

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	12
Program Memory Size	768B (512 x 12)
Program Memory Type	OTP
EEPROM Size	
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 15V
Data Converters	
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16hv540-20i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2.6 INCREASED STACK DEPTH

The stack depth is 4 levels to allow modular program implementation by using functions and subroutines.

1.2.7 ENHANCED WATCHDOG TIMER (WDT) OPERATION

The WDT is enabled by setting FUSE 2 in the configuration word. The WDT setting is latched and the fuse disabled during SLEEP mode to reduce current consumption.

If the WDT is disabled by FUSE 2, it can be enabled/disabled under program control using bit 4 in OPTION2 Register (SWDTEN). The software WDT control is disabled at power-up.

The current consumption of the on-chip oscillator (used for the watchdog, oscillator startup timer and sleep timer) is less than $1\mu A$ (typical) at 3 Volt operation.

1.2.8 REDUCED EXTERNAL RC OSCILLATOR STARTUP TIME

If the RC oscillator option is selected in the Configuration word (FOSC1=1 and FOSCO=1), the oscillator startup time is 1.0 ms nominal instead of 18 ms nominal. This is applicable after power-up (POR), either WDT interrupt or wake-up, external reset on MCLR, PCWU (wake on pin change) and Brown-out.

1.2.9 LOW-VOLTAGE OPERATION OF THE ENTIRE CPU DURING SLEEP

The voltage regulator can automatically lower the voltage to the core from 5 Volt to 3 Volt during sleep, resulting in reduced current consumption. This is an option bit (SL) in the OPTION2 register.

1.2.10 GLITCH FILTERS ON WAKE-UP PINS AND MCLR

Glitch sensitive inputs for wake-up on pin change are filtered to reduce susceptibility to interference. A similar filter reduces false reset on MCLR.

1.2.11 PROGRAMMABLE CLOCK GENERATOR

When used in RC mode, the CLKOUT pin can be used as a programmable clock output. The output is connected to TMR0, bit 0 and by setting the prescaler, clock out frequencies of CLKIN/8 to CLKIN/1024 can be generated. The CLKOUT pin can also be used as a general purpose output by modifying TMR0, bit 0.

TABLE 1-1:PIC16HV540 DEVICE

		PIC16HV540
Clock	Maximum Frequency (MHz)	20
Memory	EPROM Program Memory	512
	RAM Data Memory (bytes)	25
Peripherals	Timer Module(s)	TMR0
Packages	I/O Pins	12
	Voltage Range (Volts)	3.5V-15V
	Number of Instructions	33
	Packages	18-pin DIP SOIC 20-pin SSOP

All PICmicro[®] devices have Power-on Reset, selectable WDT, selectable code protect and high I/O current capability.

NOTES:

Name	DIP, SOIC No.	SSOP No.	I/O/P Type	Input Levels	Description			
RA0	17	19	I/O	TTL	Independently regulated Bi-directiona	I I/O port — VIO		
RA1	18	20	I/O	TTL		·		
RA2	1	1	I/O	TTL				
RA3	2	2	I/O	TTL				
RB0	6	7	I/O	TTL	High-voltage Bi-directional I/O port.	Wake-up on pin		
RB1	7	8	I/O	TTL	Sourced from VDD.	change		
RB2	8	9	I/O	TTL		-		
RB3	9	10	I/O	TTL				
RB4	10	11	I/O	TTL				
RB5	11	12	I/O	TTL				
RB6	12	13	I/O	TTL				
RB7	13	14	I/O	TTL		Wake-up on SLOW		
						rising pin change.		
TOCKI	3	3	I	ST	Clock input to Timer 0. Must be tied to	o Vss or VDD, if not in		
					use, to reduce current consumption.			
MCLR/Vpp	4	4	I	ST	Master clear (reset) input/programming voltage input. This pin is an active low reset to the device. Voltage on the MCLI VPP pin must not exceed VDD ⁽¹⁾ to avoid unintended entering of programming mode.			
OSC1/CLKIN	16	18	I	ST	Oscillator crystal input/external clock	source input.		
OSC2/CLKOUT	15	17	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2/CLKOUT output is connected to TMR0, bit 0. Frequencies of CLKIN/8 to CLKIN/1024 can be generated on this pin.			
Vdd	14	15,16	Р	—	Positive supply.			
Vss	5	5,6	Р		Ground reference.			

