E·XFL

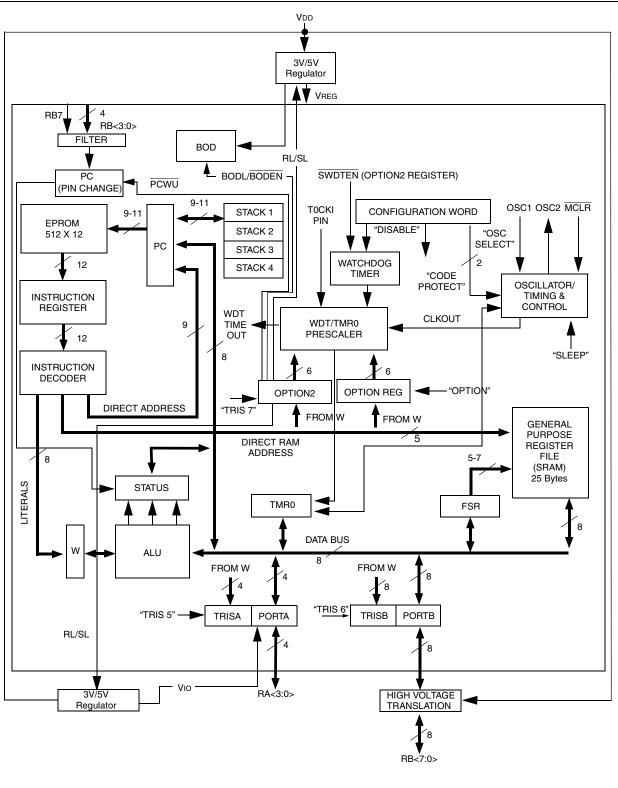
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	12
Program Memory Size	768B (512 x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 15V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16hv540-20-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

4.5 OPTION2 Register

The OPTION2 register is a 6-bit wide, write-only register which contains various control bits to configure the added features on the PIC16HV540. A Power-on Reset sets the OPTION2<5:0> bits.

Example 4-2 illustrates how to initialize the OPTION2 register.

Note:	All Power-on Resets will disable the
	Brown-out Detect circuit. All subsequent
	resets will not disable the Brown-out
	Detect if enabled.

EXAMPLE 4-2: INSTRUCTIONS FOR INITIALIZING OPTION2 REGISTER

movlw `0001 0111'b ; load OPTION2 setup value into W
tris 0x07 ; initialize OPTION2 register

REGISTER 4-3: OPTION2 REGISTER (TRIS 07H)

U-0	U-0	W-1	W-1	W-1	W-1	W-1	W-1	
		PCWU	SWDTEN	RL	SL	BODL	BODEN	W = Writable bit
bit7							0	U = Unimplemented bit - n = Value at POR reset
bit 7-6:	Unimplem	ented						
bit 5:	PCWU : Wa 1 = Disable 0 = Enable	ed .	Pin Change					
bit 4:	SWDTEN : Software Controlled WDT Enable bit 1 = WDT is turned off it the WDTEN configuration bit = 0 0 = WDT is on if the WDTEN configuration bit = 0; if WDTEN bit = 1, then SWDTEN is 'don't care'							
bit 3:	RL: Regulated Voltage Level Select bit 1 = 5 volt 0 = 3 volt							
bit 2:	SL: Sleep Voltage Level Select bit 1 = RL bit setting 0 = 3 volt							
bit 1:	BODL: Brown-out Voltage Level Select bit 1 = RL bit setting, but SL during SLEEP 0 = 3 volt							
bit 0:	BODEN : B 1 = Disable 0 = Enable	ed	Enabled					

