

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	12
Program Memory Size	768B (512 x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 15V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16hv540-04i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 GENERAL DESCRIPTION

The PIC16HV540 from Microchip Technology is a lowcost, high-performance, 8-bit, fully-static, EPROMbased CMOS microcontroller. It is pin and software compatible with the PIC16C5X family of devices. It employs a RISC architecture with only 33 single word/ single cycle instructions. All instructions are single cycle except for program branches, which take two cycles. The PIC16HV540 delivers performance an order of magnitude higher than its competitors in the same price category. The 12-bit wide instructions are highly orthogonal resulting in 2:1 code compression over other 8-bit microcontrollers in its class. The easyto-use and easy-to-remember instruction set reduces development time significantly.

The PIC16HV540 is the first One-Time-Programmable (OTP) microcontroller with an on-chip 3 volt and 5 volt regulator. This eliminates the need for an external regulator in many applications powered from 9 Volt or 12 Volt batteries or unregulated 6 volt, 9 volt or 12 volt mains adapters. The PIC16HV540 is ideally suited for applications that require very low standby current at high voltages. These typically require expensive low current regulators.

The PIC16HV540 is equipped with special features that reduce system cost and power requirements. The Power-On Reset (POR) and Device Reset Timer (DRT) eliminate the need for external reset circuitry. There are four oscillator configurations to choose from, including the powersaving LP (Low Power) oscillator, cost saving RC oscillator, and XT and HS for crystal oscillators. Power saving SLEEP mode, Watchdog Timer and code protection features improve system cost, power and reliability.

The UV erasable CERDIP packaged versions are ideal for code development, while the cost-effective OTP versions are suitable for production in any volume. The customer can take full advantage of Microchip's price leadership in OTP microcontrollers, while benefiting from the OTP's flexibility.

The PIC16HV540 is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low-cost development programmer, and a full featured programmer. All the tools are supported on IBM[®] PC and compatible machines.

1.1 <u>Applications</u>

The PIC16HV540 fits in low-power battery applications such as CO and smoke detection, toys, games, security systems and automobile modules. The EPROM technology makes customizing of application programs (transmitter codes, receiver frequencies, etc.) extremely fast and convenient. The small footprint package, for through hole or surface mounting, make this microcontroller suitable for applications with space limitations. Low-cost, low-power, high-performance, ease of use and I/O flexibility make the PIC16HV540 very versatile even in areas where no microcontroller use has been considered before (e.g., timer functions, replacement of "glue" logic in larger systems, coprocessor applications).

1.2 Enhanced Features

1.2.1 REGULATED I/O PORTA INDEPENDENT OF CORE REGULATOR

PORTA I/O pads and OSC2 output are powered by the regulated internal voltage VIO. A maximum of 10mA per output is allowed, or a total of 40mA. The core itself is powered from the independently regulated supply VREG.

1.2.2 HIGH VOLTAGE I/O PORTB

All eight PORTB I/Os are high voltage I/O. The inputs will tolerate input voltages as high as the VDD and outputs will swing from VSs to the VDD. The input threshold voltages vary with supply voltage. (See Electrical Characteristics.)

1.2.3 WAKE-UP ON PIN CHANGE ON PORTB [0:3]

Four of the PORTB inputs latch the status of the pin at the onset of sleep mode. A level change on the inputs resets the device, implementing wake up on pin change (via warm reset). The PCWUF bit in the status register is reset to indicate that a pin change caused the reset condition. Any pin change (glitch insensitive) of the opposite level of the initial value wakes up the device. This option can be enabled/disabled in OPTION2 register. (See OPTION2 Register, Register 4-3.)

1.2.4 WAKE-UP ON PIN CHANGE WITH A SLOWLY-RISING VOLTAGE ON PORTB [7]

PORTB [7] also implements wake up from sleep, however this input is specifically adapted so that a slowly **rising** voltage does not cause excessive power consumption. This input can be used with external RC circuits for long sleep periods without using the internal timer and prescaler. This option is also enabled/disabled in OPTION2 register. (The enable/disable bit is shared with the other 4 wake-up inputs.) The PCWUF bit in the status register is also shared with the other four wake-up inputs.

1.2.5 LOW-VOLTAGE (BROWN-OUT) DETECTION

A low voltage (Brown-out) detect circuit optionally resets the device at a voltage level higher than that at which the PICmicro[®] device stops operating. The nominal trip voltages are 3.1 volts (for 5 volt operation) and 2.2 volt (for 3 volt operation), respectively. The core remains in the reset state as long as this condition holds (as if a MCLR external reset was given). The Brown-out trip level is user selectable, with built-in interlocks. The Brown-out detector is disabled at power-up and is activated by clearing the appropriate bit (BODEN) in OPTION2 register.