TABLE 3-1:	PINOUT DESCRIPTION - PIC16HV540

 $\label{eq:legend: Legend: I = input, O = output, I/O = input/output, P = power, --- = Not Used, TTL = TTL input, ST = Schmitt Trigger input.$

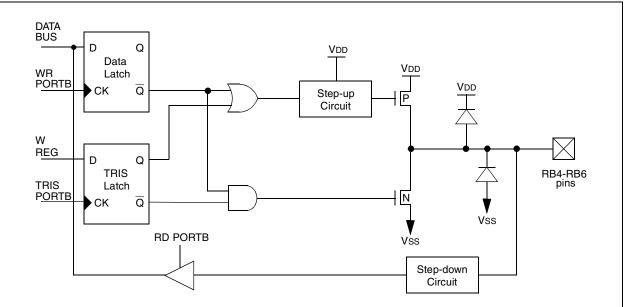
Note 1: VDD during programming mode can not exceed parameter PD1 called out in the PIC16C5X Programming Specification (Literature number DS30190).

4.4 OPTION Register

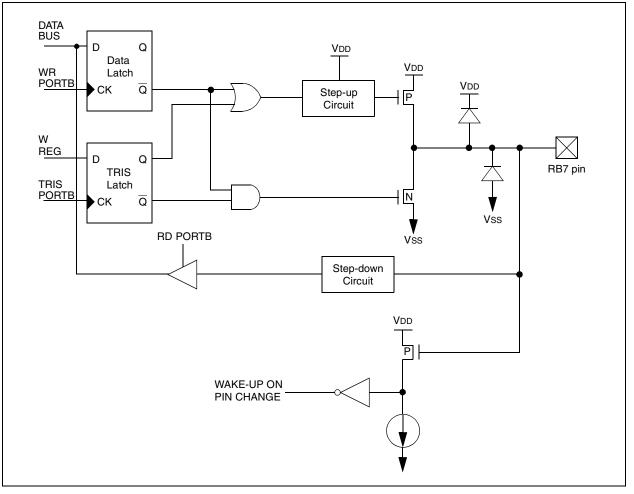
The OPTION register is a 6-bit wide, write-only register which contains various control bits to configure the Timer0/WDT prescaler and Timer0.

By executing the OPTION instruction, the contents of the W register will be transferred to the OPTION register. A RESET sets the OPTION<5:0> bits.

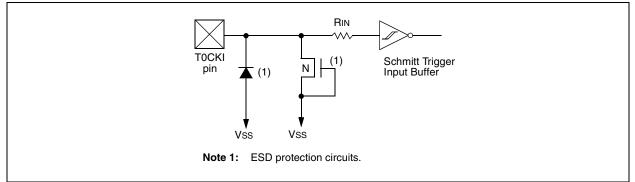
Example 4-1 illustrates how to initialize the OPTION register.

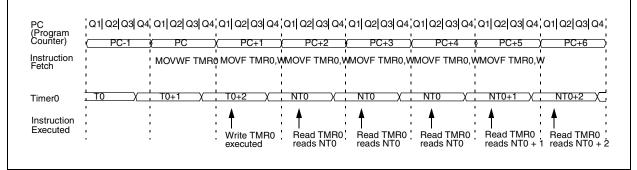

EXAMPLE 4-1: INSTRUCTIONS FOR INITIALIZING OPTION REGISTER

movlw	` 0000	0111′b	;	load	OPTION	setup	value	into	W
OPTION			;	init	ialize	OPTION	regist	cer	