4.8 Indirect Data Addressing; INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

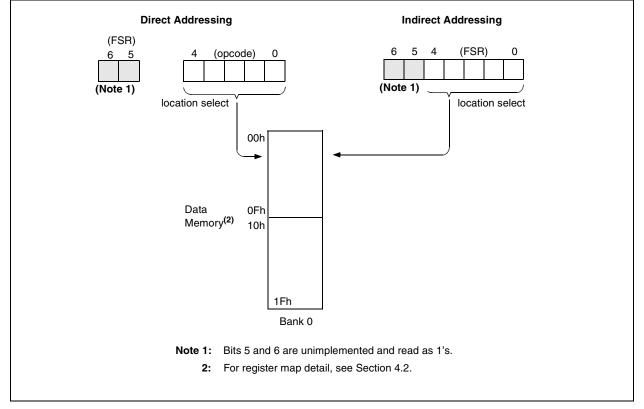
EXAMPLE 4-3: INDIRECT ADDRESSING

- Register file 05 contains the value 10h
- Register file 06 contains the value 0Ah
- Load the value 05 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 06)
- A read of the INDR register now will return the value of 0Ah.

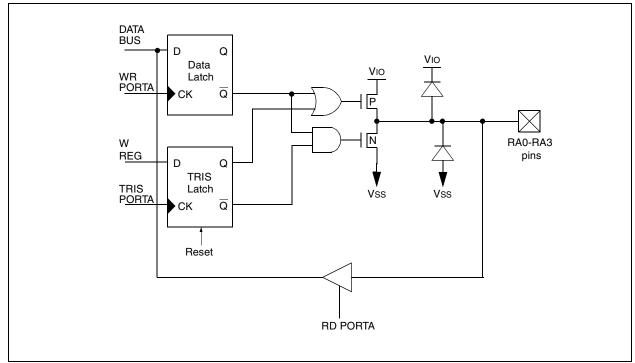
Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).

A simple program to clear RAM locations 10h-1Fh using indirect addressing is shown in Example 4-4.

FIGURE 4-4: DIRECT/INDIRECT ADDRESSING


EXAMPLE 4-4: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

NEXT	movlw movwf clrf incf btfsc goto	0x10 FSR INDF FSR,F FSR,4 NEXT	<pre>;initialize pointer ; to RAM ;clear INDF register ;inc pointer ;all done? ;NO, clear next</pre>
CONTINUE	J		, ,
	:	;	YES, continue


The FSR is a 5-bit (PIC16HV540) wide register. It is used in conjunction with the INDF register to indirectly address the data memory area.

The FSR<4:0> bits are used to select data memory addresses 00h to 1Fh.

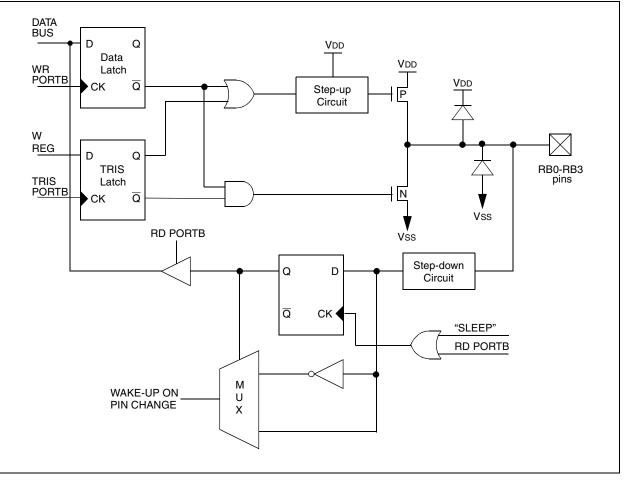

PIC16HV540: Do not use banking. FSR<6:5> are unimplemented and read as '1's.

FIGURE 5-1: BLOCK DIAGRAM OF PORTA<0:3> PINS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on MCLR and WDT Reset	Value on Wake-up on Pin Change	Value on Brown-Out Reset
N/A	TRIS	I/O control	I/O control registers (TRISA, TRISB)					1111 1111	1111 1111	1111 1111	1111 1111		
05h	PORTA	_	_	_	_	RA3	RA2	RA1	RA0	xxxx	uuuu	uuuu	xxxx
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu uuuu	uuuu uuuu	xxxx xxxx
03h	STATUS	PCWUF	PA1	PA0	TO	PD	Z	DC	С	100x xxxx	100q quuu	000u uuuu	x00x xxxx
N/A	OPTION2	_	_	PCWU	SWDTEN	RL	SL	BODL	BODEN	11 1111	uu uuuu	uu uuuu	xx xxxx

TABLE 5-1: SUMMARY OF PORT REGISTERS

Legend: Shaded boxes = unimplemented, read as '0', --= unimplemented, read as '0', x = unknown, u = unchanged.

