

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2014110	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	12
Program Memory Size	768B (512 x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 15V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16hv540t-20-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2.6 INCREASED STACK DEPTH

The stack depth is 4 levels to allow modular program implementation by using functions and subroutines.

1.2.7 ENHANCED WATCHDOG TIMER (WDT) OPERATION

The WDT is enabled by setting FUSE 2 in the configuration word. The WDT setting is latched and the fuse disabled during SLEEP mode to reduce current consumption.

If the WDT is disabled by FUSE 2, it can be enabled/disabled under program control using bit 4 in OPTION2 Register (SWDTEN). The software WDT control is disabled at power-up.

The current consumption of the on-chip oscillator (used for the watchdog, oscillator startup timer and sleep timer) is less than $1\mu A$ (typical) at 3 Volt operation.

1.2.8 REDUCED EXTERNAL RC OSCILLATOR STARTUP TIME

If the RC oscillator option is selected in the Configuration word (FOSC1=1 and FOSCO=1), the oscillator startup time is 1.0 ms nominal instead of 18 ms nominal. This is applicable after power-up (POR), either WDT interrupt or wake-up, external reset on MCLR, PCWU (wake on pin change) and Brown-out.

1.2.9 LOW-VOLTAGE OPERATION OF THE ENTIRE CPU DURING SLEEP

The voltage regulator can automatically lower the voltage to the core from 5 Volt to 3 Volt during sleep, resulting in reduced current consumption. This is an option bit (SL) in the OPTION2 register.

1.2.10 GLITCH FILTERS ON WAKE-UP PINS AND MCLR

Glitch sensitive inputs for wake-up on pin change are filtered to reduce susceptibility to interference. A similar filter reduces false reset on MCLR.

1.2.11 PROGRAMMABLE CLOCK GENERATOR

When used in RC mode, the CLKOUT pin can be used as a programmable clock output. The output is connected to TMR0, bit 0 and by setting the prescaler, clock out frequencies of CLKIN/8 to CLKIN/1024 can be generated. The CLKOUT pin can also be used as a general purpose output by modifying TMR0, bit 0.

TABLE 1-1:PIC16HV540 DEVICE

		PIC16HV540
Clock	Maximum Frequency (MHz)	20
Memory	EPROM Program Memory	512
	RAM Data Memory (bytes)	25
Peripherals	Timer Module(s)	TMR0
Packages	I/O Pins	12
	Voltage Range (Volts)	3.5V-15V
	Number of Instructions	33
	Packages	18-pin DIP SOIC 20-pin SSOP

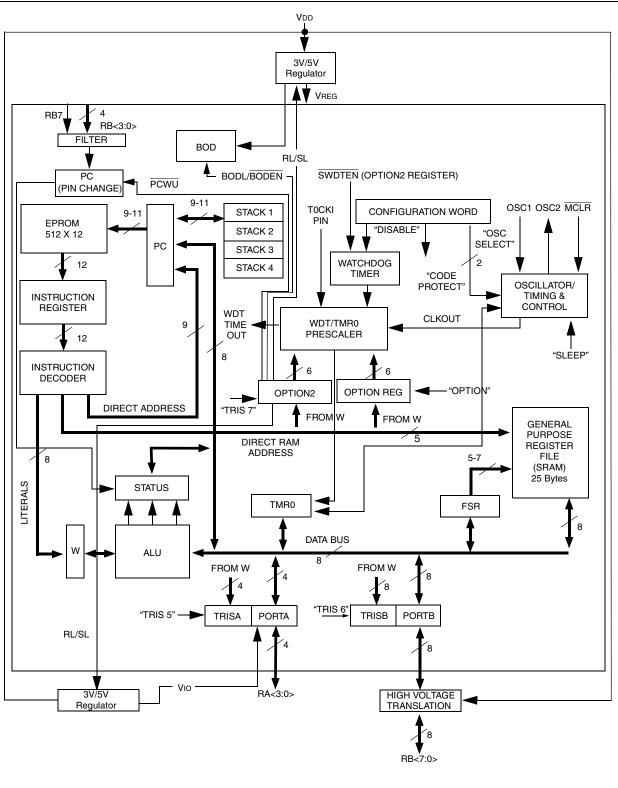
All PICmicro[®] devices have Power-on Reset, selectable WDT, selectable code protect and high I/O current capability.

3.0 ARCHITECTURAL OVERVIEW

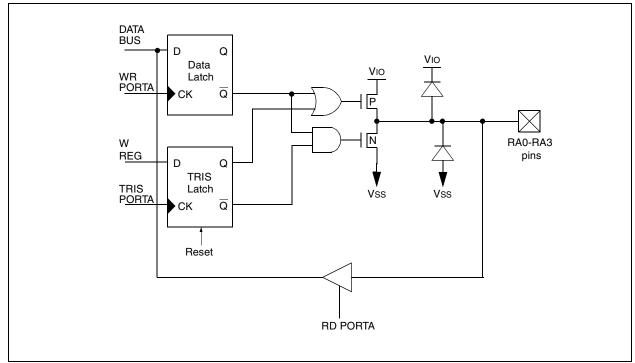
The high performance of the PIC16HV540 can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16HV540 uses a Harvard architecture in which program and data are accessed on separate buses. This improves bandwidth over traditional von Neumann architecture where program and data are fetched on the same bus. Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 12bits wide making it possible to have all single word instructions. A 12-bit wide program memory access bus fetches a 12-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (33) execute in a single cycle (200ns @ 20MHz) except for program branches.

The PIC16HV540 address 512 x 12 of program memory. All program memory is internal.

