



Welcome to E-XFL.COM

### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

### Details

| Details                    |                                                                                  |
|----------------------------|----------------------------------------------------------------------------------|
| Product Status             | Active                                                                           |
| Core Processor             | R8C                                                                              |
| Core Size                  | 16-Bit                                                                           |
| Speed                      | 20MHz                                                                            |
| Connectivity               | I <sup>2</sup> C, LINbus, SIO, SSU, UART/USART                                   |
| Peripherals                | POR, PWM, Voltage Detect, WDT                                                    |
| Number of I/O              | 27                                                                               |
| Program Memory Size        | 8KB (8K x 8)                                                                     |
| Program Memory Type        | FLASH                                                                            |
| EEPROM Size                | 4K x 8                                                                           |
| RAM Size                   | 1K x 8                                                                           |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                                      |
| Data Converters            | A/D 12x10b; D/A 2x8b                                                             |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 32-LQFP                                                                          |
| Supplier Device Package    | 32-LQFP (7x7)                                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21332cdfp-30 |
|                            |                                                                                  |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## 1.1.2 Specifications

Tables 1.1 and 1.2 outline the Specifications for R8C/33C Group.

| Item          | Function           | Specification                                                                                               |
|---------------|--------------------|-------------------------------------------------------------------------------------------------------------|
| CPU           | Central processing | R8C CPU core                                                                                                |
|               | unit               | Number of fundamental instructions: 89                                                                      |
|               |                    | Minimum instruction execution time:                                                                         |
|               |                    | 50 ns (f(XIN) = 20 MHz, VCC = 2.7 to 5.5 V)                                                                 |
|               |                    | 200 ns (f(XIN) = 5 MHz, VCC = 1.8 to 5.5 V)                                                                 |
|               |                    | • Multiplier: 16 bits $\times$ 16 bits $\rightarrow$ 32 bits                                                |
|               |                    | • Multiply-accumulate instruction: 16 bits × 16 bits + 32 bits $\rightarrow$ 32 bits                        |
|               |                    | Operation mode: Single-chip mode (address space: 1 Mbyte)                                                   |
| Memory        | ROM, RAM, Data     | Refer to Table 1.3 Product List for R8C/33C Group.                                                          |
| Montory       | flash              |                                                                                                             |
| Power Supply  | Voltage detection  | Power-on reset                                                                                              |
| Voltage       | circuit            | Voltage detection 3 (detection level of voltage detection 0 and voltage                                     |
| Detection     | Circuit            | detection 1 selectable)                                                                                     |
|               | Programmable I/O   | Input-only: 1 pin                                                                                           |
| I/O Ports     | -                  |                                                                                                             |
|               | ports              | CMOS I/O ports: 27, selectable pull-up resistor                                                             |
|               |                    | High current drive ports: 27                                                                                |
| Clock         | Clock generation   | 4 circuits: XIN clock oscillation circuit,                                                                  |
|               | circuits           | XCIN clock oscillation circuit (32 kHz),                                                                    |
|               |                    | High-speed on-chip oscillator (with frequency adjustment function),                                         |
|               |                    | Low-speed on-chip oscillator                                                                                |
|               |                    | Oscillation stop detection: XIN clock oscillation stop detection function                                   |
|               |                    | • Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16                                         |
|               |                    | Low power consumption modes:                                                                                |
|               |                    | Standard operating mode (high-speed clock, low-speed clock, high-speed                                      |
|               |                    | on-chip oscillator, low-speed on-chip oscillator), wait mode, stop mode                                     |
|               |                    | Real-time clock (timer RE)                                                                                  |
| Interrupts    |                    | Number of interrupt vectors: 69                                                                             |
|               |                    | • External Interrupt: 7 (INT × 3, Key input × 4)                                                            |
|               |                    | Priority levels: 7 levels                                                                                   |
| Watchdog Tim  | er                 | • 14 bits × 1 (with prescaler)                                                                              |
|               |                    | Reset start selectable                                                                                      |
|               |                    | Low-speed on-chip oscillator for watchdog timer selectable                                                  |
| DTC (Data Tra | Insfer Controller) | 1 channel                                                                                                   |
|               |                    | Activation sources: 23                                                                                      |
|               |                    | Transfer modes: 2 (normal mode, repeat mode)                                                                |
| Timer         | Timer RA           | 8 bits x 1 (with 8-bit prescaler)                                                                           |
| TITIEI        |                    | Timer mode (period timer), pulse output mode (output level inverted every                                   |
|               |                    | period), event counter mode, pulse width measurement mode, pulse period                                     |
|               |                    | measurement mode                                                                                            |
|               | Timor PB           |                                                                                                             |
|               | Timer RB           | 8 bits × 1 (with 8-bit prescaler)<br>Timer mode (period timer), programmable waveform generation mode (PWM) |
|               |                    | output), programmable one-shot generation mode, programmable wait one-                                      |
|               |                    | shot generation mode                                                                                        |
|               | Timer RC           | 16 bits × 1 (with 4 capture/compare registers)                                                              |
|               |                    | Timer mode (input capture function, output compare function), PWM mode                                      |
|               |                    | (output 3 pins), PWM2 mode (PWM output pin)                                                                 |
|               | Timer RE           | 8 bits × 1                                                                                                  |
|               |                    | Real-time clock mode (count seconds, minutes, hours, days of week), output                                  |
|               |                    | compare mode                                                                                                |
|               | 1                  |                                                                                                             |