REGISTER 4-2: OPTION REGISTER

U-0	U-0	W-1	N-1	W-1	W-1	W-1	W-1	
—	_	TOCS T	0SE	PSA	PS2	PS1	PS0	W = Writable bit
bit7							0	U = Unimplemented bit - n = Value at POR reset
bit 7-6:	Unimplemented							
bit 5:	TOCS: Time	r0 Clock Sour	ce Seleo	ct bit				
	1 = Transitio	n on T0CKI pi	n					
	0 = Internal	instruction cyc	le clock	(CLKOUT	.)			
bit 4:	TOSE : Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin							
bit 3:	PSA: Prescaler Assignment bit 1 = Prescaler assigned to the WDT 0 = Prescaler assigned to Timer0							
bit 2-0:	PS<2:0> : Pi	rescaler Rate	Select b	its				
	Bit Value	Timer0 Rate	WDT	Rate				
	Bit Value	Timer0 Rate	WDT					
				1				
	000	1:2 1:4 1:8	1: 1: 1:	1 2 4				
	000	1:2 1:4 1:8 1:16	1: 1: 1: 1:	1 2 4 8				
	000 001 010 011 100	1:2 1:4 1:8 1:16 1:32	1: 1: 1: 1: 1:	1 2 4 8 16				
	000 001 010 011 100 101	1:2 1:4 1:8 1:16 1:32 1:64	1: 1: 1: 1: 1: 1:	1 2 4 8 16 32				
	000 001 010 011 100	1:2 1:4 1:8 1:16 1:32	1: 1: 1: 1: 1: 1: 1:	1 2 4 8 16 32				




FIGURE 5-5: SUCCESSIVE I/O OPERATION

	PC	PC + 1	PC + 2	V PC + 3	
Instruction fetched	1 1	MOVF PORTB,W		NOP	This example shows a write
RB7:RB0	<u>۱</u>	I	X	·	to PORTB followed by a read from PORTB.
	1 	Port pin written here	Port pin sampled here	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Instruction executed		MOVWF PORTB (Write to PORTB)	MOVF PORTB,W (Read PORTB)	NOP	
		Write to	(Read		•

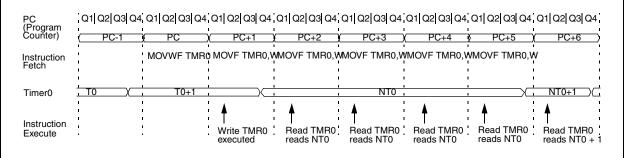

FIGURE 6-2: ELECTRICAL STRUCTURE OF TOCKI PIN

FIGURE 6-3: TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE

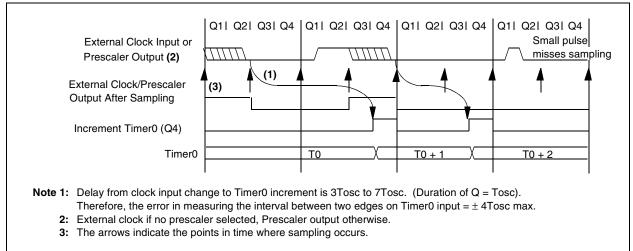
FIGURE 6-4: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2

TABLE 6-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on MCLR and WDT Reset	Value on Wake-up on Pin Change	Value on Brown-out Reset
01h	TMR0	Timer0 - 8-bit real-time clock/counter							XXXX XXXX	uuuu uuuu	uuuu uuuu	XXXX XXXX	
N/A	OPTION	_	-	TOCS	T0SE	PSA	PS2	PS1	PS0	11 1111	11 1111	11 1111	11 1111

Legend: Shaded cells: Unimplemented bits, - = unimplemented, x = unknown, u = unchanged.

6.1 Using Timer0 with an External Clock


When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

6.1.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple counter-type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

6.1.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 6-5 shows the delay from the external clock edge to the timer incrementing.

FIGURE 6-5: TIMER0 TIMING WITH EXTERNAL CLOCK

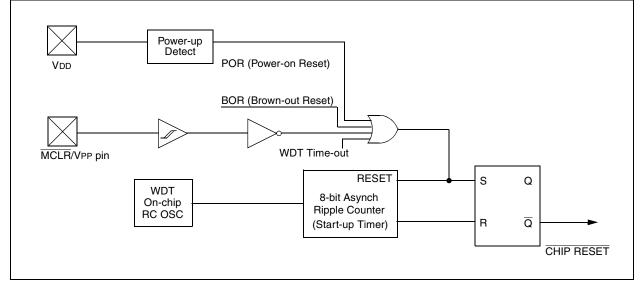
TABLE 7-3: RESET CONDITIONS FOR SPECIAL REGISTERS

Condition	PCL Addr: 02h	STATUS Addr: 03h
Power-on Reset	1111 1111	1001 1xxx
MCLR Reset (normal operation)	1111 1111	u00u uuuu ⁽¹⁾
MCLR Wake-up (from SLEEP)	1111 1111	1001 Ouuu
WDT Reset (normal operation)	1111 1111	u000 luuu ⁽²⁾
WDT Wake-up (from SLEEP)	1111 1111	1000 Ouuu
Wake-up from SLEEP on Pin Change	1111 1111	000u uuuu
Brown-out Reset	1111 1111	x00x xxxx

Legend: u = unchanged, x = unknown, - = unimplemented read as '0'.