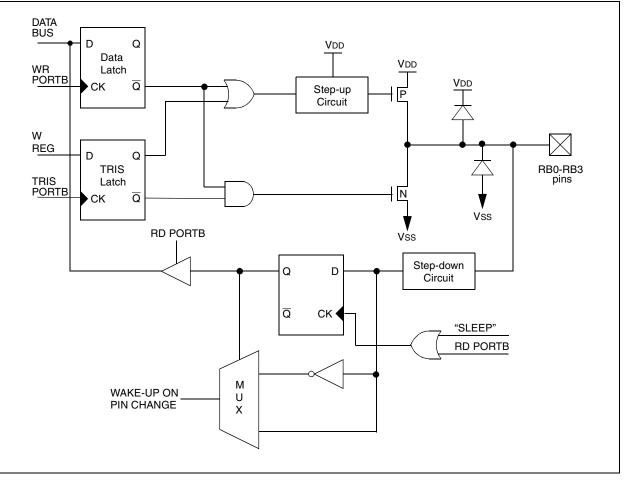
The PIC16HV540 can directly or indirectly address its register files and data memory. All special function registers including the program counter are mapped in the data memory. The PIC16HV540 has a highly orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16HV540 simple yet efficient. In addition, the learning curve is reduced significantly. The PIC16HV540 device contains an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

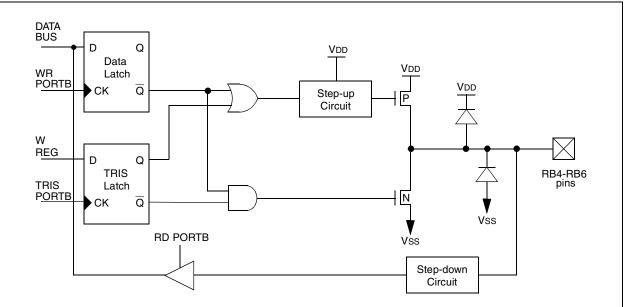

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the W (working) register. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

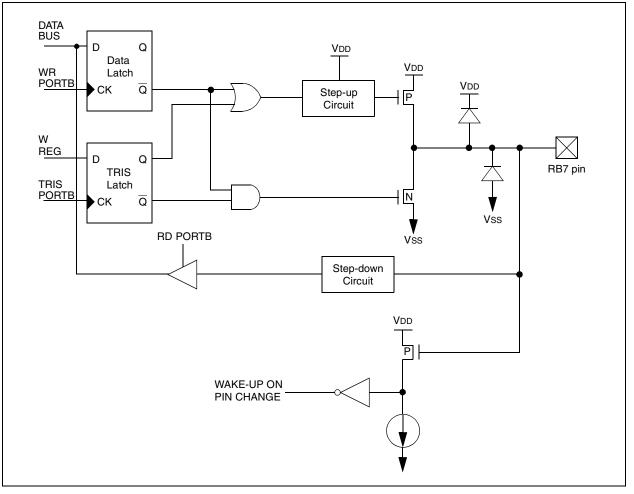
The W register is an 8-bit working register used for ALU operations. It is not an addressable register.


Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBWF and ADDWF instructions for examples.

A simplified block diagram is shown in Figure 3-1, with the corresponding device pins described in Table 3-1.




FIGURE 5-1: BLOCK DIAGRAM OF PORTA<0:3> PINS



Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on MCLR and WDT Reset	Value on Wake-up on Pin Change	Value on Brown-Out Reset
N/A	TRIS	I/O control	registers	s (TRISA, T	RISB)					1111 1111	1111 1111	1111 1111	1111 1111
05h	PORTA	_	_	_	_	RA3	RA2	RA1	RA0	xxxx	uuuu	uuuu	xxxx
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu uuuu	uuuu uuuu	xxxx xxxx
03h	STATUS	PCWUF	PA1	PA0	TO	PD	Z	DC	С	100x xxxx	100q quuu	000u uuuu	x00x xxxx
N/A	OPTION2	_	_	PCWU	SWDTEN	RL	SL	BODL	BODEN	11 1111	uu uuuu	uu uuuu	xx xxxx

TABLE 5-1: SUMMARY OF PORT REGISTERS

Legend: Shaded boxes = unimplemented, read as '0', --= unimplemented, read as '0', x = unknown, u = unchanged.

5.5 I/O Programming Considerations

5.5.1 BI-DIRECTIONAL I/O PORTS

Some instructions operate internally as read followed by write operations. The BCF and BSF instructions, for example, read the entire port into the CPU, execute the bit operation and re-write the result. Caution must be used when these instructions are applied to a port where one or more pins are used as input/outputs. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU, bit5 to be set and the PORTB value to be written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (say bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch may now be unknown.

Example 5-1 shows the effect of two sequential read-modify-write instructions (e.g., ${\tt BCF}\,,~{\tt BSF},$ etc.) on an I/ O port.

A pin actively outputting a high or a low should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

EXAMPLE 5-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

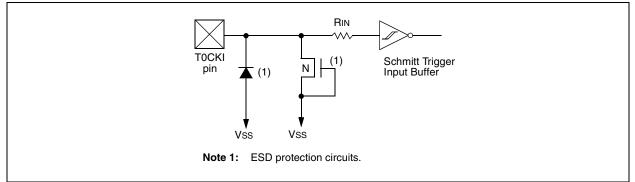
;Initial PORT Settings

; PORTB<7:4> Inputs

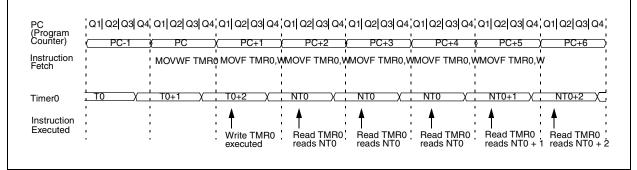
; PORTB<3:0> Outputs

;PORTB<7:6> have external pull-ups and are ;not connected to other circuitry

, ; ;			PORT	latch	PORT	pins
,	MOVLW	PORTB, PORTB, 03Fh PORTB	;01pp ;10pp ; ;10pp	pppp	11pp 11pp 10pp	pppp
•						


;Note that the user may have expected the pin ;values to be 00pp pppp. The 2nd BCF caused ;RB7 to be latched as the pin value (High).