5.5 I/O Programming Considerations

5.5.1 BI-DIRECTIONAL I/O PORTS

Some instructions operate internally as read followed by write operations. The BCF and BSF instructions, for example, read the entire port into the CPU, execute the bit operation and re-write the result. Caution must be used when these instructions are applied to a port where one or more pins are used as input/outputs. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU, bit5 to be set and the PORTB value to be written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (say bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch may now be unknown.

Example 5-1 shows the effect of two sequential read-modify-write instructions (e.g., ${\tt BCF}\,,~{\tt BSF},$ etc.) on an I/ O port.

A pin actively outputting a high or a low should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

EXAMPLE 5-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT Settings

; PORTB<7:4> Inputs

; PORTB<3:0> Outputs

;PORTB<7:6> have external pull-ups and are ;not connected to other circuitry

, ; ;			PORT	latch	PORT	pins
,	MOVLW	PORTB, PORTB, 03Fh PORTB	;01pp ;10pp ; ;10pp	pppp	11pp 11pp 10pp	pppp
•						

;Note that the user may have expected the pin ;values to be 00pp pppp. The 2nd BCF caused ;RB7 to be latched as the pin value (High).

5.5.2 SUCCESSIVE OPERATIONS ON I/O PORTS

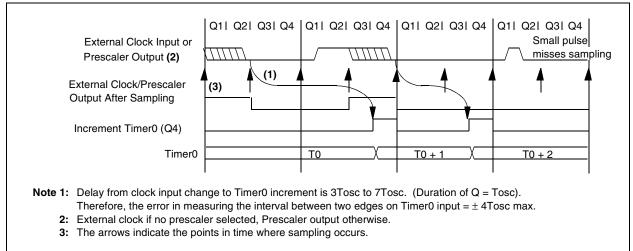
The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-5). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction, which causes that file to be read into the CPU, is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

FIGURE 5-5: SUCCESSIVE I/O OPERATION

	PC	PC + 1	PC + 2	V PC + 3	
Instruction fetched	1 1	MOVF PORTB,W		NOP	This example shows a write
RB7:RB0	<u>۱</u>	I	X	·	to PORTB followed by a read from PORTB.
	1 	Port pin written here	Port pin sampled here	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Instruction executed		MOVWF PORTB (Write to PORTB)	MOVF PORTB,W (Read PORTB)	NOP	
		Write to	(Read		•

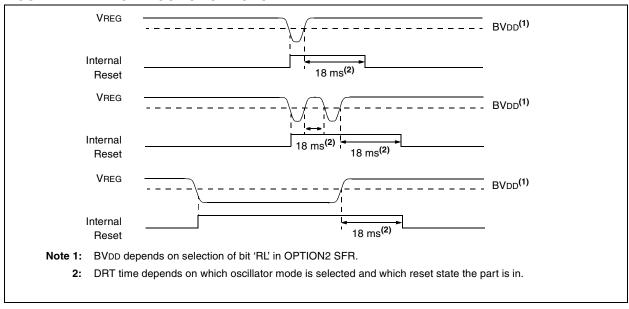
NOTES:

6.1 Using Timer0 with an External Clock


When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

6.1.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple counter-type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.


6.1.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 6-5 shows the delay from the external clock edge to the timer incrementing.

FIGURE 6-5: TIMER0 TIMING WITH EXTERNAL CLOCK

7.7 <u>Watchdog Timer (WDT)</u>

The Watchdog Timer (WDT) is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins have been stopped, for example, by execution of a SLEEP instruction. During normal operation or SLEEP, a WDT Reset or Wake-up Reset generates a device RESET.

The $\overline{\text{TO}}$ bit (STATUS<4>) will be cleared upon a Watchdog Timer Reset.

The Watchdog Timer is enabled/disabled by a device configuration bit (see Figure 7-1). If the WDT is enabled, software execution may not disable this function. When the WDTEN configuration bit is cleared, the SWDTEN bit, OPTION2<4>, enables/disables the operation of the WDT.