Note 1: TO and PD bits retain their last value until one of the other reset conditions occur.

2: The CLRWDT instruction will set the $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits.


TABLE 7-4: RESET CONDITIONS FOR ALL REGISTERS

Register	Address	Power-On Reset	MCLR or WDT Reset	Wake-up on Pin Change	Brown-out Reset
W	N/A	xxxx xxxx	uuuu uuuu	uuuu uuuu	xxxx xxxx
TRIS	N/A	1111 1111	1111 1111	1111 1111	1111 1111
OPTION	N/A	11 1111	11 1111	11 1111	11 1111
OPTION2	N/A	11 1111	uu uuuu	uu uuuu	xx xxxx
INDF	00h	XXXX XXXX	uuuu uuuu	uuuu uuuu	xxxx xxxx
TMR0	01h	XXXX XXXX	uuuu uuuu	uuuu uuuu	xxxx xxxx
PCL ⁽¹⁾	02h	1111 1111	1111 1111	1111 1111	1111 1111
STATUS ⁽¹⁾	03h	1001 1xxx	100? ?uuu	000u uuuu	x00x xxxx
FSR	04h	111x xxxx	111u uuuu	111u uuuu	111x xxxx
PORTA	05h	xxxx	uuuu	uuuu	xxxx
PORTB	06h	xxxx xxxx	uuuu uuuu	uuuu uuuu	xxxx xxxx
General Purpose Register Files	07-1Fh	xxxx xxxx	uuuu uuuu	uuuu uuuu	xxxx xxxx

Legend: u = unchanged, x = unknown, - = unimplemented, read as '0', q = see tables in Section 7.10 for possible values. ? = value depends on condition.

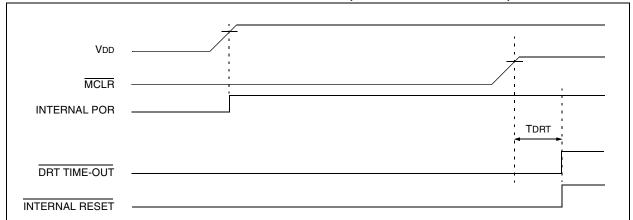
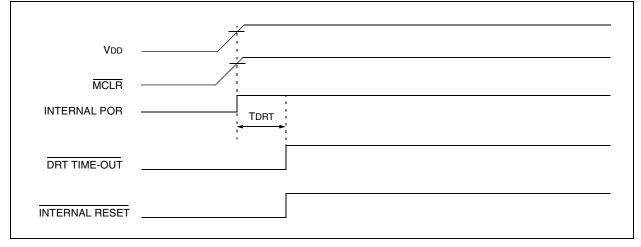

Note 1: See Table 7-3 for reset value for specific conditions.

FIGURE 7-6: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT



© 2000 Microchip Technology Inc.

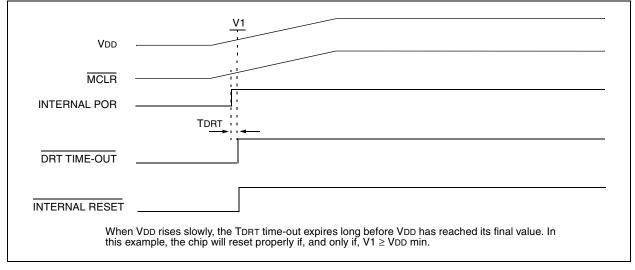

FIGURE 7-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD)

FIGURE 7-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): FAST VDD RISE TIME

FIGURE 7-10: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): SLOW VDD RISE TIME

7.11 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	Microchip does not recommend code pro-
	tecting windowed devices.

7.12 ID Locations

Four memory locations are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify.

Use only the lower 4 bits of the ID locations and always program the upper 8 bits as '1's.