5.5.2 SUCCESSIVE OPERATIONS ON I/O PORTS


The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-5). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction, which causes that file to be read into the CPU, is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

NOTES:

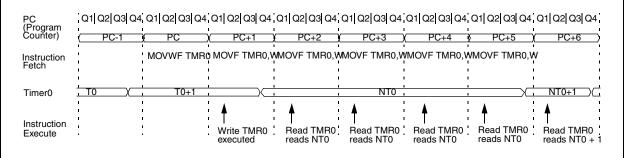

FIGURE 6-2: ELECTRICAL STRUCTURE OF TOCKI PIN

FIGURE 6-3: TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE

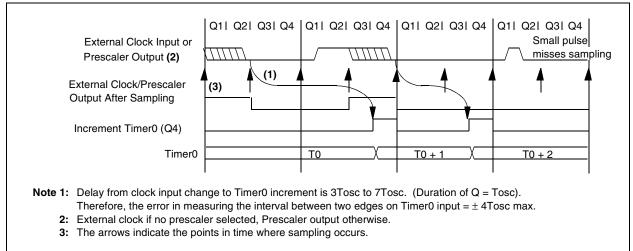
FIGURE 6-4: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2

TABLE 6-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on MCLR and WDT Reset	Value on Wake-up on Pin Change	Value on Brown-out Reset
01h	TMR0	Timer0 -	8-bit real-t	ime clock/	counter					XXXX XXXX	uuuu uuuu	uuuu uuuu	XXXX XXXX
N/A	OPTION	_	-	TOCS	T0SE	PSA	PS2	PS1	PS0	11 1111	11 1111	11 1111	11 1111

Legend: Shaded cells: Unimplemented bits, - = unimplemented, x = unknown, u = unchanged.

6.1 Using Timer0 with an External Clock


When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

6.1.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple counter-type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

6.1.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 6-5 shows the delay from the external clock edge to the timer incrementing.

FIGURE 6-5: TIMER0 TIMING WITH EXTERNAL CLOCK

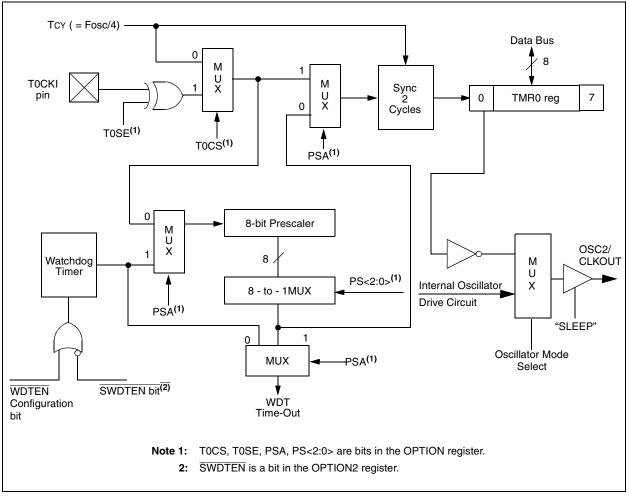
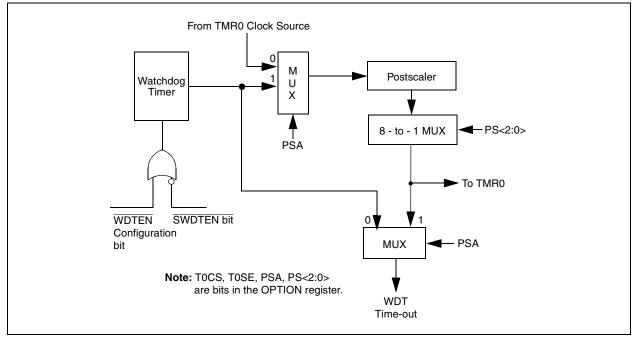



FIGURE 6-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

voltage may approach the maximum value. Again this condition should be considered when interfacing to external circuitry.

In addition, the voltage level applied to the external V_{DD} pin and operational temperature affects the internal regulation voltage.

FIGURE 7-12: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 7-6: SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on MCLR and WDT Reset	Value on Wake-up on Pin Change	Value on Brown-out Reset
N/A	OPTION	-	-	T0CS	T0SE	PSA	PS2	PS1	PS0	11 1111	11 1111	11 1111	11 1111
N/A	OPTION2	—	—	PCWU	SWDTEN	RL	SL	BODL	BODEN	UU UUU	uu uuuu	uu uuuu	xx xxxx

Legend: Shaded boxes = Not used by Watchdog Timer, — = unimplemented, read as '0', u = unchanged, x = unknown.

