
Microchip Technology - ATMEGA163L-4PI Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 4MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 32

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C

Mounting Type Through Hole

Package / Case 40-DIP (0.600", 15.24mm)

Supplier Device Package 40-PDIP

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega163l-4pi

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega163l-4pi-4425610
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

cycle. The resulting architecture is more code efficient while achieving throughputs up to
ten times faster than conventional CISC microcontrollers.

The ATmega163 provides the following features: 16K bytes of In-System Self-Program-
mable Flash, 512 bytes EEPROM, 1024 bytes SRAM, 32 general purpose I/O lines, 32
general purpose working registers, three flexible Timer/Counters with compare modes,
internal and external interrupts, a byte oriented Two-wire Serial Interface, an 8-channel,
10-bit ADC, a programmable Watchdog Timer with internal Oscillator, a programmable
serial UART, an SPI serial port, and four software selectable power saving modes. The
Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and inter-
rupt system to continue functioning. The Power-down mode saves the register contents
but freezes the Oscillator, disabling all other chip functions until the next interrupt or
Hardware Reset. In Power-save mode, the asynchronous Timer Oscillator continues to
run, allowing the user to maintain a timer base while the rest of the device is sleeping.
The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchro-
nous timer and ADC, to minimize switching noise during ADC conversions.

The On-chip ISP Flash can be programmed through an SPI serial interface or a conven-
tional programmer. By installing a Self-Programming Boot Loader, the microcontroller
can be updated within the application without any external components. The Boot Pro-
gram can use any interface to download the application program in the Application Flash
memory. By combining an 8-bit CPU with In-System Self-Programmable Flash on a
monolithic chip, the Atmel ATmega163 is a powerful microcontroller that provides a
highly flexible and cost effective solution to many embedded control applications.

The ATmega163 AVR is supported with a full suite of program and system development
tools including: C compilers, macro assemblers, program debugger/simulators, In-Cir-
cuit Emulators, and evaluation kits.

Pin Descriptions

VCC Digital supply voltage.

GND Digital ground.

Port A (PA7..PA0) Port A serves as the analog inputs to the A/D Converter.

Port A also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used.
Port pins can provide internal pull-up resistors (selected for each bit). The Port A output
buffers can sink 20mA and can drive LED displays directly. When pins PA0 to PA7 are
used as inputs and are externally pulled low, they will source current if the internal pull-
up resistors are activated. The Port A pins are tristated when a reset condition becomes
active, even if the clock is not running.

Port B (PB7..PB0) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port B output buffers can sink 20 mA. As inputs, Port B pins that are externally
pulled low will source current if the pull-up resistors are activated. Port B also serves the
functions of various special features of the ATmega83/163 as listed on page 117. The
Port B pins are tristated when a reset condition becomes active, even if the clock is not
running.

Port C (PC7..PC0) Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port C output buffers can sink 20 mA. As inputs, Port C pins that are externally
pulled low will source current if the pull-up resistors are activated. The Port C pins are
tristated when a reset condition becomes active, even if the clock is not running.
4 ATmega163(L)
1142E–AVR–02/03

ATmega163(L)
Figure 22. Single Cycle ALU Operation

The internal data SRAM access is performed in two System Clock cycles as described
in Figure 23.

Figure 23. On-chip Data SRAM Access Cycles

I/O Memory The I/O space definition of the ATmega163 is shown in the following table:

System Clock Ø

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

T1 T2 T3 T4

System Clock Ø

WR

RD

Data

Data

Address Address

T1 T2 T3 T4

Prev. Address

R
ea

d
W

rit
e

Table 2. ATmega163 I/O Space (1)

I/O Address
(SRAM Address) Name Function

$3F ($5F) SREG Status REGister

$3E ($5E) SPH Stack Pointer High

$3D ($5D) SPL Stack Pointer Low

$3B ($5B) GIMSK General Interrupt MaSK Register

$3A ($5A) GIFR General Interrupt Flag Register

$39 ($59) TIMSK Timer/Counter Interrupt MaSK Register

$38 ($58) TIFR Timer/Counter Interrupt Flag Register

$37 ($57) SPMCR SPM Control Register

$36 ($56) TWCR Two-wire Serial Interface Control Register

$35 ($55) MCUCR MCU general Control Register

$34 ($54) MCUSR MCU general Status Register

$33 ($53) TCCR0 Timer/Counter0 Control Register
17
1142E–AVR–02/03

Note: 1. The Bodlevel Fuse can be used to select start-up times even if the Brown-out Detec-
tion is disabled (BODEN Fuse unprogrammed).

Power-on Reset A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detec-
tion level is defined in Table 4. The POR is activated whenever VCC is below the
detection level. The POR circuit can be used to trigger the Start-up Reset, as well as to
detect a failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reach-
ing the Power-on Reset threshold voltage invokes a delay counter, which determines
the delay, for which the device is kept in RESET after VCC rise. The Time-out Period of
the delay counter can be defined by the user through the CKSEL Fuses. The different
selections for the delay period are presented in Table 5. The RESET signal is activated
again, without any delay, when the VCC decreases below detection level.