1.2.6 INCREASED STACK DEPTH

The stack depth is 4 levels to allow modular program implementation by using functions and subroutines.

1.2.7 ENHANCED WATCHDOG TIMER (WDT) OPERATION

The WDT is enabled by setting FUSE 2 in the configuration word. The WDT setting is latched and the fuse disabled during SLEEP mode to reduce current consumption.

If the WDT is disabled by FUSE 2, it can be enabled/disabled under program control using bit 4 in OPTION2 Register (SWDTEN). The software WDT control is disabled at power-up.

The current consumption of the on-chip oscillator (used for the watchdog, oscillator startup timer and sleep timer) is less than $1\mu A$ (typical) at 3 Volt operation.

1.2.8 REDUCED EXTERNAL RC OSCILLATOR STARTUP TIME

If the RC oscillator option is selected in the Configuration word (FOSC1=1 and FOSCO=1), the oscillator startup time is 1.0 ms nominal instead of 18 ms nominal. This is applicable after power-up (POR), either WDT interrupt or wake-up, external reset on MCLR, PCWU (wake on pin change) and Brown-out.

1.2.9 LOW-VOLTAGE OPERATION OF THE ENTIRE CPU DURING SLEEP

The voltage regulator can automatically lower the voltage to the core from 5 Volt to 3 Volt during sleep, resulting in reduced current consumption. This is an option bit (SL) in the OPTION2 register.

1.2.10 GLITCH FILTERS ON WAKE-UP PINS AND MCLR

Glitch sensitive inputs for wake-up on pin change are filtered to reduce susceptibility to interference. A similar filter reduces false reset on MCLR.

1.2.11 PROGRAMMABLE CLOCK GENERATOR

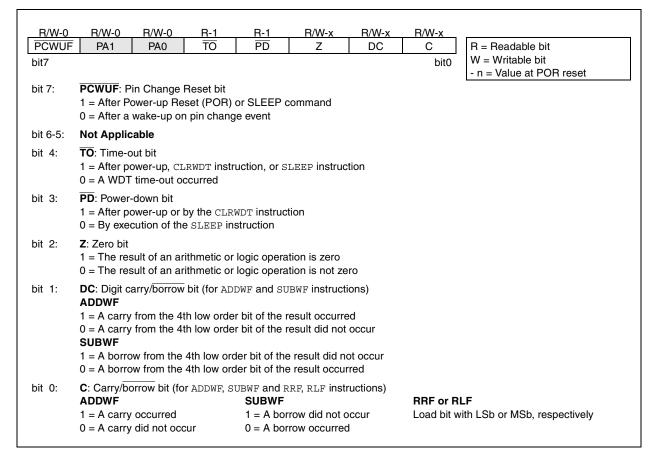
When used in RC mode, the CLKOUT pin can be used as a programmable clock output. The output is connected to TMR0, bit 0 and by setting the prescaler, clock out frequencies of CLKIN/8 to CLKIN/1024 can be generated. The CLKOUT pin can also be used as a general purpose output by modifying TMR0, bit 0.

TABLE 1-1:PIC16HV540 DEVICE

		PIC16HV540
Clock	Maximum Frequency (MHz)	20
Memory	EPROM Program Memory	512
	RAM Data Memory (bytes)	25
Peripherals	Timer Module(s)	TMR0
Packages	I/O Pins	12
	Voltage Range (Volts)	3.5V-15V
	Number of Instructions	33
	Packages	18-pin DIP SOIC 20-pin SSOP

All PICmicro[®] devices have Power-on Reset, selectable WDT, selectable code protect and high I/O current capability.

4.3 STATUS Register


This register contains the arithmetic status of the ALU, the RESET status, and the page preselect bits for program memories larger than 512 words.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable while the PCWUF bit is a read/write bit. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as $000u \ u1uu$ (where u = unchanged).

It is recommended, therefore, that only BCF, BSF and MOVWF instructions be used to alter the STATUS register because these instructions do not affect the Z, DC or C bits from the STATUS register. For other instructions, which do affect STATUS bits, see Section 8.0, Instruction Set Summary.

REGISTER 4-1: STATUS REGISTER (ADDRESS:03h)

4.4 OPTION Register

The OPTION register is a 6-bit wide, write-only register which contains various control bits to configure the Timer0/WDT prescaler and Timer0.