Mnemo	nic,	Description		12-l	Bit Opc	ode	Status	N
Operan	ds	Description	Cycles	MSb		LSb	Affected	Notes
ADDWF	f,d	Add W and f	1	0001	11df	ffff	C,DC,Z	1,2,4
ANDWF	f,d	AND W with f	1	0001	01df	ffff	Z	2,4
CLRF	f	Clear f	1	0000	011f	ffff	Z	4
CLRW	_	Clear W	1	0000	0100	0000	Z	
COMF	f, d	Complement f	1	0010	01df	ffff	Z	
DECF	f, d	Decrement f	1	0000	11df	ffff	Z	2,4
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	0010	11df	ffff	None	2,4
INCF	f, d	Increment f	1	0010	10df	ffff	Z	2,4
INCFSZ	f, d	Increment f, Skip if 0	1(2)	0011	11df	ffff	None	2,4
IORWF	f, d	Inclusive OR W with f	1	0001	00df	ffff	Z	2,4
MOVF	f, d	Move f	1	0010	00df	ffff	Z	2,4
MOVWF	f	Move W to f	1	0000	001f	ffff	None	1,4
NOP	_	No Operation	1	0000	0000	0000	None	
RLF	f, d	Rotate left f through Carry	1	0011	01df	ffff	С	2,4
RRF	f, d	Rotate right f through Carry	1	0011	00df	ffff	С	2,4
SUBWF	f, d	Subtract W from f	1	0000	10df	ffff	C,DC,Z	1,2,4
SWAPF	f, d	Swap f	1	0011	10df	ffff	None	2,4
XORWF	f, d	Exclusive OR W with f	1	0001	10df	ffff	Z	2,4
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS						
BCF	f, b	Bit Clear f	1	0100	bbbf	ffff	None	2,4
BSF	f, b	Bit Set f	1	0101	bbbf	ffff	None	2,4
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	0110	bbbf	ffff	None	
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	0111	bbbf	ffff	None	
LITERAL A	ND CON	ITROL OPERATIONS						
ANDLW	k	AND literal with W	1	1110	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	1001	kkkk	kkkk	None	1
CLRWDT	k	Clear Watchdog Timer	1	0000	0000	0100	TO, PD	
GOTO	k	Unconditional branch	2	101k	kkkk	kkkk	None	
IORLW	k	Inclusive OR Literal with W	1	1101	kkkk	kkkk	Z	
MOVLW	k	Move Literal to W	1	1100	kkkk	kkkk	None	
OPTION	k	Load OPTION register	1	0000	0000	0010	None	
RETLW	k	Return, place Literal in W	2	1000	kkkk	kkkk	None	
SLEEP	_	Go into standby mode	1	0000	0000	0011	TO, PD, PCWUF	
TRIS	f	Load TRIS register	1	0000	0000	Offf	None	3
XORLW	k	Exclusive OR Literal to W	1	1111	kkkk	kkkk	Z	

TABLE 8-2: INSTRUCTION SET SUMMARY

Note 1: The 9th bit of the program counter will be forced to a '0' by any instruction that writes to the PC except for GOTO. (See individual device data sheets, Memory Section/Indirect Data Addressing, INDF and FSR Registers)

2: When an I/O register is modified as a function of itself (e.g. MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

3: The instruction TRIS f, where f = 5 or 6 causes the contents of the W register to be written to the tristate latches of PORTA or B respectively. A '1' forces the pin to a hi-impedance state and disables the output buffers.

4: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared (if assigned to TMR0).

CALL	Subroutine Call
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \le k \le 255$
Operation:	$\begin{array}{l} (PC) + 1 \rightarrow \text{Top of Stack;} \\ k \rightarrow PC < 7:0 >; \\ (STATUS < 6:5 >) \rightarrow PC < 10:9 >; \\ 0 \rightarrow PC < 8 > \end{array}$
Status Affected:	None
Encoding:	1001 kkkk kkkk
Description:	Subroutine call. First, return address (PC+1) is pushed onto the stack. The eight bit immediate address is loaded into PC bits <7:0>. The upper bits PC<10:9> are loaded from STA- TUS<6:5>, PC<8> is cleared. CALL is a two cycle instruction.
Words:	1
Cycles:	2
Example:	HERE CALL THERE
Before Instru PC = After Instruct PC = TOS =	address (HERE)
CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \le f \le 31$
Operation:	$\begin{array}{l} 00h \rightarrow (f); \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Encoding:	0000 011f ffff
Description:	The contents of register 'f' are cleared and the Z bit is set.
Words:	1
Cycles:	1
Example:	CLRF FLAG_REG
Before Instru FLAG_RI	
After Instruct FLAG_RI	

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W); \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Encoding:	0000 0100 0000
Description:	The W register is cleared. Zero bit (Z) is set.
Words:	1
Cycles:	1
Example:	CLRW
Before Instru W =	ction 0x5A
After Instruct W = Z =	ion 0x00 1
CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT; \\ 0 \rightarrow \underline{WD}T \text{ prescaler (if assigned)}; \\ 1 \rightarrow \overline{TO}; \\ 1 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Encoding:	0000 0000 0100
Description:	The CLRWDT instruction resets the WDT. It also resets the prescaler, if the prescaler is assigned to the WDT and not Timer0. Status bits TO and PD are set.
Words:	1
Cycles:	1
Example:	CLRWDT
Before Instru WDT cou	
After Instruct WDT cou WDT pres TO PD	nter = $0x00$