Figure 25. MCU Start-up, RESET Tied to VCC.

Table 6. Number of Watchdog Oscillator Cycles(1)

BODLEVEL VCC Condition Time-out Number of Cycles

Unprogrammed 2.7V 30 µs 8

Unprogrammed 2.7V 130 µs 32

Unprogrammed 2.7V 4.2 ms 1K

Unprogrammed 2.7V 67 ms 16K

Programmed 4.0V 10 µs 8

Programmed 4.0V 35 µs 32

Programmed 4.0V 5.8 ms 4K

Programmed 4.0V 92 ms 64K

VCC

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST
26 ATmega163(L)
1142E–AVR–02/03

ATmega163(L)
Figure 26. MCU Start-up, RESET Extended Externally

External Reset An External Reset is generated by a low level on the RESET pin. Reset pulses longer
than 500 ns will generate a Reset, even if the clock is not running. Shorter pulses are
not guaranteed to generate a Reset. When the applied signal reaches the Reset
Threshold Voltage – VRST on its positive edge, the delay timer starts the MCU after the
Time-out Period tTOUT has expired.

Figure 27. External Reset During Operation

Brown-out Detection ATmega163 has an On-chip Brown-out Detection (BOD) circuit for monitoring the VCC
level during the operation. The BOD circuit can be enabled/disabled by the fuse
BODEN. When the BOD is enabled (BODEN programmed), and VCC decreases to a
value below the trigger level, the Brown-out Reset is immediately activated. When VCC
increases above the trigger level, the Brown-out Reset is deactivated after a delay. The
delay is defined by the user in the same way as the delay of POR signal, in Table 5. The
trigger level for the BOD can be selected by the fuse BODLEVEL to be 2.7V
(BODLEVEL unprogrammed), or 4.0V (BODLEVEL programmed). The trigger level has
a hysteresis of 50 mV to ensure spike free Brown-out Detection.

The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level
for longer than 9 µs for trigger level 4.0V, 21 µs for trigger level 2.7V (typical values).

VCC

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST
27
1142E–AVR–02/03

If one or more interrupt conditions occur when the Global Interrupt Enable bit is cleared
(zero), the corresponding interrupt flag(s) will be set and remembered until the Global
Interrupt Enable bit is set (one), and will be executed by order of priority.

Note that external level interrupt does not have a flag, and will only be remembered for
as long as the interrupt condition is present.

Note that the Status Register is not automatically stored when entering an interrupt rou-
tine and restored when returning from an interrupt routine. This must be handled by
software.

Interrupt Response Time The interrupt execution response for all the enabled AVR interrupts is four clock cycles
minimum. After four clock cycles the Program Vector address for the actual interrupt
handling routine is executed. During this four clock cycle period, the Program Counter
(13 bits) is pushed onto the Stack. The vector is normally a jump to the interrupt routine,
and this jump takes three clock cycles. If an interrupt occurs during execution of a multi-
cycle instruction, this instruction is completed before the interrupt is served. If an inter-
rupt occurs when the MCU is in sleep mode, the interrupt execution response time is
increased by four clock cycles.

A return from an interrupt handling routine takes four clock cycles. During these four
clock cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack
Pointer is incremented by two, and the I Flag in SREG is set. When AVR exits from an
interrupt, it will always return to the main program and execute one more instruction
before any pending interrupt is served.

The General Interrupt Mask
Register – GIMSK

• Bit 7 – INT1: External Interrupt Request 1 Enable

When the INT1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
the external pin interrupt is activated. The Interrupt Sense Control1 bits 1/0 (ISC11 and
ISC10) in the MCU general Control Register (MCUCR) define whether the external
interrupt is activated on rising and/or falling edge of the INT1 pin or level sensed. Activity
on the pin will cause an interrupt request even if INT1 is configured as an output. The
corresponding interrupt of External Interrupt Request 1 is executed from program mem-
ory address $004. See also “External Interrupts”.

• Bit 6 – INT0: External Interrupt Request 0 Enable

When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
the external pin interrupt is activated. The Interrupt Sense Control0 bits 1/0 (ISC01 and
ISC00) in the MCU General Control Register (MCUCR) define whether the external
interrupt is activated on rising or falling edge of the INT0 pin or level sensed. Activity on
the pin will cause an interrupt request even if INT0 is configured as an output. The corre-
sponding interrupt of External Interrupt Request 0 is executed from Program Memory
address $002. See also “External Interrupts.”

• Bits 5 – Res: Reserved Bits

This bit is reserved in the ATmega163 and the read value is undefined.