## Table 1.1 Specifications for R8C/33C Group (1)



## 1.3 Block Diagram

Figure 1.2 shows a Block Diagram.



RENESAS

## 1.4 Pin Assignment

Figure 1.3 shows Pin Assignment (Top View). Table 1.4 outline the Pin Name Information by Pin Number.





|               |              |          |             | I/O                 | Pin Functions for                     | r Periphe | eral Modu               | ules                                             |
|---------------|--------------|----------|-------------|---------------------|---------------------------------------|-----------|-------------------------|--------------------------------------------------|
| Pin<br>Number | Control Pin  | Port     | Interrupt   | Timer               | Serial<br>Interface                   | SSU       | l <sup>2</sup> C<br>bus | A/D Converter,<br>D/A Converter,<br>Comparator B |
| 1             |              | P4_2     |             |                     |                                       |           |                         | VREF                                             |
| 2             | MODE         |          |             |                     |                                       |           |                         |                                                  |
| 3             | RESET        |          |             |                     |                                       |           |                         |                                                  |
| 4             | XOUT(/XCOUT) | P4_7     |             |                     |                                       |           |                         |                                                  |
| 5             | VSS/AVSS     |          |             |                     |                                       |           |                         |                                                  |
| 6             | XIN(/XCIN)   | P4_6     |             |                     |                                       |           |                         |                                                  |
| 7             | VCC/AVCC     |          |             |                     |                                       |           |                         |                                                  |
| 8             |              | P3_7     |             | TRAO                | (RXD2/SCL2/<br>TXD2/SDA2)             | SSO       | SDA                     |                                                  |
| 9             |              | P3_5     |             | (TRCIOD)            | (CLK2)                                | SSCK      | SCL                     |                                                  |
| 10            |              | P3_4     |             | (TRCIOC)            | (RXD2/SCL2/<br>TXD2/SDA2)             | SSI       |                         | IVREF3                                           |
| 11            |              | P3_3     | INT3        | (TRCCLK)            | (CTS2/RTS2)                           | SCS       |                         | IVCMP3                                           |
| 12            |              | P2_2     |             | (TRCIOD)            | , , , , , , , , , , , , , , , , , , , |           |                         |                                                  |
| 13            |              | P2_1     |             | (TRCIOC)            |                                       |           |                         |                                                  |
| 14            |              | P2_0     | (INT1)      | (TRCIOB)            |                                       |           |                         |                                                  |
| 15            |              | P3_1     |             | (TRBO)              |                                       |           |                         |                                                  |
| 16            |              | P4_5     | <b>INTO</b> |                     | (RXD2/SCL2)                           |           |                         | ADTRG                                            |
| 17            |              | P1_7     | INT1        | (TRAIO)             |                                       |           |                         | IVCMP1                                           |
| 18            |              | P1_6     |             |                     | (CLK0)                                |           |                         | IVREF1                                           |
| 19            |              | P1_5     | (INT1)      | (TRAIO)             | (RXD0)                                |           |                         |                                                  |
| 20            |              | P1_4     | ,           | (TRCCLK)            | (TXD0)                                |           |                         |                                                  |
| 21            |              | P1_3     | KI3         | TRBO<br>(/TRCIOC)   |                                       |           |                         | AN11                                             |
| 22            |              | P1_2     | KI2         | (TRCIOB)            |                                       |           |                         | AN10                                             |
| 23            |              | P1_1     | KI1         | (TRCIOA/<br>TRCTRG) |                                       |           |                         | AN9                                              |
| 24            |              | P1_0     | KI0         | (TRCIOD)            |                                       |           |                         | AN8                                              |
| 25            |              | P0_7     |             | (TRCIOC)            |                                       |           |                         | AN0/DA1                                          |
| 26            |              | <br>P0_6 |             | (TRCIOD)            |                                       |           |                         | AN1/DA0                                          |
| 27            |              | P0_5     |             | (TRCIOB)            |                                       |           |                         | AN2                                              |
| 28            |              | P0_4     |             | TREO<br>(/TRCIOB)   |                                       |           |                         | AN3                                              |
| 29            |              | P0_3     |             | (TRCIOB)            | (CLK1)                                |           |                         | AN4                                              |
| 30            |              | P0_2     |             | (TRCIOA/<br>TRCTRG) | (RXD1)                                |           |                         | AN5                                              |
| 31            |              | P0_1     |             | (TRCIOA/<br>TRCTRG) | (TXD1)                                |           |                         | AN6                                              |
| 32            |              | P0_0     |             | (TRCIOA/<br>TRCTRG) |                                       |           |                         | AN7                                              |