Z

= 1

OPTION	Load OPTION Regis	ter
Syntax:	[label] OPTION	
Operands:	None	
Operation:	$(W) \rightarrow OPTION$	
Status Affected:	None	
Encoding:	0000 0000 00	10
Description:	The content of the W reg	gister is loaded
	into the OPTION registe	r.
Words:	1	
Cycles:	1	
Example	OPTIO N	
Before Instru		
W	= 0x07	
After Instruct	ion	
OPTION	= 0x07	
RETLW	Return with Literal i	n W
Syntax:	[label] RETLW k	
Operands:	$0 \leq k \leq 255$	
Operation:	$k \rightarrow (W);$	
	$TOS \rightarrow PC$	
Status Affected:	None	
Encoding:	1000 kkkk kkk	:k
Description:	The W register is loaded bit literal 'k'. The program loaded from the top of the return address). This is a instruction.	n counter is ne stack (the
Words:	1	
Cycles:	2	
Example:	CALL TABLE ;W cont	ains
	;table	
	; value.	has table
	• ;value.	
TABLE		
TABLE	ADDWF PC ;W = of RETLW k1 ;Begin	
	RETLW k2 ;	
	•	
	•	
	RETLW kn ; End c	of table
Before Instru W =		
After Instruct	IOU	
	value of k8	

RLF	Rotate Left f through Carry
Syntax:	[label] RLF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in \ [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Encoding:	0011 01df ffff
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example:	RLF REG1,0
Before Instru REG1 C	uction = 1110 0110 = 0
After Instruc REG1 W C	-
RRF	Rotate Right f through Carry
RRF Syntax:	Rotate Right f through Carry [label] RRF f,d
Syntax:	[label] RRF f,d 0 \leq f \leq 31
Syntax: Operands:	$\begin{bmatrix} label \end{bmatrix} RRF f,d$ $0 \le f \le 31$ $d \in [0,1]$
Syntax: Operands: Operation:	$\begin{bmatrix} label \end{bmatrix} RRF f,d$ $0 \le f \le 31$ $d \in [0,1]$ See description below
Syntax: Operands: Operation: Status Affected:	$\begin{bmatrix} label \end{bmatrix} RRF f,d$ $0 \le f \le 31$ $d \in [0,1]$ See description below C $\boxed{0011 00df ffff}$ The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
Syntax: Operands: Operation: Status Affected: Encoding:	$\begin{bmatrix} label \end{bmatrix} RRF f,d$ $0 \le f \le 31$ $d \in [0,1]$ See description below C $0011 00df ffff$ The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed
Syntax: Operands: Operation: Status Affected: Encoding:	$\begin{bmatrix} label \end{bmatrix} RRF f,d$ $0 \le f \le 31$ $d \in [0,1]$ See description below C $\boxed{0011 00df ffff}$ The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
Syntax: Operands: Operation: Status Affected: Encoding: Description:	[<i>label</i>] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f' register 'f'
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	[<i>label</i>] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f' register 'f' 1
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	[<i>label</i>] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. C register 'f' 1 1 RRF REG1, 0
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example: Before Instru REG1	[<i>label</i>] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. 1 1 RRF REG1, 0 iction = 1110 0110 = 0

9.10 PRO MATE II Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode. PRO MATE II is CE compliant.

The PRO MATE II has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In stand-alone mode the PRO MATE II can read, verify or program PICmicro devices. It can also set code-protect bits in this mode.

9.11 PICSTART Plus Entry Level Development System

The PICSTART programmer is an easy-to-use, lowcost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

PICSTART Plus supports all PICmicro devices with up to 40 pins. Larger pin count devices such as the PIC16C92X, and PIC17C76X may be supported with an adapter socket. PICSTART Plus is CE compliant.

9.12 SIMICE Entry-Level Hardware Simulator

SIMICE is an entry-level hardware development system designed to operate in a PC-based environment with Microchip's simulator MPLAB-SIM. Both SIMICE and MPLAB-SIM run under Microchip Technology's MPLAB Integrated Development Environment (IDE) software. Specifically, SIMICE provides hardware simulation for Microchip's PIC12C5XX, PIC12CE5XX, and PIC16C5X families of PICmicro 8-bit microcontrollers. SIMICE works in conjunction with MPLAB-SIM to provide non-real-time I/O port emulation. SIMICE enables a developer to run simulator code for driving the target system. In addition, the target system can provide input to the simulator code. This capability allows for simple and interactive debugging without having to manually generate MPLAB-SIM stimulus files. SIMICE is a valuable debugging tool for entry-level system development.

9.13 PICDEM-1 Low-Cost PICmicro Demonstration Board

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE II or PICSTART-Plus programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the MPLAB-ICE emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

9.14 PICDEM-2 Low-Cost PIC16CXX Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-Plus, and easily test firmware. The MPLAB-ICE emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

9.15 PICDEM-3 Low-Cost PIC16CXXX Demonstration Board

The PICDEM-3 is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with a LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-3 board, on a PRO MATE II programmer or PICSTART Plus with an adapter socket, and easily test firmware. The MPLAB-ICE emulator may also be used with the PICDEM-3 board to test firmware. Additional prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include an RS-232 interface, push-button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM-3 board is an LCD panel, with 4 commons and 12 seqments, that is capable of displaying time, temperature and day of the week. The PICDEM-3 provides an additional RS-232 interface and Windows 3.1 software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

9.16 PICDEM-17

The PICDEM-17 is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers. including PIC17C752, PIC17C756, PIC17C762, and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included, and the user may erase it and program it with the other sample programs using the PRO MATE II or PICSTART Plus device programmers and easily debug and test the sample code. In addition, PICDEM-17 supports down-loading of programs to and executing out of external FLASH memory on board. The PICDEM-17 is also usable with the MPLAB-ICE or PICMASTER emulator, and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

9.17 SEEVAL Evaluation and Programming System

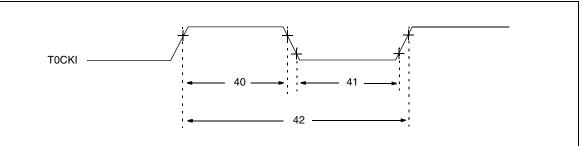
The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in trade-off analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