Bit 7 6 5 4 3 2 1 0

$3B ($5B) INT1 INT0 – – – – – – GIMSK

Read/Write R/W R/W R R R R R R

Initial Value 0 0 x 0 0 0 0 0
30 ATmega163(L)
1142E–AVR–02/03

Asynchronous Operation of
Timer/Counter2

When Timer/Counter2 operates asynchronously, some considerations must be taken.

• Warning: When switching between asynchronous and synchronous clocking of
Timer/Counter2, the Timer Registers TCNT2, OCR2, and TCCR2 might be
corrupted. A safe procedure for switching clock source is:

1. Disable the Timer/Counter2 interrupts by clearing OCIE2 and TOIE2.

2. Select clock source by setting AS2 as appropriate.

3. Write new values to TCNT2, OCR2, and TCCR2.

4. To switch to asynchronous operation: Wait for TCN2UB, OCR2UB, and
TCR2UB.

5. Clear the Timer/Counter2 Interrupt Flags.

6. Enable interrupts, if needed.

• The Oscillator is optimized for use with a 32.768 kHz watch crystal. Applying an
external clock to the TOSC1 pin may result in incorrect Timer/Counter2 operation.
The CPU main clock frequency must be more than four times the Oscillator
frequency.

• When writing to one of the registers TCNT2, OCR2, or TCCR2, the value is
transferred to a temporary register, and latched after two positive edges on TOSC1.
The user should not write a new value before the contents of the temporary register
have been transferred to its destination. Each of the three mentioned registers have
their individual temporary register, which means that e.g. writing to TCNT2 does not
disturb an OCR2 write in progress. To detect that a transfer to the destination
register has taken place, the Asynchronous Status Register – ASSR has been
implemented.

• When entering Power-save mode after having written to TCNT2, OCR2, or TCCR2,
the user must wait until the written register has been updated if Timer/Counter2 is
used to wake up the device. Otherwise, the MCU will enter sleep mode before the
changes are effective. This is particularly important if the Output Compare2 interrupt
is used to wake up the device, since the output compare function is disabled during
writing to OCR2 or TCNT2. If the write cycle is not finished, and the MCU enters
sleep mode before the OCR2UB bit returns to zero, the device will never receive a
compare match interrupt, and the MCU will not wake up.

• If Timer/Counter2 is used to wake the device up from Power-save mode,
precautions must be taken if the user wants to re-enter Power-save mode: The
interrupt logic needs one TOSC1 cycle to be Reset. If the time between wake-up
and re-entering Power-save mode is less than one TOSC1 cycle, the interrupt will
not occur, and the device will fail to wake up. If the user is in doubt whether the time
before re-entering Power-save is sufficient, the following algorithm can be used to
ensure that one TOSC1 cycle has elapsed:

1. Write a value to TCCR2, TCNT2, or OCR2.

2. Wait until the corresponding Update Busy Flag in ASSR returns to zero.

3. Enter Power-save mode.

• When the asynchronous operation is selected, the 32.768 kHz Oscillator for
Timer/Counter2 is always running, except in Power-down mode. After a Power-up
Reset or Wake-up from Power-down, the user should be aware of the fact that this
Oscillator might take as long as one second to stabilize. The user is advised to wait
for at least one second before using Timer/Counter2 after Power-up or wake-up
from Power-down. The contents of all Timer/Counter2 Registers must be considered
lost after a wake-up from Power-down due to unstable clock signal upon startup.

• Description of wake-up from Power-save mode when the Timer is clocked
asynchronously: When the interrupt condition is met, the wake-up process is started
58 ATmega163(L)
1142E–AVR–02/03

Watchdog Timer The Watchdog Timer is clocked from a separate On-chip Oscillator which runs at
1 MHz. This is the typical value at VCC = 5V. See characterization data for typical values
at other VCC levels. By controlling the Watchdog Timer prescaler, the Watchdog Reset
interval can be adjusted as shown in Table 23 on page 61. The WDR – Watchdog Reset
– instruction resets the Watchdog Timer. Eight different clock cycle periods can be
selected to determine the reset period. If the reset period expires without another
Watchdog Reset, the ATmega163 resets and executes from the Reset Vector. For tim-
ing details on the Watchdog Reset, refer to page 28.

To prevent unintentional disabling of the Watchdog, a special turn-off sequence must be
followed when the Watchdog is disabled. Refer to the description of the Watchdog Timer
Control Register for details.

Figure 40. Watchdog Timer

The Watchdog Timer Control
Register – WDTCR

• Bits 7..5 – Res: Reserved Bits

These bits are reserved bits in the ATmega163 and will always read as zero.

• Bit 4 – WDTOE: Watchdog Turn-off Enable

This bit must be set (one) when the WDE bit is cleared. Otherwise, the Watchdog will
not be disabled. Once set, hardware will clear this bit to zero after four clock cycles.
Refer to the description of the WDE bit for a Watchdog disable procedure.