# Table 1.4 Pin Name Information by Pin Number

Note:

1. Can be assigned to the pin in parentheses by a program.

| Address        | Register                                                                           | Symbol         | After Reset            |
|----------------|------------------------------------------------------------------------------------|----------------|------------------------|
| 003Ah          | Voltage Monitor 2 Circuit Control Register                                         | VW2C           | 10000010b              |
| 003Bh          | · · · · · · · · · · · · · · · · · · ·                                              |                |                        |
| 003Ch          |                                                                                    |                |                        |
| 003Dh          |                                                                                    |                |                        |
| 003Eh          |                                                                                    |                |                        |
| 003Fh          |                                                                                    |                |                        |
| 0040h          |                                                                                    |                |                        |
| 0041h          | Flash Memory Ready Interrupt Control Register                                      | FMRDYIC        | XXXXX000b              |
| 0042h          |                                                                                    |                |                        |
| 0043h          |                                                                                    |                |                        |
| 0044h          |                                                                                    |                |                        |
| 0045h          |                                                                                    |                |                        |
| 0046h          |                                                                                    |                |                        |
| 0047h          | Timer RC Interrupt Control Register                                                | TRCIC          | XXXXX000b              |
| 0048h          |                                                                                    |                |                        |
| 0049h          | Times DE later and Ocated De sister                                                | TDEIO          | XXXXXXX000h            |
| 004Ah          | Timer RE Interrupt Control Register                                                | TREIC          | XXXXX000b              |
| 004Bh<br>004Ch | UART2 Transmit Interrupt Control Register UART2 Receive Interrupt Control Register | S2TIC<br>S2RIC | XXXXX000b<br>XXXXX000b |
| 004Ch<br>004Dh | Key Input Interrupt Control Register                                               | KUPIC          | XXXXX000b              |
| 004Dh<br>004Eh | A/D Conversion Interrupt Control Register                                          | ADIC           | XXXXX000b              |
| 004En<br>004Fh | SSU Interrupt Control Register / IIC bus Interrupt Control Register <sup>(2)</sup> | SSUIC / IICIC  | XXXXX000b              |
| 004Fh<br>0050h |                                                                                    |                |                        |
| 0050h<br>0051h | UART0 Transmit Interrupt Control Register                                          | SOTIC          | XXXXX000b              |
| 0051h          | UARTO Receive Interrupt Control Register                                           | SORIC          | XXXXX000b              |
| 0052h          | UART1 Transmit Interrupt Control Register                                          | SITIC          | XXXXX000b              |
| 0054h          | UART1 Receive Interrupt Control Register                                           | S1RIC          | XXXXX000b              |
| 0055h          |                                                                                    | OINIO          | XXXXXX0000D            |
| 0056h          | Timer RA Interrupt Control Register                                                | TRAIC          | XXXXX000b              |
| 0057h          |                                                                                    | 110.00         | 70000000               |
| 0058h          | Timer RB Interrupt Control Register                                                | TRBIC          | XXXXX000b              |
| 0059h          | INT1 Interrupt Control Register                                                    | INT1IC         | XX00X000b              |
| 005Ah          | INT3 Interrupt Control Register                                                    | INT3IC         | XX00X000b              |
| 005Bh          |                                                                                    |                |                        |
| 005Ch          |                                                                                    |                |                        |