By executing the OPTION instruction, the contents of the W register will be transferred to the OPTION register. A RESET sets the OPTION<5:0> bits.

Example 4-1 illustrates how to initialize the OPTION register.

EXAMPLE 4-1: INSTRUCTIONS FOR INITIALIZING OPTION REGISTER

movlw	` 0000	0111′b	;	load	OPTION	setup	value	into	W
OPTION			;	init	ialize	OPTION	regist	cer	

REGISTER 4-2: OPTION REGISTER

U-0	U-0	W-1	N-1	W-1	W-1	W-1	W-1			
—	_	TOCS T	0SE	PSA	PS2	PS1	PS0	W = Writable bit		
bit7		0 U = Unimplemented bit - n = Value at POR reset								
bit 7-6:	Unimpleme	nted								
bit 5:	TOCS: Time	r0 Clock Sour	ce Seleo	ct bit						
	1 = Transitio	n on T0CKI pi	n							
	0 = Internal	instruction cyc	le clock	(CLKOUT	.)					
bit 4:	1 = Increme	r0 Source Edg nt on high-to-l nt on low-to-h	ow trans	sition on T(•					
bit 3:	PSA: Prescaler Assignment bit 1 = Prescaler assigned to the WDT 0 = Prescaler assigned to Timer0									
bit 2-0:	PS<2:0> : Pi	rescaler Rate	Select b	its						
	Bit Value	Timer0 Rate	WDT	Rate						
	Bit Value	Timer0 Rate	WDT							
				1						
	000	1:2 1:4 1:8	1: 1: 1:	1 2 4						
	000	1:2 1:4 1:8 1:16	1: 1: 1: 1:	1 2 4 8						
	000 001 010 011 100	1:2 1:4 1:8 1:16 1:32	1: 1: 1: 1: 1:	1 2 4 8 16						
	000 001 010 011 100 101	1:2 1:4 1:8 1:16 1:32 1:64	1: 1: 1: 1: 1: 1:	1 2 4 8 16 32						
	000 001 010 011 100	1:2 1:4 1:8 1:16 1:32	1: 1: 1: 1: 1: 1: 1:	1 2 4 8 16 32						

4.5 OPTION2 Register

The OPTION2 register is a 6-bit wide, write-only register which contains various control bits to configure the added features on the PIC16HV540. A Power-on Reset sets the OPTION2<5:0> bits.

Example 4-2 illustrates how to initialize the OPTION2 register.

Note:	All Power-on Resets will disable the
	Brown-out Detect circuit. All subsequent
	resets will not disable the Brown-out
	Detect if enabled.

EXAMPLE 4-2: INSTRUCTIONS FOR INITIALIZING OPTION2 REGISTER

movlw `0001 0111'b ; load OPTION2 setup value into W
tris 0x07 ; initialize OPTION2 register

REGISTER 4-3: OPTION2 REGISTER (TRIS 07H)

U-0	U-0	W-1	W-1	W-1	W-1	W-1	W-1		
		PCWU	SWDTEN	RL	SL	BODL	BODEN	W = Writable bit	
bit7		0 U = Unimplemented bit - n = Value at POR reset							
bit 7-6:	Unimplem	ented							
bit 5:	PCWU : Wake-up on Pin Change 1 = Disabled 0 = Enabled								
bit 4:	1 = WDT is	turned of	Controlled WE it the WDTE WDTEN config	N configu	ration bit = 0	EN bit = 1,	then SWDT	EN is 'don't care'	
bit 3:	RL: Regulated Voltage Level Select bit 1 = 5 volt 0 = 3 volt								
bit 2:	SL: Sleep Voltage Level Select bit 1 = RL bit setting 0 = 3 volt								
bit 1:	BODL: Brown-out Voltage Level Select bit 1 = RL bit setting, but SL during SLEEP 0 = 3 volt								
bit 0:	0 = 3 volt BODEN: Brown-out Enabled 1 = Disabled 0 = Enabled								

NOTES:

6.2 <u>Prescaler</u>

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer (WDT) (WDT postscaler not implemented on PIC16C52), respectively (Section 6.1.2). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that the prescaler may be used by either the Timer0 module or the WDT, but not both. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the WDT, and vice-versa.

The PSA and PS2:PS0 bits (OPTION<3:0>) determine prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x, etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT. The prescaler is neither readable nor writable. On a RESET, the prescaler contains all '0's.