Note:	Microchip will assign a unique pattern
	number for QTP and SQTP requests and
	for ROM devices. This pattern number will
	be unique and traceable to the submitted
	code.

Mnemonic, Operands		D		12-l	Bit Opc	ode	Status	
		Description	Cycles	MSb	MSb		Affected	Notes
ADDWF	f,d	Add W and f	1	0001	11df	ffff	C,DC,Z	1,2,4
ANDWF	f,d	AND W with f	1	0001	01df	ffff	Z	2,4
CLRF	f	Clear f	1	0000	011f	ffff	Z	4
CLRW	_	Clear W	1	0000	0100	0000	Z	
COMF	f, d	Complement f	1	0010	01df	ffff	Z	
DECF	f, d	Decrement f	1	0000	11df	ffff	Z	2,4
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	0010	11df	ffff	None	2,4
INCF	f, d	Increment f	1	0010	10df	ffff	Z	2,4
INCFSZ	f, d	Increment f, Skip if 0	1(2)	0011	11df	ffff	None	2,4
IORWF	f, d	Inclusive OR W with f	1	0001	00df	ffff	Z	2,4
MOVF	f, d	Move f	1	0010	00df	ffff	Z	2,4
MOVWF	f	Move W to f	1	0000	001f	ffff	None	1,4
NOP	_	No Operation	1	0000	0000	0000	None	
RLF	f, d	Rotate left f through Carry	1	0011	01df	ffff	С	2,4
RRF	f, d	Rotate right f through Carry	1	0011	00df	ffff	С	2,4
SUBWF	f, d	Subtract W from f	1	0000	10df	ffff	C,DC,Z	1,2,4
SWAPF	f, d	Swap f	1	0011	10df	ffff	None	2,4
XORWF	f, d	Exclusive OR W with f	1	0001	10df	ffff	Z	2,4
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS						
BCF	f, b	Bit Clear f	1	0100	bbbf	ffff	None	2,4
BSF	f, b	Bit Set f	1	0101	bbbf	ffff	None	2,4
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	0110	bbbf	ffff	None	
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	0111	bbbf	ffff	None	
LITERAL A	ND CON	ITROL OPERATIONS						
ANDLW	k	AND literal with W	1	1110	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	1001	kkkk	kkkk	None	1
CLRWDT	k	Clear Watchdog Timer	1	0000	0000	0100	TO, PD	
GOTO	k	Unconditional branch	2	101k	kkkk	kkkk	None	
IORLW	k	Inclusive OR Literal with W	1	1101	kkkk	kkkk	Z	
MOVLW	k	Move Literal to W	1	1100	kkkk	kkkk	None	
OPTION	k	Load OPTION register	1	0000	0000	0010	None	
RETLW	k	Return, place Literal in W	2	1000	kkkk	kkkk	None	
SLEEP	_	Go into standby mode	1	0000	0000	0011	TO, PD, PCWUF	
TRIS	f	Load TRIS register	1	0000	0000	Offf	None	3
XORLW	k	Exclusive OR Literal to W	1	1111	kkkk	kkkk	Z	-

TABLE 8-2: INSTRUCTION SET SUMMARY

Note 1: The 9th bit of the program counter will be forced to a '0' by any instruction that writes to the PC except for GOTO. (See individual device data sheets, Memory Section/Indirect Data Addressing, INDF and FSR Registers)

2: When an I/O register is modified as a function of itself (e.g. MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

3: The instruction TRIS f, where f = 5 or 6 causes the contents of the W register to be written to the tristate latches of PORTA or B respectively. A '1' forces the pin to a hi-impedance state and disables the output buffers.

4: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared (if assigned to TMR0).