• Bit 3 – WDE: Watchdog Enable

When the WDE is set (one) the Watchdog Timer is enabled, and if the WDE is cleared
(zero) the Watchdog Timer function is disabled. WDE can only be cleared if the WDTOE
bit is set(one). To disable an enabled Watchdog Timer, the following procedure must be
followed:

1 MHz at VCC = 5V

OSCILLATOR

Bit 7 6 5 4 3 2 1 0

$21 ($41) – – – WDTOE WDE WDP2 WDP1 WDP0 WDTCR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
60 ATmega163(L)
1142E–AVR–02/03

set), the 9th bit is one for an address byte and zero for a data byte, whereas the stop bit
is always high.

The following procedure should be used to exchange data in Multi-Processor Communi-
cation mode:

1. All Slave MCUs are in Multi-Processor Communication mode (MPCM in UCSRA
is set).

2. The Master MCU sends an address byte, and all slaves receive and read this
byte. In the Slave MCUs, the RXC Flag in UCSRA will be set as normal.

3. Each Slave MCU reads the UDR Register and determines if it has been
selected. If so, it clears the MPCM bit in UCSRA, otherwise it waits for the next
address byte.

4. For each received data byte, the receiving MCU will set the Receive Complete
Flag (RXC in UCSRA). In 8-bit mode, the receiving MCU will also generate a
Framing Error (FE in UCSRA set), since the stop bit is zero. The other slave
MCUs, which still have the MPCM bit set, will ignore the data byte. In this case,
the UDR Register and the RXC or FE Flags will not be affected.

5. After the last byte has been transferred, the process repeats from step 2.

UART Control

UART I/O Data Register – UDR

The UDR Register is actually two physically separate registers sharing the same I/O
address. When writing to the register, the UART Transmit Data Register is written.
When reading from UDR, the UART Receive Data Register is read.

UART Control and Status
Register A – UCSRA

• Bit 7 – RXC: UART Receive Complete

This bit is set (one) when a received character is transferred from the Receiver Shift
Register to UDR. The bit is set regardless of any detected framing errors. When the
RXCIE bit in UCR is set, the UART Receive Complete interrupt will be executed when
RXC is set(one). RXC is cleared by reading UDR. When interrupt-driven data reception
is used, the UART Receive Complete Interrupt routine must read UDR in order to clear
RXC, otherwise a new interrupt will occur once the interrupt routine terminates.

• Bit 6 – TXC: UART Transmit Complete

This bit is set (one) when the entire character (including the stop bit) in the Transmit
Shift Register has been shifted out and no new data has been written to UDR. This Flag
is especially useful in half-duplex communications interfaces, where a transmitting appli-
cation must enter receive mode and free the communications bus immediately after
completing the transmission.

Bit 7 6 5 4 3 2 1 0

$0C ($2C) MSB LSB UDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$0B ($2B) RXC TXC UDRE FE OR – U2X MPCM UCSRA

Read/Write r R/W R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
74 ATmega163(L)
1142E–AVR–02/03

• Bit 0 – TWIE: Two-wire Serial Interface Interrupt Enable

When this bit is enabled, and the I-bit in SREG is set, the Two-wire Serial Interface inter-
rupt will be activated for as long as the TWINT Flag is high.

The TWCR is used to control the operation of the Two-wire Serial Interface. It is used to
enable the Two-wire Serial Interface, to initiate a Master access by applying a START
condition to the bus, to generate a receiver acknowledge, to generate a stop condition,
and to control halting of the bus while the data to be written to the bus are written to the
TWDR. It also indicates a write collision if data is attempted written to TWDR while the
register is inaccessible.

The Two-wire Serial Interface
Status Register – TWSR

• Bits 7..3 – TWS: Two-wire Serial Interface Status

These five bits reflect the status of the Two-wire Serial Interface logic and the Two-wire
Serial Bus.

• Bits 2..0 – Res: Reserved bits

These bits are reserved in ATmega163 and will always read as zero

The TWSR is read only. It contains a status code which reflects the status of the Two-
wire Serial Interface logic and the Two-wire Serial Bus. There are 26 possible status
codes. When TWSR contains $F8, no relevant state information is available and no
Two-wire Serial Interface interrupt is requested. A valid status code is available in
TWSR one CPU clock cycle after the Two-wire Serial Interface Interrupt Flag (TWINT) is
set by hardware and is valid until one CPU clock cycle after TWINT is cleared by soft-
ware. Table 32 to Table 36 give the status information for the various modes.

The Two-wire Serial Interface
Data Register – TWDR

• Bits 7..0 – TWD: Two-wire Serial Interface Data Register

These eight bits constitute the next data byte to be transmitted, or the latest data byte
received on the Two-wire Serial Bus.