6.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution). To avoid an unintended device RESET, the following instruction sequence (Example 6-1) must be executed when changing the prescaler assignment from Timer0 to the WDT.

EXAMPLE 6-1: CHANGING PRESCALER (TIMER0 \rightarrow WDT)

1.	CLRWDT		;Clear WDT
2.	CLRF	TMR0	;Clear TMR0 & Prescaler
3.	MOVLW	'00xx1111 <i>'</i> b	;These 3 lines (5, 6, 7)
4.	OPTION		; are required only if ; desired
			; desired
5.	CLRWDT		;PS<2:0> are 000 or 001
6.	MOVLW	'00xx1xxx'b	;Set Postscaler to
7.	OPTION		; desired WDT rate

To change prescaler from the WDT to the Timer0 module, use the sequence shown in Example 6-2. This sequence must be used even if the WDT is disabled. A CLRWDT instruction should be executed before switching the prescaler.

EXAMPLE 6-2: CHANGING PRESCALER (WDT→TIMER0)

CLRWDT		;Clear WDT and
		;prescaler
MOVLW	'xxxx0xxx'	;Select TMR0, new
		;prescale value and
		;clock source
OPTION		

6.3 Programmable Clock Generator

When the PIC16HV540 is programmed to operate in the RC oscillator mode, the CLKOUT pin is connected to the compliment state of TMR0<0>. Use of the prescaler rate select bits PSA:PS0 in the OPTION register will provide for frequencies of CLKIN/8 to CLKIN/1024 on the CLKOUT pin.

EXAMPLE 6-3:

Fosc	PRESCALER SETTING/CLKOUT FREQUENCY				
FUSC	CLKIN/1024	CLKIN/8			
1Mhz	976 Hz	125 kHz			
2Mhz	1953 Hz	250 kHz			
3Mhz	2930 Hz	375 kHz			
4Mhz	3906 Hz	500 kHz			

In addition to this mode of operation, TMR0<0> can be toggled via the bcf and bsf bit type instructions. For this mode, the T0CS bit in the OPTION register must be set to 1. This setting configures TMR0 to increment on the T0CKI pin. To set the CLKOUT pin high, a bcf TMR0,0 instruction is used and to set the CLKOUT pin low, the bsf TMR0,0 instruction is used. The T0CKI pin should be pulled high or low to prevent false state changes on the CLKOUT pin.

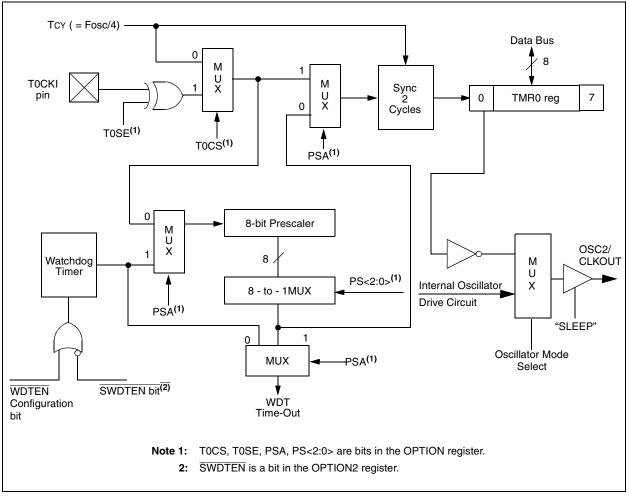
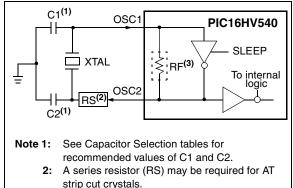


FIGURE 6-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

7.2 Oscillator Configurations

7.2.1 OSCILLATOR TYPES

The PIC16HV540 can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1:FOSC0) to select one of these four modes:


- LP: Low Power Crystal
- XT: Crystal/Resonator
- HS: High Speed Crystal/Resonator
- RC: Resistor/Capacitor

Note:	Not all oscillator selections available for all	
	parts. See Section 7.1.	

7.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

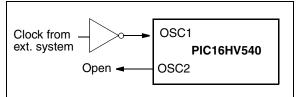

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 7-1). The PIC16HV540 oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source drive the OSC1/CLKIN pin (Figure 7-2).

FIGURE 7-1: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (HS, XT OR LP OSC CONFIGURATION)

3: RF varies with the crystal chosen (approx. value = $10 \text{ M}\Omega$).