CALL	Subroutine Call							
Syntax:	[<i>label</i>] CALL k							
Operands:	$0 \le k \le 255$							
Operation:	(PC) + 1 \rightarrow Top of Stack; k \rightarrow PC<7:0>; (STATUS<6:5>) \rightarrow PC<10:9>; 0 \rightarrow PC<8>							
Status Affected:	None							
Encoding:	1001 kkkk kkkk							
Description:	Subroutine call. First, return address (PC+1) is pushed onto the stack. The eight bit immediate address is loaded into PC bits <7:0>. The upper bits PC<10:9> are loaded from STA- TUS<6:5>, PC<8> is cleared. CALL is a two cycle instruction.							
Words:	1							
Cycles:	2							
Example:	HERE CALL THERE							
Before Instruction PC = address (HERE) After Instruction PC = address (THERE) TOS = address (HERE + 1)								
CLRF	Clear f							
Syntax:	[label] CLRF f							
Operands:	$0 \le f \le 31$							
Operation:	$\begin{array}{l} 00h \rightarrow (f); \\ 1 \rightarrow Z \end{array}$							
Status Affected:	Z							
Encoding:	0000 011f ffff							
Description:	The contents of register 'f' are cleared and the Z bit is set.							
Words:	1							
Cycles:	1							
Example:	CLRF FLAG_REG							
Before Instru FLAG_RI								
After Instruct FLAG_RI								

CLRW	Clear W									
Syntax:	[label] CLRW									
Operands:	None									
Operation:	$\begin{array}{l} 00h \rightarrow (W); \\ 1 \rightarrow Z \end{array}$									
Status Affected:	Z									
Encoding:	0000 0100 0000									
Description:	escription: The W register is cleared. Zero bit (Z) is set.									
Words:	1									
Cycles:	1									
Example:	CLRW									
Before Instruction W = 0x5A										
After Instruct W = Z =	ion 0x00 1									
CLRWDT	Clear Watchdog Timer									
Syntax:	[label] CLRWDT									
Operands:	None									
Operation:	00h \rightarrow WDT; 0 \rightarrow WDT prescaler (if assigned); 1 \rightarrow TO; 1 \rightarrow PD									
Status Affected:	TO, PD									
Encoding:	0000 0000 0100									
Description:	The CLRWDT instruction resets the WDT. It also resets the prescaler, if the prescaler is assigned to the WDT and not Timer0. Status bits TO and PD are set.									
Words:	1									
Cycles:	1									
Example:	CLRWDT									
Before Instru WDT cou										
After Instruct WDT cou WDT pres TO PD	nter = $0x00$									

Z

= 1

MOVF	Move f	MOVWF	Move W to f					
Syntax:	[label] MOVF f,d	Syntax:	[label] MOVWF f					
Operands:	$0 \le f \le 31$	$Operands: \qquad 0 \leq f \leq 31$						
	$d \in [0,1]$	Operation: $(W) \rightarrow (f)$						
Operation:	$(f) \rightarrow (dest)$	Status Affected:	None					
Status Affected:	Z	Encoding:	0000 001f ffff					
Encoding:	0010 00df ffff	Description:	Move data from the W register to regis-					
Description:	The contents of register 'f' is moved to	·	ter 'f'.					
	destination 'd'. If 'd' is 0, destination is the W register. If 'd' is 1, the destination	Words: 1						
	is file register 'f'. 'd' is 1 is useful to test	Cycles:	1					
	a file register since status flag Z is affected.	Example:	MOVWF TEMP_REG					
Words:	1	Before Instr						
Cycles:	1	TEMP_F W	REG = 0xFF = 0x4F					
Example:	MOVF FSR, 0	After Instruc						
After Instruc		TEMP_F						
W = value in FSR register		W	= 0x4F					
		NOP	No Operation					
MOVLW	Move Literal to W	Syntax:	[label] NOP					
Syntax:	[<i>label</i>] MOVLW k	Operands:	None					
Operands:	$0 \le k \le 255$	Operation:	No operation					
Operation:	$k \rightarrow (W)$	Status Affected:	None					
Status Affected:	None	Encoding:	0000 0000 0000					
Encoding:	1100 kkkk kkkk	Description:	No operation.					
Description:	The eight bit literal 'k' is loaded into the	Words:	1					
	W register. The don't cares will assem- ble as 0s.	Cycles:	1					
Words:	1	Example:	NOP					
Cycles:	1							
Example:	MOVLW 0x5A							
Example.								

After Instruction W = 0x5

0x5A

9.4 MPLINK/MPLIB Linker/Librarian

MPLINK is a relocatable linker for MPASM and MPLAB-C17 and MPLAB-C18. It can link relocatable objects from assembly or C source files along with precompiled libraries using directives from a linker script.