In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode, the
TWDR contains the last byte received. It is writeable while the Two-wire Serial Interface
is not in the process of shifting a byte. This occurs when the Two-wire Serial Interface
Interrupt Flag (TWINT) is set by hardware. Note that the Data Register cannot be initial-
ized by the user before the first interrupt occurs. The data in TWDR remain stable as
long as TWINT is set. While data is shifted out, data on the bus is simultaneously shifted
in. TWDR always contains the last byte present on the bus, except after a wake up from
ADC Noise Reduction mode, Power-down mode, or Power-save mode by the Two-wire
Serial Interface interrupt. For example, in the case of a lost bus arbitration, no data is
lost in the transition from Master to Slave. Handling of the ACK Flag is controlled auto-
matically by the Two-wire Serial Interface logic, the CPU cannot access the ACK bit
directly.

Bit 7 6 5 4 3 2 1 0

$01 ($21) TWS7 TWS6 TWS5 TWS4 TWS3 – – – TWSR

Read/Write R R R R R R R R

Initial Value 1 1 1 1 1 0 0 0

Bit 7 6 5 4 3 2 1 0

$03 ($23) TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWD0 TWDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1
84 ATmega163(L)
1142E–AVR–02/03

ATmega163(L)
After a repeated START condition (state $10), the Two-wire Serial Interface may switch
to the Master Transmitter mode by loading TWDR with SLA+W or access a new Slave
as Master Receiver or Transmitter.

Assembly code illustrating operation of the Master Receiver mode is given at the end of
the TWI section.

Slave Receiver Mode In the Slave Receiver mode, a number of data bytes are received from a Master Trans-
mitter (see Figure 54). To initiate the Slave Receiver mode, TWAR and TWCR must be
initialized as follows:

The upper seven bits are the address to which the Two-wire Serial Interface will respond
when addressed by a Master. If the LSB is set, the Two-wire Serial Interface will
respond to the general call address ($00), otherwise it will ignore the general call
address.

TWEN must be set to enable the Two-wire Serial Interface. The TWEA bit must be set to
enable the acknowledgement of the device’s own slave address or the general call
address. TWSTA and TWSTO must be cleared.

When TWAR and TWCR have been initialized, the Two-wire Serial Interface waits until
it is addressed by its own slave address (or the general call address if enabled) followed
by the Data Direction bit which must be “0” (write) for the Two-wire Serial Interface to
operate in the Slave Receiver mode. After its own slave address and the write bit have
been received, the Two-wire Serial Interface Interrupt Flag is set and a valid status code
can be read from TWSR. The status code is used to determine the appropriate software
action. The appropriate action to be taken for each status code is detailed in Table 34.
The Slave Receiver mode may also be entered if arbitration is lost while the Two-wire
Serial Interface is in the Master mode (see states $68 and $78).

If the TWEA bit is reset during a transfer, the Two-wire Serial Interface will return a “Not
Acknowledge” (“1”) to SDA after the next received data byte. While TWEA is Reset, the
Two-wire Serial Interface does not respond to its own slave address. However, the Two-
wire Serial Bus is still monitored and address recognition may resume at any time by
setting TWEA. This implies that the TWEA bit may be used to temporarily isolate the
Two-wire Serial Interface from the Two-wire Serial Bus.

In ADC Noise Reduction mode, Power-down mode, and Power-save mode, the clock
system to the Two-wire Serial Interface is turned off. If the Slave Receive mode is
enabled, the interface can still acknowledge a general call and its own slave address by
using the Two-wire Serial Bus clock as a clock source. The part will then wake-up from
sleep and the Two-wire Serial Interface will hold the SCL clock wil low during the wake-
up and until the TWINT Flag is cleared.

Note that the Two-wire Serial Interface Data Register – TWDR – does not reflect the last
byte present on the bus when waking up from these sleep modes.

Assembly code illustrating operation of the Slave Receiver mode is given at the end of
the TWI section.

Table 30. TWAR: Slave Receiver Mode Initialization

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

Value Device’s Own Slave Address

Table 31. WCR: Slave Receiver Mode Initialization

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 0 1 0 0 0 1 0 X
87
1142E–AVR–02/03

Slave Transmitter Mode In the Slave Transmitter mode, a number of data bytes are transmitted to a Master
Receiver (see Figure 55). The transfer is initialized as in the Slave Receiver mode.
When TWAR and TWCR have been initialized, the Two-wire Serial Interface waits until
it is addressed by its own slave address (or the general call address if enabled) followed
by the Data Direction bit which must be “1” (read) for the Two-wire Serial Interface to
operate in the Slave Transmitter mode. After its own slave address and the read bit
have been received, the Two-wire Serial Interface Interrupt Flag is set and a valid status
code can be read from TWSR. The status code is used to determine the appropriate
software action. The appropriate action to be taken for each status code is detailed in
Table 35. The slave transmitter mode may also be entered if arbitration is lost while the
Two-wire Serial Interface is in the Master mode (see state $B0).