FIGURE 7-2: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 7-1:CAPACITOR SELECTION
FOR CERAMIC RESONATORS
- PIC16HV540

Osc	Resonator	Cap. Range	Cap. Range
Type	Freq	C1	C2
ХТ	455 kHz	68-100 pF	68-100 pF
	2.0 MHz	15-33 pF	15-33 pF
	4.0 MHz	10-22 pF	10-22 pF
HS	8.0 MHz	10-22 pF	10-22 pF
	16.0 MHz	10 pF	10 pF

Note: These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

TABLE 7-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR - PIC16HV540

Osc	Resonator	Cap.Range	Cap. Range
Type	Freq	C1	C2
LP	32 kHz ⁽¹⁾	15 pF	15 pF
ХТ	100 kHz	15-30 pF	200-300 pF
	200 kHz	15-30 pF	100-200 pF
	455 kHz	15-30 pF	15-100 pF
	1 MHz	15-30 pF	15-30 pF
	2 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15 pF	15 pF
	20 MHz	15 pF	15 pF

- Note 1: For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.
 - 2: These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

Note: If you change from this device to another device, please verify oscillator characteristics in your application.

7.11 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	Microchip does not recommend code pro-
	tecting windowed devices.

7.12 ID Locations

Four memory locations are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify.

Use only the lower 4 bits of the ID locations and always program the upper 8 bits as '1's.

Note:	Microchip will assign a unique pattern
	number for QTP and SQTP requests and
	for ROM devices. This pattern number will
	be unique and traceable to the submitted
	code.

8.0 INSTRUCTION SET SUMMARY

Each PIC16HV540 instruction is a 12-bit word divided into an OPCODE, which specifies the instruction type, and one or more operands which further specify the operation of the instruction. The PIC16HV540 instruction set summary in Table 8-2 groups the instructions into byte-oriented, bit-oriented, and literal and control operations. Table 8-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator is used to specify which one of the 32 file registers is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8 or 9-bit constant or literal value.

TABLE 8-1: OPCODE FIELD DESCRIPTIONS

Field	Description					
f	Register file address (0x00 to 0x7F)					
W	Working register (accumulator)					
b	Bit address within an 8-bit file register					
k	Literal field, constant data or label					
х	Don't care location (= 0 or 1)					
	The assembler will generate code with $x = 0$.					
	It is the recommended form of use for com-					
	patibility with all Microchip software tools.					
d	Destination select;					
	d = 0 (store result in W)					
	d = 1 (store result in file register 'f')					
	Default is d = 1					
label	Label name					
TOS	Top of Stack					
PC	Program Counter					
WDT	Watchdog Timer Counter					
то	Time-Out bit					
PD	Power-Down bit					
dest	Destination, either the W register or the					
	specified register file location					
[]	Options					
()	Contents					
\rightarrow	Assigned to					
< >	Register bit field					
E	In the set of					
italics	User defined term (font is courier)					

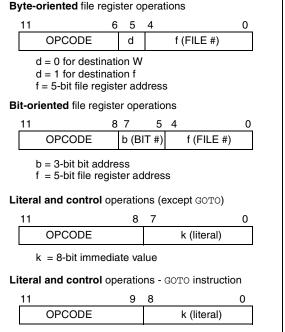

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Figure 8-1 shows the three general formats that the instructions can have. All examples in the figure use the following format to represent a hexadecimal number:

0xhhh

where 'h' signifies a hexadecimal digit.

FIGURE 8-1: GENERAL FORMAT FOR INSTRUCTIONS

k = 9-bit immediate value

ADDWF	Add W and f					
Syntax:	[label] ADDWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$					
Operation:	$(W) + (f) \to (dest)$					
Status Affected:	C, DC, Z					
Encoding:	0001 11df ffff					
Description:	Add the contents of the W register and register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is '1' the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example:	ADDWF FSR, 0					
Before Instru W = FSR = After Instruct W = FSR =	0x17 0xC2					
ANDLW	And literal with W					
Syntax:	[<i>label</i>] ANDLW k					
Operands:	$0 \le k \le 255$					
Operation:	(W).AND. (k) \rightarrow (W)					
Status Affected:	Z					
Encoding:	1110 kkkk kkkk					
Description:	The contents of the W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.					
Words:	1					
Cycles:	1					
Example:	ANDLW 0x5F					
Before Instru W =	oxA3					
After Instruct W =	ion 0x03					