7.7.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). If a longer time-out period is desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT (under software control) by writing to the OPTION register. Thus, time-out a period of a nominal 2.3 seconds can be realized. These periods vary with temperature, VDD and part-to-part process variations (see DC specs).

Under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler), it may take several seconds before a WDT time-out occurs.

7.7.2 WDT PROGRAMMING CONSIDERATIONS

The CLRWDT instruction clears the WDT and the postscaler, if assigned to the WDT, and prevents it from timing out and generating a device RESET.

The SLEEP instruction resets the WDT and the postscaler, if assigned to the WDT. This gives the maximum SLEEP time before a WDT Wake-up Reset.

7.8 Internal Voltage Regulators

The PIC16HV540 has 2 internal voltage regulators. The PORTA I/O pads and OSC2 are powered by one internal voltage regulator V_{IO} , while the second internal voltage regulator V_{REG} , powers the PICmicro[®] device core. Both regulated voltage levels can be synchronously switched in the active modes between 3V and 5V through bit "RL" in the OPTION2 register. In addition, the "SL" bit in the OPTION2 register can be used to control the core's regulated voltage level during SLEEP mode. V_{REG} regulates the 15V power applied to the V_{DD} pin.

The on-chip Brown-out Detect circuitry monitors the CPU regulated voltage V_{REG} , for determining if a brown-out reset is generated (see Section 7.6 for more details on the BOD).

The regulator circuits are identical in functional nature but only the V_{IO} regulator voltage can be measured, externally (See Section 10.1 for V_{IO} parameters). The operational voltage range and pin loading requirements must be considered to ensure proper system operation. For example, if 3V regulation is implemented during the SLEEP mode and 40mA is being sourced from PORTA, the V_{IO} regulation voltage may approach the specified minimum voltage. This may be an issue to consider for connections to external circuitry. Likewise, if zero current is sourced from the PORTA pins, the regulation

BSF	Bit Set f	BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BSF f,b	Syntax:	[label] BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$	Operands:	$0 \le f \le 31$ $0 \le b < 7$
Operation:	$1 \rightarrow (f < b >)$	Operation:	skip if (f) = 1
Status Affected:	None	Status Affected:	None
Encoding:	0101 bbbf ffff	Encoding:	0111 bbbf ffff
Description:	Bit 'b' in register 'f' is set.	Description:	If bit 'b' in register 'f' is '1' then the next
Words:	1		instruction is skipped. If bit 'b' is '1', then the next instruction
Cycles:	1		fetched during the current instruction
Example:	BSF FLAG_REG, 7		execution, is discarded and an NOP is executed instead, making this a 2 cycle
Before Instru			instruction.
	EG = 0x0A	Words:	1
After Instruc	tion EG = 0x8A	Cycles:	1(2)
		Example:	HERE BTFSS FLAG,1
BTFSC	Bit Test f, Skip if Clear		FALSE GOTO PROCESS_CODE TRUE •
Syntax:	[label] BTFSC f,b		•
Operands:	$0 \le f \le 31$		•
	$0 \le b \le 7$	Before Instr PC	= address (HERE)
Operation:	skip if $(f < b >) = 0$	After Instruc	
Status Affected:	None	If FLAG	<1> = 0,
Encoding:	0110 bbbf ffff	PC if FLAG∢	= address (FALSE); <1> = 1,
Description:	If bit 'b' in register 'f' is 0 then the next instruction is skipped.	PC	= address (TRUE)
	If bit 'b' is 0 then the next instruction fetched during the current instruction execution is discarded, and an NOP is executed instead, making this a 2 cycle instruction.		
Words:	1		
Cycles:	1(2)		
Example:	HERE BTFSC FLAG,1 FALSE GOTO PROCESS_CODE TRUE • •		
Before Instru PC	uction = address (HERE)		
After Instruc			
if FLAG< PC	<pre>:1> = 0, = address (TRUE);</pre>		
if FLAG<	:1> = 1,		
PC	= address (FALSE)		