9.18 KEELOQ Evaluation and Programming Tools

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

	PIC12CX	PIC1400	PIC16C	PIC160	PIC160	PIC16F	PIC160	PIC16C	PIC160	PIC16F8	291219	971919	7971919	PIC18C)	83CX 52CX 54CX	кхѕэн	мсвех	MCP251
MPLAB [®] Integrated Development Environment	>	>	>	>	>	>	>	>	>	>	>	>	>	>				
MPLAB [®] C17 Compiler												>	>					
MPLAB [®] C18 Compiler														>				
	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>		
	>	>	>	>	>	** ⁄	>	>	>	>	>	>	>	>				
PICMASTER/PICMASTER-CE	>	>	>	>	>		>	>	>		>	>	>					
ICEPIC™ Low-Cost In-Circuit Emulator	>		>	>	>		>	>	>		>							
MPLAB [®] -ICD In-Circuit Debugger				*>			*			>								
PICSTART [®] PIus Low-Cost Universal Dev. Kit	>	>	>	>	>	**`	>	>	`	>	>	~	~	>				
PRO MATE [®] II Universal Programmer	>	>	>	>	>	** ⁄	>	>	>	>	>	>	>	>	>	>		
	>		>	<u> </u>			L											
			>		~		^ +		~			~						
				<+ <			<+ <							>				
											`							
		>																
													~					
KEELoo [®] Evaluation Kit																>		
KEELoo Transponder Kit																`		
microlD™ Programmer's Kit			<u> </u>	<u> </u>			L										~	
125 kHz microID Developer's Kit																	~	
125 kHz Anticollision microlD Developer's Kit																	>	
13.56 MHz Anticollision microlD Developer's Kit																	~	
MCP2510 CAN Developer's Kit																		>

1


 $\ensuremath{\textcircled{}^{\odot}}$ 2000 Microchip Technology Inc.

RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16HV540 TABLE 10-3:

AC Characteristics		Standard Operating Conditions (unless otherwise specified)							
		Operating Temperature 0°	$0^{\circ}C \le TA \le +70^{\circ}C$ (commercial)						
		$-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial)							
Parameter									
No.	Sym	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions		
30	TmcL	MCLR Pulse Width (low)	2	_	_	μs	VDD = 15V, VREG = 5V		
31	Twdt	Watchdog Timer Time-out Period	9.0*	18*	40*	ms	VDD = 15V, VREG = 5V		
32	TDRT	Device Reset Timer Period	9.0*	18*	30*	ms	VDD = 15V, $VREG = 5V$,		
			0.55*	1.1*	2.5*		RC mode		
34	Tioz	I/O Hi-impedance from MCLR Low	—	—	100*	ns			
_	Трс	Pin Change Pulse Width	2	_	_	μs			
35	TBOD	Brown-out Detect Pulse Width	_	2		μs	Vreg ≤ Bvdd		

 * These parameters are characterized but not tested.
 Note 1: Data in the Typical ("Typ") column is at VREG = 5V, VDD = 15V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 10-6: TIMER0 CLOCK TIMINGS - PIC16HV540

TIMER0 CLOCK REQUIREMENTS - PIC16HV540 TABLE 10-4:

AC	Charac	teristics Standard Operating	andard Operating Conditions (unless otherwise specified)					
		Operating Temperatu	ture $0^{\circ}C \le TA \le +70^{\circ}C$ (commercial)					
			$-40^{\circ}C \le TA$	≤ +85°C	(indus	trial)		
Parameter No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
40	Tt0H	T0CKI High Pulse Width - No Prescaler	0.5 TCY + 20*	—	_	ns		
		- With Prescaler	10*	—		ns		
41	Tt0L	T0CKI Low Pulse Width - No Prescaler	0.5 TCY + 20*	—		ns		
		- With Prescaler	10*	_		ns		
42	Tt0P	T0CKI Period	20 or <u>TCY + 40</u> * N			ns	Whichever is greater. N = Prescale Value (1, 2, 4,, 256)	

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 3.8V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

INDEX

Α
Absolute Maximum Ratings61
ALU
Applications
Architectural Overview
Assembler
MPASM Assembler 55
В
Block Diagram
On-Chip Reset Circuit
PIC16C5X Series
Timer0
TMR0/WDT Prescaler
Watchdog Timer 40
Brown-out Detect
C
Carry bit7
Clocking Scheme
Code Protection
Configuration Bits
Configuration Word
PIC16CR54C
D
DC and AC Characteristics - PIC16CR54C
DC Characteristics
Development Support55
Device Varieties
Digit Carry bit
• ,
E
Electrical Characteristics
PIC16CR54C61
Enhanced Watchdog Timer (WDT)
Errata2
External Power-On Reset Circuit
F
1
Family of Devices
PIC16C5X
Features1
FSR
FSR Register
I/O Interfacing19
I/O Ports
I/O Programming Considerations
INDF
INDF Register
Indirect Data Addressing
Instruction Cycle 10
Instruction Flow/Pipelining10
Instruction Set Summary43
ĸ
KeeLoq® Evaluation and Programming Tools
Load Conditions
Loading of PC 16
M
MCLR
Memory Map11
PIC16C54s/CR54s/C55s
Memory Organization
Data Mamani 11
Data Memory11
Program Memory