ANDWF	AND W with f				
Syntax:	[label] ANDWF f,d				
Operands:	$0 \le f \le 31$ $d \in [0,1]$				
Operation:	(W) .AND. (f) \rightarrow (dest)				
Status Affected:	Z				
Encoding:	0001 01df ffff				
Description:	The contents of the W register are AND'ed with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is '1' the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example:	ANDWF FSR, 1				
Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0x17 FSR = 0x02					
BCF	Bit Clear f				
Syntax:	[label] BCF f,b				
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$				
Operation:	$0 \rightarrow (f{<}b{>})$				
Status Affected:	None				
Encoding:	0100 bbbf fff				
Description:	Bit 'b' in register 'f' is cleared.				
Words:	1				
Cycles:	1				
Example:	BCF FLAG_REG, 7				
Before Instruction FLAG_REG = 0xC7					
After Instruct FLAG_R	tion EG = 0x47				

SLEEP	Enter SLEEP Mode				
Syntax:	[label] SLEEP				
Operands:	None				
Operation:	$\begin{array}{l} 00h \rightarrow WDT; \\ 0 \rightarrow \underline{WDT} \ prescaler; \\ 1 \rightarrow \underline{TO}; \\ 0 \rightarrow \overline{PD} \\ 1 \rightarrow \overline{PCWUF} \end{array}$				
Status Affected:	TO, PD, PCWUF				
Encoding:	0000 0000 0011				
Description:	Time-out status bit $(\overline{\text{TO}})$ is set. The power down status bit $(\overline{\text{PD}})$ is cleared. The WDT and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See sec- tion on SLEEP for more details.				
Words:	1				
Cycles:	1				
Example:	SLEEP				

SUBWF	Subtract W from f				
Syntax:	[lab	el]	SUBWF	f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$				
Operation:	(f) –	• (W) •	\rightarrow (dest)		
Status Affected:	С, Г	DC, Z			
Encoding:	00	00	10df	ffff	
Description:	Subtract (2's complement method) the W register from register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example 1:	SUB	WF	REG1, 1		
Before Instru REG1 W C	ctior = = =	1 3 2 ?			
After Instruct	ion				
REG1 W C <u>Example 2</u> :	= = =	1 2 1	; result is	positive	
Before Instru	ctior	ı			
REG1 W	=	2			
C	=	2 ?			
After Instruct	ion				
REG1	=	0			
W C	=	2 1	; result is	zero	
Example 3:			,	20.0	
Before Instruction					
REG1 W	=	1 2			
C	=	?			
After Instruct	ion				
REG1	=	FF			
W C	=	2 0	; result is	negative	
				-	

10.0 ELECTRICAL CHARACTERISTICS - PIC16HV540

Absolute Maximum Ratings[†]

Ambient temperature under bias	–20°C to +85°C
Storage temperature	–65°C to +150°C
Voltage on VDD with respect to VSS	
Voltage on MCLR with respect to Vss	0 to +14V
Voltage on all other pins with respect to Vss	–0.6V to (VDD + 0.6V)
Total power dissipation ⁽¹⁾	800 mW
Max. current out of Vss pin	
Max. current into Vod pin	100 mA
Max. current into an input pin (T0CKI only)	±500 μA
Input clamp current, Iк (VI < 0 or VI > VDD)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Max. output current sunk by any I/O pin	25 mA
Max. output current sourced by any I/O pin	10 mA
Max. output current sourced by a single I/O port A or B	40 mA
Max. output current sourced by a single I/O port A or B	50 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-VO	H) X IOH} + Σ (VOL X IOL)

2: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the $\overline{\text{MCLR}}$ pin rather than pulling this pin directly to Vss.