MPLIB is a librarian for pre-compiled code to be used with MPLINK. When a routine from a library is called from another source file, only the modules that contains that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. MPLIB manages the creation and modification of library files.

MPLINK features include:

- MPLINK works with MPASM and MPLAB-C17 and MPLAB-C18.
- MPLINK allows all memory areas to be defined as sections to provide link-time flexibility.

MPLIB features include:

- MPLIB makes linking easier because single libraries can be included instead of many smaller files.
- MPLIB helps keep code maintainable by grouping related modules together.
- MPLIB commands allow libraries to be created and modules to be added, listed, replaced, deleted, or extracted.

9.5 MPLAB-SIM Software Simulator

The MPLAB-SIM Software Simulator allows code development in a PC host environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file or user-defined key press to any of the pins. The execution can be performed in single step, execute until break, or trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C17 and MPLAB-C18 and MPASM. The Software Simulator offers the flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

9.6 MPLAB-ICE High Performance Universal In-Circuit Emulator with MPLAB IDE

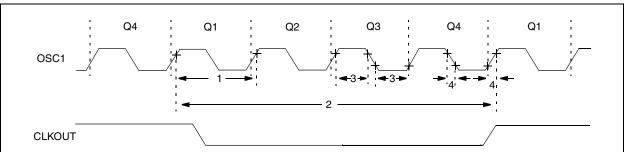
The MPLAB-ICE Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro microcontrollers (MCUs). Software control of MPLAB-ICE is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB-ICE allows expansion to support new PICmicro microcontrollers.

The MPLAB-ICE Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft[®] Windows 3.x/95/98 environment were chosen to best make these features available to you, the end user.

MPLAB-ICE 2000 is a full-featured emulator system with enhanced trace, trigger, and data monitoring features. Both systems use the same processor modules and will operate across the full operating speed range of the PICmicro MCU.

9.7 PICMASTER/PICMASTER CE

The PICMASTER system from Microchip Technology is a full-featured, professional quality emulator system. This flexible in-circuit emulator provides a high-quality, universal platform for emulating Microchip 8-bit PICmicro microcontrollers (MCUs). PICMASTER systems are sold worldwide, with a CE compliant model available for European Union (EU) countries.


9.8 ICEPIC

ICEPIC is a low-cost in-circuit emulation solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X, and PIC16CXXX families of 8-bit one-timeprogrammable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules or daughter boards. The emulator is capable of emulating without target application circuitry being present.

9.9 MPLAB-ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB-ICD, is a powerful, low-cost run-time development tool. This tool is based on the flash PIC16F877 and can be used to develop for this and other PICmicro microcontrollers from the PIC16CXXX family. MPLAB-ICD utilizes the In-Circuit Debugging capability built into the PIC16F87X. This feature, along with Microchip's In-Circuit Serial Programming protocol, offers cost-effective in-circuit flash programming and debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in real-time. The MPLAB-ICD is also a programmer for the flash PIC16F87X family.

10.4 Timing Diagrams and Specifications

FIGURE 10-2: EXTERNAL CLOCK TIMING - PIC16HV540

TABLE 10-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16HV540

AC Characteristics		Standard Operating Conditions (unless otherwise specified)								
		Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ (commercial)								
$-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial)										
Parameter No.	Sym.	Characteristic		Typ. ⁽¹⁾	Max.	Unit s	Conditions			
	Fosc	External CLKIN Frequency ⁽²⁾	DC	_	4.0	MHz	RC osc mode			
			DC	_	2.0	MHz	HS osc mode			
			DC	_	4.0	MHz	XT osc mode			
			DC	_	200	kHz	LP osc mode			
		Oscillator Frequency ⁽²⁾	DC	_	4.0	MHz	RC osc mode			
			0.1	—	2.0	MHz	HS osc mode			
			0.1	—	4.0	MHz	XT osc mode			
			5	—	200	kHz	LP osc mode			
1	Tosc	External CLKIN Period ⁽²⁾	250	_	_	ns	RC osc mode			
			250	—	—	ns	HS osc mode			
			250	—	—	ns	XT osc mode			
			5.0	—	—	μs	LP osc mode			
		Oscillator Period ⁽²⁾	250	_	_	ns	RC osc mode			
			250	—	10,000	ns	HS osc mode			
			250	—	10,000	ns	XT osc mode			
			50	—	200	μs	LP osc mode			
2	Тсү	Instruction Cycle Time ⁽³⁾	—	4/Fosc	_	_				
3	TosL,	Clock in (OSC1) Low or High Time	50*	—	—	ns	XT oscillator			
	TosH		20*	—	—	ns	HS oscillator			
			2.0*	—	—	μs	LP oscillator			
4	TosR,	Clock in (OSC1) Rise or Fall Time	—	_	25*	ns	XT oscillator			
	TosF		—	—	25*	ns	HS oscillator			
			—	—	50*	ns	LP oscillator			