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in \left[0,1\right] \end{array}$
Operation:	$(\overline{f}) \rightarrow (dest)$
Status Affected:	Z
Encoding:	0010 01df ffff
Description:	The contents of register 'f' are comple- mented. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example:	COMF REG1,0
Before Instru REG1	uction = 0x13
After Instruc	tion
REG1 W	= 0x13 = 0xEC
vv	
DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$
Operation:	(f) – 1 \rightarrow (dest)
Status Affected:	Z
Encoding:	0000 11df ffff
Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example:	DECF CNT, 1
Before Instru CNT Z	uction = 0x01 = 0
After Instruc	
CNT	= 0x00
Z	= 1

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in \ [0,1] \end{array}$
Operation:	$(f) - 1 \rightarrow d;$ skip if result = 0
Status Affected:	None
Encoding:	0010 11df ffff
Description:	The contents of register 'f' are decre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded and an NOP is executed instead mak- ing it a two cycle instruction.
Words:	1
Cycles:	1(2)
Example:	HERE DECFSZ CNT, 1 GOTO LOOP
	CONTINUE •
	•
Before Instru PC	uction = address (HERE)
After Instruc CNT if CNT PC if CNT PC	<pre>= CNT - 1; = 0, = address (CONTINUE);</pre>
GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \le k \le 511$
Operation:	$k \rightarrow PC < 8:0>;$ STATUS<6:5> $\rightarrow PC < 10:9>$
Status Affected:	None
Encoding:	101k kkkk kkkk
Description:	GOTO is an unconditional branch. The 9-bit immediate value is loaded into PC bits <8:0>. The upper bits of PC are loaded from STATUS<6:5>. GOTO is a two cycle instruction.
Words:	1
Cycles:	2
Example:	GOTO THERE
After Instruc	
PC =	address (THERE)

MOVF	Move f	MOVWF	Move W to f
Syntax:	[label] MOVF f,d	Syntax:	[label] MOVWF f
Operands:	$0 \le f \le 31$	Operands:	$0 \le f \le 31$
	$d \in [0,1]$	Operation:	$(W) \to (f)$
Operation:	$(f) \rightarrow (dest)$	Status Affected:	None
Status Affected:	Z	Encoding:	0000 001f ffff
Encoding:	0010 00df ffff	Description:	Move data from the W register to regis-
Description:	The contents of register 'f' is moved to		ter 'f'.
	destination 'd'. If 'd' is 0, destination is the W register. If 'd' is 1, the destination	Words:	1
	is file register 'f'. 'd' is 1 is useful to test	Cycles:	1
	a file register since status flag Z is affected.	Example:	MOVWF TEMP_REG
Words:	1	Before Instr	
Cycles:	1	TEMP_F W	REG = 0xFF = 0x4F
Example:	MOVF FSR, 0	After Instruc	
After Instruc		TEMP_F	
W =	value in FSR register	W	= 0x4F
		NOP	No Operation
MOVLW	Move Literal to W	Syntax:	[label] NOP
Syntax:	[<i>label</i>] MOVLW k	Operands:	None
Operands:	$0 \le k \le 255$	Operation:	No operation
Operation:	$k \rightarrow (W)$	Status Affected:	None
Status Affected:	None	Encoding:	0000 0000 0000
Encoding:	1100 kkkk kkkk	Description:	No operation.
Description:	The eight bit literal 'k' is loaded into the	Words:	1
	W register. The don't cares will assem- ble as 0s.	Cycles:	1
Words:	1	Example:	NOP
Cycles:	1		
Example:	MOVLW 0x5A		
Litample.	NCVIW UXDA		

