $	C N N Z Z I I S S V V	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SEN CLN SEZ CLZ SEI CLI SES CLS SEV CLV SET		Set Carry Clear Carry Set Negative Flag Clear Negative Flag Clear Zero Flag Global Interrupt Enable Global Interrupt Disable Set Signed Test Flag Clear Signed Test Flag Set Twos Complement Overflow. Clear Twos Complement Overflow Set T in SREG	$C \leftarrow 1$ $C \leftarrow 0$ $N \leftarrow 1$ $N \leftarrow 0$ $Z \leftarrow 1$ $Z \leftarrow 0$ $I \leftarrow 1$ $I \leftarrow 0$ $S \leftarrow 1$ $S \leftarrow 0$ $V \leftarrow 1$ $V \leftarrow 0$ $T \leftarrow 1$	C N N Z Z I I S S V V V T	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SEN CLN SEZ CLZ SEI CLI SES CLS SEV CLV SET CLT		Set Carry Clear Carry Set Negative Flag Clear Negative Flag Clear Zero Flag Global Interrupt Enable Global Interrupt Disable Set Signed Test Flag Clear Signed Test Flag Set Twos Complement Overflow. Clear Twos Complement Overflow Set T in SREG Clear T in SREG	$C \leftarrow 1 \\ C \leftarrow 0 \\ N \leftarrow 1 \\ N \leftarrow 0 \\ Z \leftarrow 1 \\ Z \leftarrow 0 \\ I \leftarrow 1 \\ I \leftarrow 0 \\ S \leftarrow 1 \\ S \leftarrow 0 \\ V \leftarrow 1 \\ V \leftarrow 0 \\ T \leftarrow 1 \\ T \leftarrow 0 \\ \end{bmatrix}$	C N N Z Z I I I S S V V V V T T	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ATmega163(L)

Two-wire Serial Interface Characteristics	163
Typical Characteristics	165
Register Summary	172
Instruction Set Summary	174
Ordering Information	177
Packaging Information	178
44A	. 178
40P6	. 179
Erratas	180
ATmega163(L) Errata Rev. F	. 180
Change Log	182
Changes from Rev. 1142C-09/01 to Rev. 1142D-09/02	. 182
Changes from Rev. 1142D-09/09 to Rev. 1142E-02/03	. 182
Table of Contents	i