| 005Dh          | INT0 Interrupt Control Register                                                    | INTOIC         | XX00X000b              |
| 005Eh          | UART2 Bus Collision Detection Interrupt Control Register                           | U2BCNIC        | XXXXX000b              |
| 005Fh          |                                                                                    |                |                        |
| 0060h          |                                                                                    |                |                        |
| 0061h          |                                                                                    |                |                        |
| 0062h          |                                                                                    |                |                        |
| 0063h          |                                                                                    |                |                        |
| 0064h          |                                                                                    |                |                        |
| 0065h          |                                                                                    |                |                        |
| 0066h          |                                                                                    |                |                        |
| 0067h          |                                                                                    |                |                        |
| 0068h          |                                                                                    |                |                        |
| 0069h          |                                                                                    |                |                        |
| 006Ah<br>006Bh |                                                                                    |                |                        |
| 006Bh          |                                                                                    |                |                        |
| 006Ch          |                                                                                    |                |                        |
| 006Eh          |                                                                                    |                |                        |
| 006Fh          |                                                                                    |                |                        |
| 0070h          |                                                                                    |                |                        |
| 0071h          |                                                                                    |                |                        |
| 0072h          | Voltage Monitor 1 Interrupt Control Register                                       | VCMP1IC        | XXXXX000b              |
| 0073h          | Voltage Monitor 2 Interrupt Control Register                                       | VCMP2IC        | XXXXX000b              |
| 0074h          |                                                                                    | ~              | -                      |
| 0075h          |                                                                                    |                |                        |
| 0076h          |                                                                                    |                |                        |
| 0077h          |                                                                                    |                |                        |
| 0078h          |                                                                                    |                |                        |
| 0079h          |                                                                                    |                |                        |
| 007Ah          |                                                                                    |                |                        |
| 007Bh          |                                                                                    |                |                        |
| 007Ch          |                                                                                    |                |                        |
| 007Dh          |                                                                                    |                |                        |
| 007Eh          |                                                                                    |                |                        |
| 007Fh          |                                                                                    |                |                        |
| X: Undefined   |                                                                                    |                |                        |

SFR Information (2)<sup>(1)</sup> Table 4.2

Notes: 1. 2.

The blank areas are reserved and cannot be accessed by users. Selectable by the IICSEL bit in the SSUIICSR register.