[†] NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

10.2 DC Characteristics: PIC16HV540-04, 20 (Commercial) PIC16HV540-04I, 20I (Industrial)

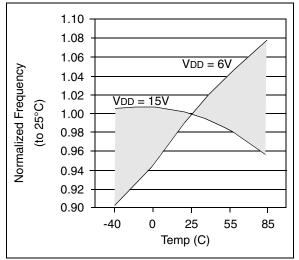
DC Characteristics All Pins Except Power Supply Pins	Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le Ta \le +70^{\circ}C$ (commercial) $-40^{\circ}C \le Ta \le +85^{\circ}C$ (industrial)					
Characteristic	Sym.	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
Input Low Voltage I/O Ports PORTA MCLR (Schmitt Trigger) TOCKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1 I/O Ports PORTB	VIL	VSS VSS VSS VSS VSS VSS	 	0.10 VREG 0.10 VREG 0.10 VREG 0.10 VREG 0.3 VREG 0.10 VREG	V V V V V	Pin at Hi-impedance RC option only ⁽⁴⁾ HS, XT, and LP options
Input High Voltage I/O Ports PORTA MCLR (Schmitt Trigger) TOCKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1 I/O Ports PORTB	VIH	0.25 VREG+0.8V 0.85 VREG 0.85 VREG 4.5V 4.5V 0.25 VREG+0.8V		VREG VDD VDD VDD VDD VDD VDD		For all VREG RC option only (VDD = 15V) ⁽⁴⁾ HS, XT, and LP options (VDD = 15V)
Hysteresis of Schmitt Trigger inputs	VHYS	0.15 VREG*	—	—	V	
Input Leakage Current ⁽³⁾ I/O Ports PORTA I/O Ports PORTB	lι∟	-1.0 -1.0	0.5 0.5	+1.0 +1.0	μΑ μΑ	VSS \leq VPIN \leq VIO, Pin at Hi-impedance VSS \leq VPIN \leq VDD
MCLR T0CKI OSC1		-5.0 -3.0 -3.0	0.5 0.5 0.5	+5.0 +3.0 +3.0 +3.0	μΑ μΑ μΑ μΑ	$VPIN = VSS + 0.25V(2)$ $VPIN = VDD(2)$ $VSS \le VPIN \le VDD$ $VSS \le VPIN \le VDD,$ $HS, XT, and LP options$
Output Low Voltage I/O Ports PORTA	Vol	_	_	0.6	v	VDD = 15V, VREG = 5V, IOL = 8.7 mA VDD = 15V, VREG = 3V, IOL = 5.0 mA
OSC2/CLKOUT I/O Ports PORTB		_	— —	0.6 0.6	v v	VDD = 15V, VREG = 5V, IOL = 1.2 mA, (RC option only) VDD = 15V, VREG = 3V, IOL = 1.0 mA, (RC option only) VDD = 15V, VREG = 5V, IOL = 3.0 mA VDD = 10V, VREG = 3V, IOL = 3.0 mA
Output High Voltage I/O ports ⁽³⁾ PORTA	Vон	VREG-0.7	_		v	Vdd = 15V, Vio = 3V, Iон = -2.0 mA
OSC2/CLKOUT		VREG-0.7 VDD-0.7	_	_	v v	VDD = 15V, VIO = 5V, IOH = -3.0 mA VDD = 15V, VIO = 3V, IOH = -0.5 mA (RC option only) VDD = 15V, VIO = 5V, IOH = -1.0 mA (RC option only) VDD = 15V, VIO = 5V, IOH = -5.4 mA
Threshold Voltage I/O Ports PORTB [7]	VLEV	VDD-0.7	 Vdd-1.0	 Vdd-0.5	v	VDD = 15V, VIO = 5V, IOH = -5.4 IIIA VDD = 15V

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.

3: Negative current is defined as coming out of the pin.


4: For the RC option, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16HV540 be driven with external clock in RC mode.

11.0 DC AND AC CHARACTERISTICS - PIC16HV540

The graphs and tables provided in this section are for design guidance and are not tested or guaranteed. In some graphs or tables the data presented are outside specified operating range (e.g., outside specified VDD range). This is for information only and devices will operate properly only within the specified range.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. "Typical" represents the mean of the distribution while "max" or "min" represents (mean + 3σ) and (mean - 3σ) respectively, where σ is standard deviation.

FIGURE 11-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE

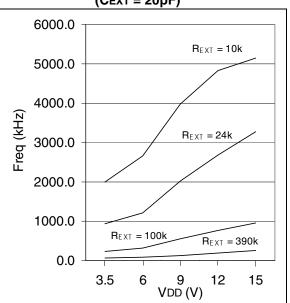
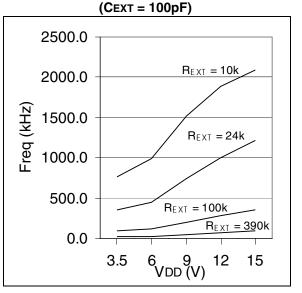