After Instruction W = 0x5

0x5A

OPTION	Load OPTION Regis	ter				
Syntax:	[label] OPTION					
Operands:	None					
Operation:	$(W) \rightarrow OPTION$					
Status Affected:	None					
Encoding:	0000 0000 00	10				
Description:	The content of the W reg	gister is loaded				
	into the OPTION registe	r.				
Words:	1					
Cycles:	1					
Example	OPTIO N					
Before Instru						
W	= 0x07					
After Instruct	ion					
OPTION	= 0x07					
RETLW	Return with Literal i	n W				
Syntax:	[label] RETLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	$k \rightarrow$ (W);					
	$TOS \rightarrow PC$					
Status Affected:	None					
Encoding:	1000 kkkk kkk	:k				
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two cycle instruction.					
Words:	1					
Cycles:	2					
Example:	CALL TABLE ;W cont	ains				
	;table					
	; value.	has table				
	 , w now ; value. 					
TABLE						
TABLE	ADDWF PC ;W = of RETLW k1 ;Begin					
	RETLW k2 ;					
	•					
	•					
	RETLW kn ; End c	of table				
Before Instru W =						
After Instruct	IOU					
	value of k8					

RLF	Rotate Left f through Carry
Syntax:	[label] RLF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in \ [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Encoding:	0011 01df ffff
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example:	RLF REG1,0
Before Instru REG1 C	uction = 1110 0110 = 0
After Instruc REG1 W C	-
RRF	Rotate Right f through Carry
RRF Syntax:	Rotate Right f through Carry [<i>label</i>] RRF f,d
Syntax:	[label] RRF f,d 0 \leq f \leq 31
Syntax: Operands:	$\begin{bmatrix} label \end{bmatrix} RRF f,d$ $0 \le f \le 31$ $d \in [0,1]$
Syntax: Operands: Operation:	$\begin{bmatrix} label \end{bmatrix} RRF f,d$ $0 \le f \le 31$ $d \in [0,1]$ See description below
Syntax: Operands: Operation: Status Affected:	$\begin{bmatrix} label \end{bmatrix} RRF f,d$ $0 \le f \le 31$ $d \in [0,1]$ See description below C $0011 00df ffff$ The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
Syntax: Operands: Operation: Status Affected: Encoding:	$\begin{bmatrix} label \end{bmatrix} RRF f,d$ $0 \le f \le 31$ $d \in [0,1]$ See description below C $0011 00df ffff$ The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed
Syntax: Operands: Operation: Status Affected: Encoding:	$\begin{bmatrix} label \end{bmatrix} RRF f,d$ $0 \le f \le 31$ $d \in [0,1]$ See description below C $0011 00df ffff$ The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
Syntax: Operands: Operation: Status Affected: Encoding: Description:	[<i>label</i>] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f' register 'f'
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	[<i>label</i>] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f' register 'f' 1
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	[<i>label</i>] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f' 1 1 RRF REG1, 0
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example: Before Instru REG1	[<i>label</i>] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. 1 1 RRF REG1, 0 iction = 1110 0110 = 0

SWAPF	SWAPF Swap Nibbles in f						
Syntax:	[label] SWAPF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \left[0,1 \right] \end{array}$						
Operation:	$\begin{array}{l} (f{<}3:0{>}) \rightarrow (dest{<}7:4{>});\\ (f{<}7:4{>}) \rightarrow (dest{<}3:0{>}) \end{array}$						
Status Affected:	None						
Encoding:	0011 10df ffff						
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.						
Words:	1						
Cycles:	1						
Example	SWAPF REG1, 0						
Before Instru REG1	iction = 0xA5						
After Instruct	tion						
REG1 W	= 0xA5 = 0X5A						
TRIS	Load TRIS Register						
Syntax:	[<i>label</i>] TRIS f						
Operands:	f = 5, 6 or 7						
Operation:	(W) \rightarrow TRIS register f						
Status Affected:	None						
Encoding:	0000 0000 0fff						
Description:	TRIS register 'f' (f = 5, 6, or 7^*) is loaded with the contents of the W register						
Words:	1						
Cycles:	1						
Example	TRIS PORTA						
Before Instru W	iction = 0XA5						
After Instruct TRISA	tion = 0XA5						

*A TRIS 7 operation will update the OPTION2 SFR.