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at VREG = 5V, VDD = 9V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption.

When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

3: Instruction cycle period (TCY) equals four times the input oscillator time base period.

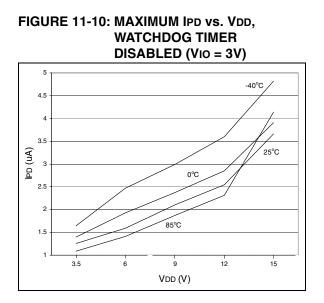
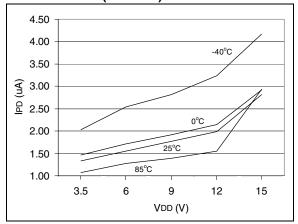
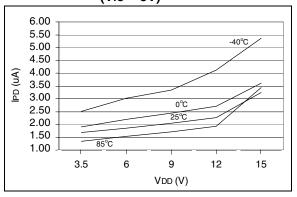
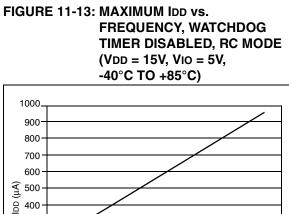
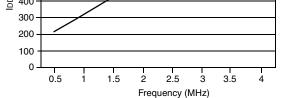
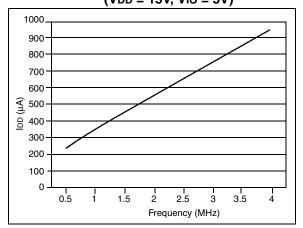


FIGURE 11-11: TYPICAL IPD vs. VDD, WATCHDOG TIMER ENABLED (VIO = 3V)


FIGURE 11-12: MAXIMUM IPD vs. VDD, WATCHDOG TIMER ENABLED (VIO = 3V)

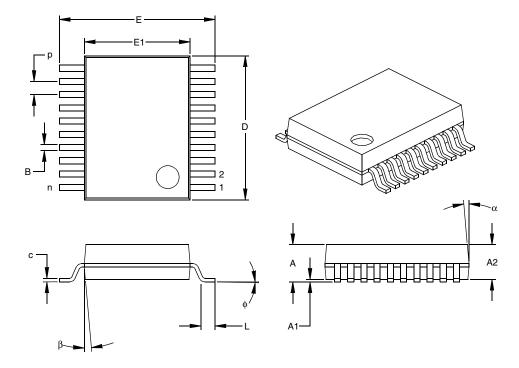


FIGURE 11-14: MAXIMUM IDD vs. FREQUENCY, WATCHDOG TIMER ENABLED, RC MODE (VDD = 15V, VIO = 5V)

12.4 20-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

	Units		INCHES*		N	IILLIMETERS	;
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		20			20	
Pitch	р		.026			0.65	
Overall Height	Α	.068	.073	.078	1.73	1.85	1.98
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Overall Width	E	.299	.309	.322	7.59	7.85	8.18
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38
Overall Length	D	.278	.284	.289	7.06	7.20	7.34
Foot Length	L	.022	.030	.037	0.56	0.75	0.94
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25
Foot Angle	φ	0	4	8	0.00	101.60	203.20
Lead Width	В	.010	.013	.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom		0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MO-150

Drawing No. C04-072

NOTES:

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit Tri-Atria Office Building 32255 Northwestern Highway, Suite 190

Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260 Kokomo

2767 S. Albright Road Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338 New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521 China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086 Hong Kong Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza

223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office **Divvasree Chambers** 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS **Regus Business Centre** Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Microchip Technology GmbH

Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy

Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kinadom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

03/01/02