| Address        | Register                   | Symbol  | After Reset |
|----------------|----------------------------|---------|-------------|
| 00C0h          | A/D Register 0             | AD0     | XXXh        |
|                | A/D Register 0             | ADU     | 000000XXb   |
| 00C1h          |                            | 1.5.    |             |
| 00C2h          | A/D Register 1             | AD1     | XXh         |
| 00C3h          |                            |         | 000000XXb   |
| 00C4h          | A/D Register 2             | AD2     | XXh         |
| 00C5h          |                            |         | 000000XXb   |
| 00C6h          | A/D Register 3             | AD3     | XXh         |
| 00C7h          |                            |         | 000000XXb   |
| 00C8h          | A/D Register 4             | AD4     | XXh         |
| 00C9h          |                            | 7.01    | 000000XXb   |
| 00CAh          | A/D Register 5             | AD5     | XXh         |
| 00CAn<br>00CBh | A/D Register 5             | AD3     | 000000XXb   |
|                |                            | 4.50    |             |
| 00CCh          | A/D Register 6             | AD6     | XXh         |
| 00CDh          |                            |         | 000000XXb   |
| 00CEh          | A/D Register 7             | AD7     | XXh         |
| 00CFh          |                            |         | 000000XXb   |
| 00D0h          |                            |         |             |
| 00D1h          |                            |         |             |
| 00D2h          |                            |         |             |
| 00D3h          |                            | 1       |             |
| 00D3h          | A/D Mode Register          | ADMOD   | 00h         |
| 00D4n          | A/D Input Select Register  | ADINSEL | 1100000b    |
|                |                            |         |             |
| 00D6h          | A/D Control Register 0     | ADCON0  | 00h         |
| 00D7h          | A/D Control Register 1     | ADCON1  | 00h         |
| 00D8h          | D/A0 Register              | DA0     | 00h         |
| 00D9h          | D/A1 Register              | DA1     | 00h         |
| 00DAh          |                            |         |             |
| 00DBh          |                            |         | _           |
| 00DCh          | D/A Control Register       | DACON   | 00h         |
| 00DDh          |                            | DROOM   |             |
| 00DEh          |                            |         |             |
|                |                            |         |             |
| 00DFh          |                            |         |             |
| 00E0h          | Port P0 Register           | P0      | XXh         |
| 00E1h          | Port P1 Register           | P1      | XXh         |
| 00E2h          | Port P0 Direction Register | PD0     | 00h         |
| 00E3h          | Port P1 Direction Register | PD1     | 00h         |
| 00E4h          | Port P2 Register           | P2      | XXh         |
| 00E5h          | Port P3 Register           | P3      | XXh         |
| 00E6h          | Port P2 Direction Register | PD2     | 00h         |
| 00E7h          | Port P3 Direction Register | PD3     | 00h         |
| 00E8h          | Port P4 Register           | P4      | XXh         |
|                | Poli P4 Register           | P4      | ~~!!        |
| 00E9h          |                            |         |             |
| 00EAh          | Port P4 Direction Register | PD4     | 00h         |
| 00EBh          |                            |         |             |
| 00ECh          |                            |         |             |
| 00EDh          |                            |         |             |
| 00EEh          |                            |         |             |
| 00EFh          |                            |         |             |
| 00F0h          |                            | 1       |             |
| 00F1h          |                            |         |             |
|                |                            |         |             |
| 00F2h          |                            |         |             |
| 00F3h          |                            |         |             |
| 00F4h          |                            |         |             |
| 00F5h          |                            |         |             |
| 00F6h          |                            |         |             |
| 00F7h          |                            |         |             |
| 00F8h          |                            |         |             |
| 00F9h          |                            |         |             |
| 00FAh          |                            |         |             |
| 00FBh          |                            |         | +           |
|                |                            |         |             |
| 00FCh          |                            | +       |             |
| 00FDh          |                            |         |             |
| 00FEh          |                            |         |             |
| 00FFh          |                            |         |             |
| X. Undefined   |                            |         |             |