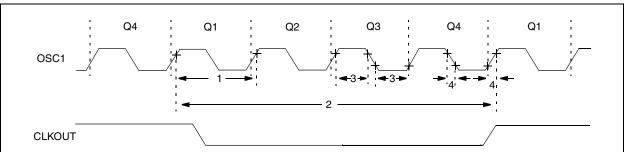
XORLW	Exclusive OR literal with W					
Syntax:	[<i>label</i>] XORLW k					
Operands:	$0 \le k \le 255$					
Operation:	(W) .XOR. $k \rightarrow (W)$					
Status Affected:	Z					
Encoding:	1111 kkkk kkkk					
Description:	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W register.					
Words:	1					
Cycles:	1					
Example:	XORLW 0xAF					
Before Instru W =	oxB5					
After Instruct W =	ion 0x1A					
XORWF	Exclusive OR W with f					
Syntax:	[<i>label</i>] XORWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$					
Operation:	(W) .XOR. (f) \rightarrow (dest)					
Status Affected:	Z					
Encoding:	0001 10df ffff					
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example	XORWF REG,1					
Before Instru REG W						
After Instruct	= 0,85					

	PIC12CX	PIC1400	PIC16C	PIC160	PIC160	PIC16F	PIC160	PIC16C	PIC160	PIC16F8	2912I9	971919	7971919	PIC18C)	83CX 52CX 54CX	кхѕэн	мсвех	MCP251
MPLAB [®] Integrated Development Environment	>	>	>	>	>	>	>	>	>	>	>	>	>	>				
MPLAB [®] C17 Compiler												>	>					
MPLAB [®] C18 Compiler														>				
	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>		
	>	>	>	>	>	** ⁄	>	>	>	>	>	>	>	>				
PICMASTER/PICMASTER-CE	>	>	>	>	>		>	>	>		>	>	>					
ICEPIC™ Low-Cost In-Circuit Emulator	>		>	>	>		>	>	>		>							
MPLAB [®] -ICD In-Circuit Debugger				*>			*			>								
PICSTART [®] PIus Low-Cost Universal Dev. Kit	>	>	>	>	>	**`	>	>	`	>	>	~	~	>				
PRO MATE [®] II Universal Programmer	>	>	>	>	>	** ^	>	>	>	>	>	>	>	>	>	>		
	>		>	<u> </u>			L											
			>		~		^ +		~			~						
				<+ <			<+ <							>				
											`							
		>																
													~					
KEELoo [®] Evaluation Kit																>		
KEELoo Transponder Kit																`		
microlD™ Programmer's Kit			<u> </u>	<u> </u>			L										~	
125 kHz microID Developer's Kit																	~	
125 kHz Anticollision microlD Developer's Kit																	>	
13.56 MHz Anticollision microlD Developer's Kit																	~	
MCP2510 CAN Developer's Kit																		>

1

 $\ensuremath{\textcircled{}^{\odot}}$ 2000 Microchip Technology Inc.

10.0 ELECTRICAL CHARACTERISTICS - PIC16HV540


Absolute Maximum Ratings[†]

Ambient temperature under bias	–20°C to +85°C
Storage temperature	–65°C to +150°C
Voltage on VDD with respect to VSS	
Voltage on MCLR with respect to Vss	0 to +14V
Voltage on all other pins with respect to Vss	–0.6V to (VDD + 0.6V)
Total power dissipation ⁽¹⁾	800 mW
Max. current out of Vss pin	
Max. current into Vod pin	100 mA
Max. current into an input pin (T0CKI only)	±500 μA
Input clamp current, Iк (VI < 0 or VI > VDD)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Max. output current sunk by any I/O pin	25 mA
Max. output current sourced by any I/O pin	10 mA
Max. output current sourced by a single I/O port A or B	40 mA
Max. output current sourced by a single I/O port A or B	50 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-VC)H) x IOH} + Σ (VOL x IOL)

2: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the $\overline{\text{MCLR}}$ pin rather than pulling this pin directly to Vss.