If the TWEA bit is reset during a transfer, the Two-wire Serial Interface will transmit the
last byte of the transfer and enter state $C0 or state $C8. the Two-wire Serial Interface
is switched to the not addressed Slave mode, and will ignore the Master if it continues
the transfer. Thus the Master Receiver receives all “1” as serial data. While TWEA is
reset, the Two-wire Serial Interface does not respond to its own slave address. How-
ever, the Two-wire Serial Bus is still monitored and address recognition may resume at
any time by setting TWEA. This implies that the TWEA bit may be used to temporarily
isolate the Two-wire Serial Interface from the Two-wire Serial Bus.

Assembly code illustrating operation of the Slave Receiver mode is given at the end of
the TWI section.

Miscellaneous States There are two status codes that do not correspond to a defined Two-wire Serial Inter-
face state, see Table 36.

Status $F8 indicates that no relevant information is available because the Two-wire
Serial Interface Interrupt Flag (TWINT) is not set yet. This occurs between other states,
and when the Two-wire Serial Interface is not involved in a serial transfer.

Status $00 indicates that a bus error has occured during a Two-wire Serial Bus transfer.
A bus error occurs when a START or STOP condition occurs at an illegal position in the
format frame. Examples of such illegal positions are during the serial transfer of an
address byte, a data byte or an acknowledge bit. When a bus error occurs, TWINT is
set. To recover from a bus error, the TWSTO Flag must set and TWINT must be cleared
by writing a logic one to it. This causes the Two-wire Serial Interface to enter the not
addressed Slave mode and to clear the TWSTO Flag (no other bits in TWCR are
affected). The SDA and SCL lines are released and no STOP condition is transmitted.
88 ATmega163(L)
1142E–AVR–02/03

Figure 53. Formats and States in the Master Receiver Mode

Table 33. Status Codes for Master Receiver Mode

Status Code
(TWSR)

Status of the Two-wire Serial
Bus and Two-wire Serial Inter-
face hardware

Application Software Response

Next Action Taken by Two-wire Serial Interface Hard-
ware

To/from TWDR
To TWCR

STA STO TWINT TWEA

$08 A START condition has been
transmitted

Load SLA+R X 0 1 X SLA+R will be transmitted
ACK or NOT ACK will be received

$10 A repeated START condition
has been transmitted

Load SLA+R or

Load SLA+W

X

X

0

0

1

1

X

X

SLA+R will be transmitted
ACK or NOT ACK will be received
SLA+W will be transmitted
Logic will switch to Master Transmitter mode.

$38 Arbitration lost in SLA+R or
NOT ACK bit

No TWDR action or

No TWDR actio

0

1

0

0

1

1

X

X

Two-wire Serial Bus will be released and not addressed
Slave mode will be entered
A START condition will be transmitted when the bus
becomes free

$40 SLA+R has been transmitted;
ACK has been received

No TWDR action or

No TWDR action

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

$48 SLA+R has been transmitted;
NOT ACK has been received

No TWDR action or
No TWDR action or

No TWDR action

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO Flag
will be Reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be Reset

$50 Data byte has been received;
ACK has been returned

Read data byte or

Read data byte

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

$58 Data byte has been received;
NOT ACK has been returned

Read data byte or
Read data byte or

Read data byte

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO Flag
will be Reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be Reset

S SLA R A DATA A

$08 $40 $50

S SLA R

$10

A P

$48

A or A

$38

Other Master
Continues

$38

Other Master
Continues

W

A

$68

Other Master
Continues

$78 $B0
To corresponding
states in slave mode

MR

MT

Successfull
Reception
From a Slave
Receiver

Next Transfer
Started with a
Repeated Start
Condition

Not Acknowledge
Received After the
Slave Address

Arbitration Lost in Slave
Address or Data Byte

Arbitration Lost and
Addressed as Slave

DATA A

n

From Master to Slave

From Slave to Master

Any Number of Data Bytes
and their Associated Acknowledge Bits

This Number (Contained in TWSR) Corresponds
to a Defined State of the Two-wire Serial Bus

PDATA A

$58

A

92 ATmega163(L)
1142E–AVR–02/03

Analog Comparator
Multiplexed Input

It is possible to select any of the PA7..0 (ADC7..0) pins to replace the negative input to
the Analog Comparator. The ADC multiplexer is used to select this input, and conse-
quently, the ADC must be switched off to utilize this feature. If the Analog Comparator
Multiplexer Enable bit (ACME in SFIOR) is set (one) and the ADC is switched off (ADEN
in ADCSR is zero), MUX2..0 in ADMUX select the input pin to replace the negative input
to the Analog Comparator, as shown in Table 38. If ACME is cleared (zero) or ADEN is
set (one), PB3 (AIN1) is applied to the negative input to the Analog Comparator.