SFR Information (4)<sup>(1)</sup> Table 4.4



| Address                                                                                                                                                                                                                                                  | Register                                                                                                                                            | Symbol                        | After Reset                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------|
| 0140h                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 0141h                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 0142h                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 0143h                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 0144h                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 0145h                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 0146h                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 0147h                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 0148h                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 0149h                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 014Ah<br>014Bh                                                                                                                                                                                                                                           |                                                                                                                                                     |                               |                                                    |
| 014Bh<br>014Ch                                                                                                                                                                                                                                           |                                                                                                                                                     |                               |                                                    |
| 014Dh                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 014Eh                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 014Fh                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 0150h                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 0151h                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 0152h                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 0153h                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 0154h                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 0155h                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 0156h                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 0157h                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 0158h                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 0159h                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 015Ah<br>015Bh                                                                                                                                                                                                                                           |                                                                                                                                                     |                               |                                                    |
| 015Bn                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 015Dh                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 015Eh                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 015Fh                                                                                                                                                                                                                                                    |                                                                                                                                                     |                               |                                                    |
| 0160h                                                                                                                                                                                                                                                    | UART1 Transmit/Receive Mode Register                                                                                                                | LIAMD                         | 0.06                                               |
| 01000                                                                                                                                                                                                                                                    | UARTI Hanshiil/Receive would Register                                                                                                               | UTIVIR                        | 00h                                                |
| 0160h<br>0161h                                                                                                                                                                                                                                           | UART1 Bit Rate Register                                                                                                                             | U1MR<br>U1BRG                 | XXh                                                |