[†] NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

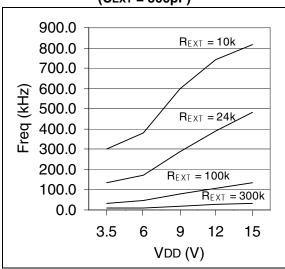
10.4 Timing Diagrams and Specifications

FIGURE 10-2: EXTERNAL CLOCK TIMING - PIC16HV540

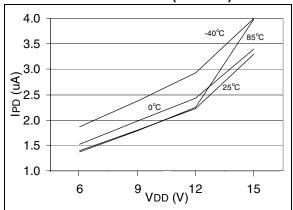
TABLE 10-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16HV540

AC Charac	Characteristics Standard Operating Co		unless	otherwis	se specif	ied)	
		Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ (commercial)					
		$-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial)					
Parameter No.	Sym.	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Unit s	Conditions
	Fosc	External CLKIN Frequency ⁽²⁾	DC	_	4.0	MHz	RC osc mode
			DC	_	2.0	MHz	HS osc mode
			DC	_	4.0	MHz	XT osc mode
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency ⁽²⁾	DC	_	4.0	MHz	RC osc mode
			0.1	—	2.0	MHz	HS osc mode
			0.1	—	4.0	MHz	XT osc mode
			5	—	200	kHz	LP osc mode
1	Tosc	External CLKIN Period ⁽²⁾	250	_	_	ns	RC osc mode
			250	—	—	ns	HS osc mode
			250	—	—	ns	XT osc mode
			5.0	—	—	μs	LP osc mode
		Oscillator Period ⁽²⁾	250	_	_	ns	RC osc mode
			250	—	10,000	ns	HS osc mode
			250	—	10,000	ns	XT osc mode
			50	—	200	μs	LP osc mode
2	Тсү	Instruction Cycle Time ⁽³⁾	—	4/Fosc	_	_	
3	TosL,	Clock in (OSC1) Low or High Time	50*	—	—	ns	XT oscillator
	TosH		20*	—	—	ns	HS oscillator
			2.0*	—	—	μs	LP oscillator
4	TosR,	Clock in (OSC1) Rise or Fall Time	—	_	25*	ns	XT oscillator
	TosF		—	—	25*	ns	HS oscillator
			—	—	50*	ns	LP oscillator

* These parameters are characterized but not tested.


Note 1: Data in the Typical ("Typ") column is at VREG = 5V, VDD = 9V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption.


When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

3: Instruction cycle period (TCY) equals four times the input oscillator time base period.

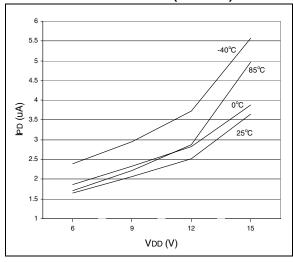


FIGURE 11-7: TYPICAL IPD vs. VDD, WATCHDOG TIMER ENABLED (VIO = 5V)

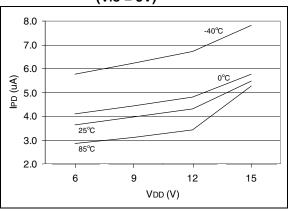


FIGURE 11-8: MAXIMUM IPD vs. VDD, WATCHDOG TIMER ENABLED (VIO = 5V)

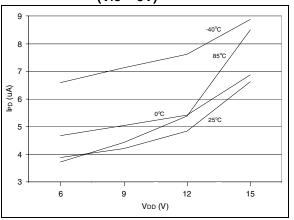
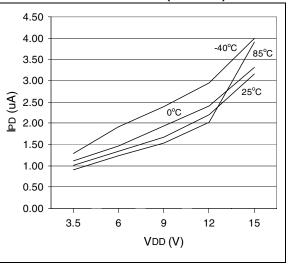
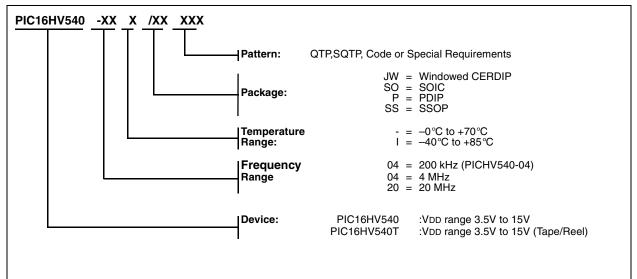




FIGURE 11-9: TYPICAL IPD vs. VDD, WATCHDOG TIMER DISABLED (VIO = 3V)

PIC16HV540 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 786-7277.
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.