Table 38. Analog Comparator Multiplexed Input

ACME ADEN MUX2..0 Analog Comparator Negative Input

0 x xxx AIN1

1 1 xxx AIN1

1 0 000 ADC0

1 0 001 ADC1

1 0 010 ADC2

1 0 011 ADC3

1 0 100 ADC4

1 0 101 ADC5

1 0 110 ADC6

1 0 111 ADC7
104 ATmega163(L)
1142E–AVR–02/03

When initiating a conversion by setting the ADSC bit in ADCSR, the conversion starts at
the following rising edge of the ADC clock cycle.

A normal conversion takes 13 ADC clock cycles. In certain situations, the ADC needs
more clock cycles to initalization and minimize offset errors. Extended conversions take
25 ADC clock cycles and occur as the first conversion after the ADC is switched on
(ADEN in ADCSR is set). Additionally, when changing voltage reference, the user may
improve accuracy by disregarding the first conversion result after the reference or MUX
setting was changed.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal
conversion and 13.5 ADC clock cycles after the start of an extended conversion. When
a conversion is complete, the result is written to the ADC Data Registers, and ADIF is
set. In Single Conversion mode, ADSC is cleared simultaneously. The software may
then set ADSC again, and a new conversion will be initated on the first rising ADC clock
edge. In Free Running mode, a new conversion will be started immediately after the
conversion completes, while ADSC remains high. Using Free Running mode and an
ADC clock frequency of 200 kHz gives the lowest conversion time with a maximum res-
olution, 65 µs, equivalent to 15 kSPS. For a summary of conversion times, see Table
39.

Figure 59. ADC Timing Diagram, Extended Conversion (Single Conversion Mode)

Figure 60. ADC Timing Diagram, Single Conversion

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

Sample & Hold

ADIF

ADCH

ADCL

Cycle Number

ADEN

1 2 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2

Extended Conversion
Next
Conversion

3

MUX and REFS
update

MUX and REFS
Update

Conversion
Complete

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

3

Sample & Hold

MUX and REFS
Update

Conversion
Complete

MUX and REFS
Update
108 ATmega163(L)
1142E–AVR–02/03

ADC Characteristics

Notes: 1. Minimum for AVCC is 2.7V.
2. Maximum for AVCC is 5.5V.

Table 43. ADC Characteristics

Symbol Parameter Condition Min Typ Max Units

Resolution Single-ended Conversion 10 Bits

Absolute accuracy
VREF = 4V
ADC clock = 200 kHz

1 2 LSB

Absolute accuracy
VREF = 4V
ADC clock = 1 MHz

4 LSB

Absolute accuracy
VREF = 4V
ADC clock = 2 MHz

16 LSB

Integral Non-linearity VREF > 2V 0.5 LSB

Differential Non-linearity VREF > 2V 0.5 LSB

Zero Error (Offset) VREF > 2V 1 LSB

Conversion Time Free Running Conversion 65 260 µs

Clock Frequency 50 200 kHz

AVCC Analog Supply Voltage VCC - 0.3(1) VCC + 0.3(2) V

VREF Reference Voltage 2 V AVCC V

VINT Internal Voltage Reference 2.35 2.56 2.77 V

VBG Bandgap Voltage Reference 1.12 1.22 1.32 V

RREF Reference Input Resistance 6 10 13 kΩ

VIN Input Voltage AGND AREF V

RAIN Analog Input Resistance 100 MΩ
114 ATmega163(L)
1142E–AVR–02/03

ATmega163(L)
Figure 67. PORTB Schematic Diagram (Pin PB5)

Figure 68. PORTB Schematic Diagram (Pin PB6)

D
A

TA
 B

U
S

D

D

Q

Q

RESET

RESET

C

C

WD

WP

RD

MOS
PULL-
UP

PB5

R

R

WP:
WD:
RL:
RP:
RD:
SPE:
MSTR:

WRITE PORTB
WRITE DDRB
READ PORTB LATCH
READ PORTB PIN
READ DDRB
SPI ENABLE
MASTER SELECT

DDB5

PORTB5

SPE
MSTR

SPI MASTER
OUT

SPI SLAVE
IN

RL

RP

PUD

PUD: PULL-UP DISABLE

D
A

TA
 B

U
S

D

D

Q

Q

RESET

RESET

C

C

WD

WP

RD

MOS
PULL-
UP

PB6

R

R

WP:
WD:
RL:
RP:
RD:
SPE:
MSTR

WRITE PORTB
WRITE DDRB
READ PORTB LATCH
READ PORTB PIN
READ DDRB
SPI ENABLE
MASTER SELECT

DDB6

PORTB6

SPE
MSTR

SPI SLAVE
OUT

SPI MASTER
IN

RL

RP

PUD

PUD: PULL-UP DISABLE
121
1142E–AVR–02/03

Memory
Programming

Boot Loader Support The ATmega163 provides a mechanism for Programming and Re-programming code by
the MCU itself. This feature allows flexible application software updates, controlled by
the MCU using a Flash-resident Boot Loader program. This makes it possible to pro-
gram the AVR in a target system without access to its SPI pins. The Boot Loader
program can use any available data interface and associated protocol, such as UART
serial bus interface, to input or output program code, and write (program) that code into
the Flash memory, or read the code from the Flash memory.