| 0161h<br>0162h                                                                                                                                                                                                                                           | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register                                                                                           | U1BRG<br>U1TB                 | XXh<br>XXh                                         |
| 0161h<br>0162h<br>0163h                                                                                                                                                                                                                                  | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register                                                                                           | U1BRG<br>U1TB                 | XXh<br>XXh<br>XXh                                  |
| 0161h<br>0162h<br>0163h<br>0164h                                                                                                                                                                                                                         | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register<br>UART1 Transmit/Receive Control Register 0                                              | U1BRG<br>U1TB<br>U1C0         | XXh<br>XXh<br>XXh<br>00001000b                     |
| 0161h<br>0162h<br>0163h<br>0164h<br>0165h                                                                                                                                                                                                                | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register<br>UART1 Transmit/Receive Control Register 0<br>UART1 Transmit/Receive Control Register 1 | U1BRG<br>U1TB<br>U1C0<br>U1C1 | XXh<br>XXh<br>XXh<br>00001000b<br>00000010b        |
| 0161h<br>0162h<br>0163h<br>0164h<br>0165h<br>0166h                                                                                                                                                                                                       | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register<br>UART1 Transmit/Receive Control Register 0                                              | U1BRG<br>U1TB<br>U1C0         | XXh<br>XXh<br>XXh<br>00001000b<br>00000010b<br>XXh |
| 0161h<br>0162h<br>0163h<br>0164h<br>0165h<br>0166h<br>0167h                                                                                                                                                                                              | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register<br>UART1 Transmit/Receive Control Register 0<br>UART1 Transmit/Receive Control Register 1 | U1BRG<br>U1TB<br>U1C0<br>U1C1 | XXh<br>XXh<br>XXh<br>00001000b<br>00000010b        |
| 0161h<br>0162h<br>0163h<br>0164h<br>0165h<br>0166h<br>0166h<br>0167h<br>0168h                                                                                                                                                                            | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register<br>UART1 Transmit/Receive Control Register 0<br>UART1 Transmit/Receive Control Register 1 | U1BRG<br>U1TB<br>U1C0<br>U1C1 | XXh<br>XXh<br>XXh<br>00001000b<br>00000010b<br>XXh |
| 0161h<br>0162h<br>0163h<br>0164h<br>0165h<br>0166h<br>0166h<br>0167h<br>0168h<br>0169h                                                                                                                                                                   | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register<br>UART1 Transmit/Receive Control Register 0<br>UART1 Transmit/Receive Control Register 1 | U1BRG<br>U1TB<br>U1C0<br>U1C1 | XXh<br>XXh<br>XXh<br>00001000b<br>00000010b<br>XXh |
| 0161h<br>0162h<br>0163h<br>0164h<br>0165h<br>0166h<br>0167h<br>0168h<br>0168h<br>0169h                                                                                                                                                                   | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register<br>UART1 Transmit/Receive Control Register 0<br>UART1 Transmit/Receive Control Register 1 | U1BRG<br>U1TB<br>U1C0<br>U1C1 | XXh<br>XXh<br>XXh<br>00001000b<br>00000010b<br>XXh |
| 0161h<br>0162h<br>0163h<br>0164h<br>0165h<br>0166h<br>0167h<br>0168h<br>0168h<br>016Ah<br>016Ah                                                                                                                                                          | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register<br>UART1 Transmit/Receive Control Register 0<br>UART1 Transmit/Receive Control Register 1 | U1BRG<br>U1TB<br>U1C0<br>U1C1 | XXh<br>XXh<br>XXh<br>00001000b<br>00000010b<br>XXh |
| 0161h<br>0162h<br>0163h<br>0164h<br>0165h<br>0166h<br>0167h<br>0168h<br>0168h<br>0169h                                                                                                                                                                   | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register<br>UART1 Transmit/Receive Control Register 0<br>UART1 Transmit/Receive Control Register 1 | U1BRG<br>U1TB<br>U1C0<br>U1C1 | XXh<br>XXh<br>XXh<br>00001000b<br>00000010b<br>XXh |
| 0161h<br>0162h<br>0163h<br>0164h<br>0165h<br>0165h<br>0166h<br>0167h<br>0168h<br>0169h<br>016Bh<br>016Bh                                                                                                                                                 | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register<br>UART1 Transmit/Receive Control Register 0<br>UART1 Transmit/Receive Control Register 1 | U1BRG<br>U1TB<br>U1C0<br>U1C1 | XXh<br>XXh<br>XXh<br>00001000b<br>00000010b<br>XXh |