0
One-Time-Programmable (OTP) Devices5
OPTION Register 14
OSC selection
Oscillator Configurations
Oscillator Types
HS
LP
RC
XT
Р
Package Marking Information77
Packaging Information73
PC
PICDEM-1 Low-Cost PICmicro Demo Board57
PICDEM-2 Low-Cost PIC16CXX Demo Board57
PICDEM-3 Low-Cost PIC16CXXX Demo Board57
PICSTART® Plus Entry Level Development System 57
pin diagrams1
POR
Device Reset Timer (DRT)
PD
Power-On Reset (POR)
TO
PORTA
PORTB
Power-Down Mode
Prescaler
PRO MATE® II Universal Programmer57
Program Counter
Q
Q cycles
Quick-Turnaround-Production (QTP) Devices
R
R BC Oscillator 33
RC Oscillator
RC Oscillator
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers 11
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers Special Function 11
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers Special Function Special Function 11 Reset 31, 34
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers 11 Special Function 11 Reset 31, 34 S S
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers 11 Special Function 11 Reset 31, 34 S SEEVAL® Evaluation and Programming System 58
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers 11 Special Function 11 Reset 31, 34 S SEEVAL® Evaluation and Programming System 58 Serialized Quick-Turnaround-Production (SQTP) Devices 5
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers 11 Special Function 11 Reset 31, 34 S SEEVAL® Evaluation and Programming System 58 Serialized Quick-Turnaround-Production (SQTP) Devices 5 SLEEP 31, 41
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers Special Function Special Function 11 Reset 31, 34 S SEEVAL® Evaluation and Programming System Serialized Quick-Turnaround-Production (SQTP) Devices 5 SLEEP 31, 41 Software Simulator (MPLAB-SIM) 56
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers 11 Special Function 11 Reset 31, 34 S SEEVAL® Evaluation and Programming System 58 Serialized Quick-Turnaround-Production (SQTP) Devices 5 SLEEP 31, 41 Software Simulator (MPLAB-SIM) 56 Special Features of the CPU 31
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers 11 Special Function 11 Reset 31, 34 S SEEVAL® Evaluation and Programming System 58 Serialized Quick-Turnaround-Production (SQTP) Devices 5 SLEEP 31, 41 Software Simulator (MPLAB-SIM) 56 Special Features of the CPU 31 Special Function Registers 11
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers 11 Special Function 11 Reset 31, 34 S SEEVAL® Evaluation and Programming System 58 Serialized Quick-Turnaround-Production (SQTP) Devices 5 SLEEP 31, 41 Software Simulator (MPLAB-SIM) 56 Special Features of the CPU 31 Special Function Registers 11 Stack 16
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers 11 Special Function 11 Reset 31, 34 S SEEVAL® Evaluation and Programming System Serialized Quick-Turnaround-Production (SQTP) Devices 5 SLEEP 31, 41 Software Simulator (MPLAB-SIM) 56 Special Features of the CPU 31 Special Function Registers 11 Stack 16 STATUS 35
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers 11 Special Function 11 Reset 31, 34 S SEEVAL® Evaluation and Programming System Serialized Quick-Turnaround-Production (SQTP) Devices 5 SLEEP 31, 41 Software Simulator (MPLAB-SIM) 56 Special Features of the CPU 31 Special Function Registers 11 Stack 16 STATUS 35 STATUS Register 7, 13
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers 11 Special Function 11 Reset 31, 34 S SEEVAL® Evaluation and Programming System Serialized Quick-Turnaround-Production (SQTP) Devices 5 SLEEP 31, 41 Software Simulator (MPLAB-SIM) 56 Special Features of the CPU 31 Special Function Registers 11 Stack 16 STATUS 35 STATUS Register 7, 13
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers Special Function Special Function 11 Reset 31, 34 S SEEVAL® Evaluation and Programming System Serialized Quick-Turnaround-Production (SQTP) Devices 5 SLEEP 31, 41 Software Simulator (MPLAB-SIM) 56 Special Features of the CPU 31 Special Function Registers 11 Stack 16 STATUS 35 STATUS Register 7, 13 T Timer0
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers Special Function Special Function 11 Reset 31, 34 S SEEVAL® Evaluation and Programming System Serialized Quick-Turnaround-Production (SQTP) Devices 5 SLEEP 31, 41 Software Simulator (MPLAB-SIM) 56 Special Features of the CPU 31 Special Function Registers 11 Stack 16 STATUS 35 STATUS Register 7, 13 T Timer0 Switching Prescaler Assignment 28
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers Special Function Special Function 11 Reset 31, 34 S SEEVAL® Evaluation and Programming System Serialized Quick-Turnaround-Production (SQTP) Devices 5 SLEEP 31, 41 Software Simulator (MPLAB-SIM) 56 Special Features of the CPU 31 Special Function Registers 11 Stack 16 STATUS 35 STATUS Register 7, 13 T Timer0 Switching Prescaler Assignment 28 Timer0 (TMR0) Module 25
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers Special Function Special Function 11 Reset 31, 34 S SEEVAL® Evaluation and Programming System Serialized Quick-Turnaround-Production (SQTP) Devices 5 SLEEP 31, 41 Software Simulator (MPLAB-SIM) 56 Special Features of the CPU 31 Special Function Registers 11 Stack 16 STATUS 35 STATUS Register 7, 13 T Timer0 Switching Prescaler Assignment 28 Timer0 (TMR0) Module 25 TMR0 with External Clock 27