The ATmega163 Flash memory is organized in two main sections:

• The Application Flash section

• The Boot Loader Flash section

The Application Flash section and the Boot Loader Flash section have seperate Boot
Lock bits. Thus the user can select different levels of protection for the two sections. The
Store Program Memory (SPM) instruction can only be executed from the Boot Loader
Flash section.

The Program Flash memory in ATmega163 is divided into 128 pages of 64 words each.
The Boot Loader Flash section is located at the high address space of the Flash, and
can be configured through the BOOTSZ Fuses as shown in Table 51.

Table 51. Boot Size Configuration

BOOTSZ1 BOOTSZ0 Boot
Size Pages

Application Flash
Addresses

Boot Flash
Addresses

1 1
128
Words

2 $0000 - $1F7F $1F80 - $1FFF

1 0
256
Words

4 $0000 - $1EFF $1F00 - $1FFF

0 1
512
Words

8 $0000 - $1DFF $1E00 - $1FFF

0 0
1024
Words

16 $0000 - $1BFF $1C00 - $1FFF
134 ATmega163(L)
1142E–AVR–02/03

ATmega163(L)
The algorithm for reading the Fuse Low bits is similar to the one described above for
reading the Lock bits. To read the Fuse Low bits, load the Z-pointer with $0000 and set
the BLBSET and SPMEN bits in SPMCR. When an LPM instruction is executed within
five cycles after the BLBSET and SPMEN bits are set in the SPMCR, the value of the
Fuse Low bits will be loaded in the destination register as shown below.

Similarly, when reading the Fuse High bits, load $0003 in the Z-pointer. When an LPM
instruction is executed within five cycles after the BLBSET and SPMEN bits are set in
the SPMCR, the value of the Fuse High bits will be loaded in the destination register as
shown below.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that
are unprogrammed, will be read as one.

In all cases, the read value of unused bit positions are undefined.

EEPROM Write Prevents
Writing to SPMCR

Note that an EEPROM write operation will block all software programming to Flash.
Reading the Fuses and Lock bits from software will also be prevented during the
EEPROM write operation. It is recommended that the user checks the status bit (EEWE)
in the EECR Register and verifies that the bit is cleared before writing to the SPMCR
Register. If EEPROM writing is performed inside an interrupt routine, the user software
should disable that interrupt before checking the EEWE status bit.

Addressing the Flash During
Self-Programming

The Z-pointer is used to address the SPM commands.

Z15:Z14 always ignored

Z13:Z7 page select, for page erase and page write

Z6:Z1 word select, for filling temp buffer (must be zero during page write operation)

Z0 should be zero for all SPM commands, byte select for the LPM instruction.

The only operation that does not use the Z-pointer is Setting the Boot Loader Lock bits.
The content of the Z-pointer is ignored and will have no effect on the operation.

Note that the Page Erase and Page Write operation is addressed independently. There-
fore it is of major importance that the Boot Loader software addresses the same page in
both the page erase and page write operation.

The LPM instruction also uses the Z-pointer to store the address. Since this instruction
addresses the Flash byte-by-byte, also the LSB (bit Z0) of the Z-pointer is used. See
page 15 for a detailed description.

Bit 7 6 5 4 3 2 1 0

Rd – – BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd BODLEVEL BODEN SPIEN – CKSEL3 CKSEL2 CKSEL1 CKSEL0

Bit 7 6 5 4 3 2 1 0

Rd – – – – – BOOTSZ1 BOOTSZ0 BOOTRST

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0
139
1142E–AVR–02/03

ATmega163(L)
Figure 94. Watchdog Oscillator Frequency vs. VCC

Sink and source capabilities of I/O ports are measured on one pin at a time.

Figure 95. Pull-up Resistor Current vs. Input Voltage (VCC = 5V)

0

200

400

600

800

1000

1200

1400

1600

2 2.5 3 3.5 4 4.5 5 5.5 6

T = 85˚CA

T = 25˚CA

V (V)cc

F
 (

K
H

z)
R

C

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

I
 (

µA
)

O
P

V (V)OP

T = 85˚CA

T = 25˚CA
167
1142E–AVR–02/03

 Printed on recycled paper.

© Atmel Corporation 2003.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

1142E–AVR–02/03 0M

ATMEL® and AVR® are the registered trademarks of Atmel.

Other terms and product names may be the trademarks of others.