TABLE 11-1: RC OSCILLATOR FREQUENCIES


Сехт	Вехт	Average Fosc, Vio = 5V				
CEXT	REXI	$25^{\circ}C$, VDD = 6V	$25^{\circ}C$, VDD = $15V$			
20 pF	3.3k	4986.7 kHz	(1)			
	5k	4233.3 kHz	(1)			
	10k	2656.7 kHz	5150.0 kHz			
	24k	1223.3 kHz	3286.7 kHz			
	100k	325.7 kHz	955.7 kHz			
	390k	79.0 kHz	250.7 kHz			
100 pF	3.3k	1916.7 kHz	(1)			
	5k	1593.3 kHz	(1)			
	10k	995.7 kHz	2086.7 kHz			
	24k	448.3 kHz	1210.0 kHz			
	100k	116.0 kHz	355.7 kHz			
	390k	28.3 kHz	89.7 kHz			
300 pF	3.3k	744 kHz	(1)			
	5k	620.3 kHz	(1)			
	10k	382.0 kHz	817.3 kHz			
	24k	169.7 kHz	483.0 kHz			
	100k	44.1 kHz	135.7 kHz			
	390k	10.6 kHz	34.4 kHz			

Note 1: This combination of R, C and VDD draws too much current and prohibits oscillator operation.

FIGURE 11-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD (CEXT = 20pF)

FIGURE 11-3: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

© 2000 Microchip Technology Inc.

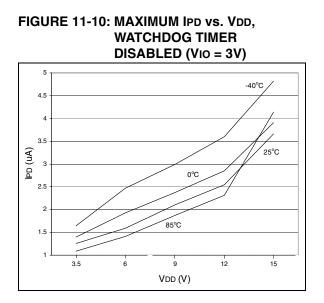


FIGURE 11-11: TYPICAL IPD vs. VDD, WATCHDOG TIMER ENABLED (VIO = 3V)

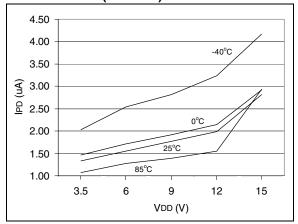
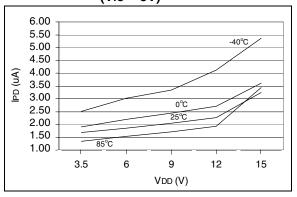
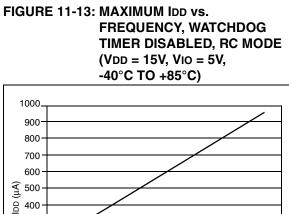
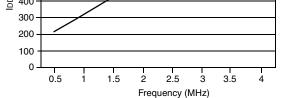





FIGURE 11-12: MAXIMUM IPD vs. VDD, WATCHDOG TIMER ENABLED (VIO = 3V)

FIGURE 11-14: MAXIMUM IDD vs. FREQUENCY, WATCHDOG TIMER ENABLED, RC MODE (VDD = 15V, VIO = 5V)

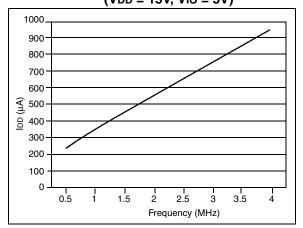
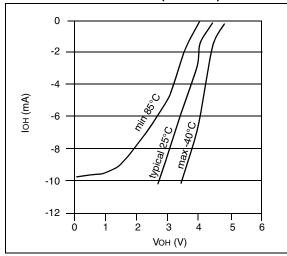



FIGURE 11-15: IOH vs. VOH ON PORTA,

Note: Current being applied is being applied simultaneously to all 4 PORTA pins.

FIGURE 11-16: IOH vs. VOH ON PORTA, VDD = 5V (VIO = 5V)

Note: Current being applied is being applied simultaneously to all 4 PORTA pins.

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

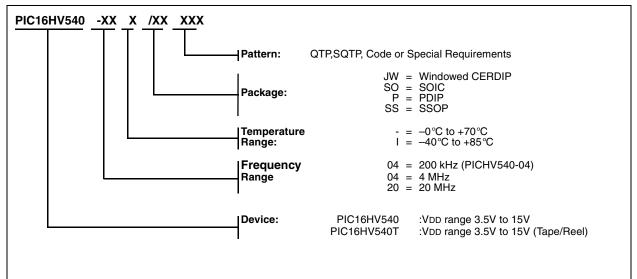
The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- · Listing of seminars and events

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and 1-480-786-7302 for the rest of the world.


991103

Trademarks: The Microchip name, logo, PIC, PICmicro, PICSTART, PICMASTER, PRO MATE and MPLAB are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. *Flex*ROM and *fuzzy*LAB are trademarks and SQTP is a service mark of Microchip in the U.S.A.

All other trademarks mentioned herein are the property of their respective companies.

PIC16HV540 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 786-7277.
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.