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers Special Function Special Function 11 Reset 31, 34 S SEEVAL® Evaluation and Programming System Serialized Quick-Turnaround-Production (SQTP) Devices 5 SLEEP 31, 41 Software Simulator (MPLAB-SIM) 56 Special Features of the CPU 31 Special Features of the CPU 31 Special Features of the CPU 31 Special Function Registers 11 Stack 16 STATUS 35 STATUS Register 7, 13 T Timer0 Switching Prescaler Assignment 28 Timer0 (TMR0) Module 25 TMR0 with External Clock 27 Timing Diagrams and Specifications 65
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers Special Function Special Function 11 Reset 31, 34 S SEEVAL® Evaluation and Programming System Serialized Quick-Turnaround-Production (SQTP) Devices 5 SLEEP 31, 41 Software Simulator (MPLAB-SIM) 56 Special Features of the CPU 31 Special Function Registers 11 Stack 16 STATUS 35 STATUS Register 7, 13 T Timer0 Switching Prescaler Assignment 28 Timer0 (TMR0) Module 25 TMR0 with External Clock 27 Timing Diagrams and Specifications 65 Timing Parameter Symbology and Load Conditions 64
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers Special Function Special Function 11 Reset 31, 34 S SEEVAL® Evaluation and Programming System Serialized Quick-Turnaround-Production (SQTP) Devices 5 SLEEP 31, 41 Software Simulator (MPLAB-SIM) 56 Special Features of the CPU 31 Special Function Registers 11 Stack 16 STATUS 35 STATUS Register 7, 13 T Timer0 Switching Prescaler Assignment 28 Timer0 (TMR0) Module 25 TMR0 with External Clock 27 Timing Diagrams and Specifications 65 Timing Parameter Symbology and Load Conditions 64 TRIS Registers 19
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers Special Function Special Function 11 Reset 31, 34 S SEEVAL® Evaluation and Programming System Serialized Quick-Turnaround-Production (SQTP) Devices 5 SLEEP 31, 41 Software Simulator (MPLAB-SIM) 56 Special Features of the CPU 31 Special Features of the CPU 31 Special Function Registers 11 Stack 16 STATUS 35 STATUS Register 7, 13 T Timer0 Switching Prescaler Assignment 28 Timer0 (TMR0) Module 25 TMR0 with External Clock 27 Timing Diagrams and Specifications 65 Timing Parameter Symbology and Load Conditions 64 TRIS Registers 19 U U
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers Special Function Special Function 11 Reset 31, 34 S SEEVAL® Evaluation and Programming System Serialized Quick-Turnaround-Production (SQTP) Devices 5 SLEEP 31, 41 Software Simulator (MPLAB-SIM) 56 Special Features of the CPU 31 Special Features of the CPU 31 Special Function Registers 11 Stack 16 STATUS 35 STATUS Register 7, 13 T Timer0 Switching Prescaler Assignment 28 Timer0 (TMR0) Module 25 TMR0 with External Clock 27 Timing Diagrams and Specifications 65 Timing Parameter Symbology and Load Conditions 64 TRIS Registers 19 U UV Erasable Devices 5
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers 11 Special Function 11 Reset 31, 34 S SEEVAL® Evaluation and Programming System Serialized Quick-Turnaround-Production (SQTP) Devices 5 SLEEP 31, 41 Software Simulator (MPLAB-SIM) 56 Special Features of the CPU 31 Special Features of the CPU 31 Special Function Registers 11 Stack 16 STATUS 35 STATUS Register 7, 13 T Timer0 Switching Prescaler Assignment 28 Timer0 (TMR0) Module 25 TMR0 with External Clock 27 Timing Diagrams and Specifications 65 Timing Parameter Symbology and Load Conditions 64 TRIS Registers 19 U UV Erasable Devices 5
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers 11 Special Function 11 Reset 31, 34 S SEEVAL® Evaluation and Programming System Serialized Quick-Turnaround-Production (SQTP) Devices 5 SLEEP 31, 41 Software Simulator (MPLAB-SIM) 56 Special Features of the CPU 31 Special Features of the CPU 31 Special Function Registers 11 Stack 16 STATUS 35 STATUS Register 7, 13 T Timer0 Switching Prescaler Assignment 28 Timer0 (TMR0) Module 25 TMR0 with External Clock 27 Timing Diagrams and Specifications 65 Timing Parameter Symbology and Load Conditions 64 VU Erasable Devices 5 W 35
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers 11 Special Function 11 Reset 31, 34 S SEEVAL® Evaluation and Programming System Serialized Quick-Turnaround-Production (SQTP) Devices 5 SLEEP 31, 41 Software Simulator (MPLAB-SIM) 56 Special Features of the CPU 31 Special Features of the CPU 31 Special Function Registers 11 Stack 16 STATUS 35 STATUS Register 7, 13 T Timer0 Switching Prescaler Assignment 28 Timer0 (TMR0) Module 25 TMR0 with External Clock 27 Timing Diagrams and Specifications 65 Timing Parameter Symbology and Load Conditions 64 TRIS Registers 19 U UV Erasable Devices 5 W 35 Wake-up from SLEEP 41
RC Oscillator 33 Read-Modify-Write 22 Register File Map 11 Registers 11 Special Function 11 Reset 31, 34 S SEEVAL® Evaluation and Programming System Serialized Quick-Turnaround-Production (SQTP) Devices 5 SLEEP 31, 41 Software Simulator (MPLAB-SIM) 56 Special Features of the CPU 31 Special Features of the CPU 31 Special Function Registers 11 Stack 16 STATUS 35 STATUS Register 7, 13 T Timer0 Switching Prescaler Assignment 28 Timer0 (TMR0) Module 25 TMR0 with External Clock 27 Timing Diagrams and Specifications 65 Timing Parameter Symbology and Load Conditions 64 VU Erasable Devices 5 W 35

Period	
Programming Considerations	
WWW, On-Line Support	
Z	
Zero bit	7