| 0161h<br>0162h<br>0163h<br>0164h<br>0165h<br>0166h<br>0166h<br>0167h<br>0168h<br>0169h<br>016Ah<br>016Bh<br>016Ch                                                                                                                                        | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register<br>UART1 Transmit/Receive Control Register 0<br>UART1 Transmit/Receive Control Register 1 | U1BRG<br>U1TB<br>U1C0<br>U1C1 | XXh<br>XXh<br>XXh<br>00001000b<br>00000010b<br>XXh |
| 0161h<br>0162h<br>0163h<br>0164h<br>0165h<br>0166h<br>0166h<br>0167h<br>0168h<br>0169h<br>016Ah<br>016Ch<br>016Ch<br>016Ch<br>016Fh<br>016Fh                                                                                                             | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register<br>UART1 Transmit/Receive Control Register 0<br>UART1 Transmit/Receive Control Register 1 | U1BRG<br>U1TB<br>U1C0<br>U1C1 | XXh<br>XXh<br>XXh<br>00001000b<br>00000010b<br>XXh |
| 0161h<br>0162h<br>0163h<br>0164h<br>0165h<br>0166h<br>0167h<br>0168h<br>0168h<br>0168h<br>016Bh<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>016Fh<br>0170h                                                                                                    | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register<br>UART1 Transmit/Receive Control Register 0<br>UART1 Transmit/Receive Control Register 1 | U1BRG<br>U1TB<br>U1C0<br>U1C1 | XXh<br>XXh<br>XXh<br>00001000b<br>00000010b<br>XXh |
| 0161h<br>0162h<br>0163h<br>0164h<br>0165h<br>0165h<br>0166h<br>0167h<br>0168h<br>0168h<br>016Bh<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>016Fh<br>016Fh<br>0170h                                                                                           | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register<br>UART1 Transmit/Receive Control Register 0<br>UART1 Transmit/Receive Control Register 1 | U1BRG<br>U1TB<br>U1C0<br>U1C1 | XXh<br>XXh<br>XXh<br>00001000b<br>00000010b<br>XXh |
| 0161h<br>0162h<br>0163h<br>0164h<br>0165h<br>0166h<br>0167h<br>0168h<br>0168h<br>016Bh<br>016Bh<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>016Fh<br>016Fh<br>0171h<br>0172h                                                                                  | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register<br>UART1 Transmit/Receive Control Register 0<br>UART1 Transmit/Receive Control Register 1 | U1BRG<br>U1TB<br>U1C0<br>U1C1 | XXh<br>XXh<br>XXh<br>00001000b<br>00000010b<br>XXh |
| 0161h<br>0162h<br>0163h<br>0165h<br>0166h<br>0166h<br>0167h<br>0168h<br>0168h<br>0168h<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>016Fh<br>016Fh<br>0170h<br>0177h<br>0173h                                                                         | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register<br>UART1 Transmit/Receive Control Register 0<br>UART1 Transmit/Receive Control Register 1 | U1BRG<br>U1TB<br>U1C0<br>U1C1 | XXh<br>XXh<br>XXh<br>00001000b<br>00000010b<br>XXh |
| 0161h<br>0162h<br>0163h<br>0166h<br>0165h<br>0166h<br>0167h<br>0168h<br>0168h<br>0168h<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>016Fh<br>0176Fh<br>0177h<br>0173h<br>0174h<br>0175h                                                      | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register<br>UART1 Transmit/Receive Control Register 0<br>UART1 Transmit/Receive Control Register 1 | U1BRG<br>U1TB<br>U1C0<br>U1C1 | XXh<br>XXh<br>XXh<br>00001000b<br>00000010b<br>XXh |
| 0161h<br>0162h<br>0163h<br>0164h<br>0165h<br>0166h<br>0167h<br>0168h<br>0168h<br>0168h<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>016Fh<br>016Fh<br>0177h<br>0177h<br>0177h<br>0177h                                                                         | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register<br>UART1 Transmit/Receive Control Register 0<br>UART1 Transmit/Receive Control Register 1 | U1BRG<br>U1TB<br>U1C0<br>U1C1 | XXh<br>XXh<br>XXh<br>00001000b<br>00000010b<br>XXh |
| 0161h<br>0162h<br>0163h<br>0164h<br>0165h<br>0166h<br>0167h<br>0168h<br>0168h<br>0168h<br>016Bh<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>0170h<br>0177h<br>0177h                                                                                  | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register<br>UART1 Transmit/Receive Control Register 0<br>UART1 Transmit/Receive Control Register 1 | U1BRG<br>U1TB<br>U1C0<br>U1C1 | XXh<br>XXh<br>XXh<br>00001000b<br>00000010b<br>XXh |
| 0161h<br>0162h<br>0163h<br>0164h<br>0165h<br>0166h<br>0167h<br>0168h<br>0168h<br>016Bh<br>016Bh<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>016Fh<br>0176Fh<br>0177h<br>0173h<br>0177h<br>0177h                                                      | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register<br>UART1 Transmit/Receive Control Register 0<br>UART1 Transmit/Receive Control Register 1 | U1BRG<br>U1TB<br>U1C0<br>U1C1 | XXh<br>XXh<br>XXh<br>00001000b<br>00000010b<br>XXh |
| 0161h<br>0162h<br>0163h<br>0164h<br>0165h<br>0166h<br>0167h<br>0168h<br>0168h<br>016Bh<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>016Fh<br>016Fh<br>0176Fh<br>0177h<br>0172h<br>0177h<br>0177h<br>0177h                                             | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register<br>UART1 Transmit/Receive Control Register 0<br>UART1 Transmit/Receive Control Register 1 | U1BRG<br>U1TB<br>U1C0<br>U1C1 | XXh<br>XXh<br>XXh<br>00001000b<br>00000010b<br>XXh |
| 0161h<br>0162h<br>0163h<br>0166h<br>0166h<br>0166h<br>0167h<br>0168h<br>0168h<br>0168h<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>016Fh<br>0176h<br>0172h<br>0173h<br>0174h<br>0175h<br>0177h<br>0178h<br>0179h<br>0179h                   | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register<br>UART1 Transmit/Receive Control Register 0<br>UART1 Transmit/Receive Control Register 1 | U1BRG<br>U1TB<br>U1C0<br>U1C1 | XXh<br>XXh<br>XXh<br>00001000b<br>00000010b<br>XXh |
| 0161h<br>0162h<br>0163h<br>0164h<br>0165h<br>0166h<br>0167h<br>0168h<br>0168h<br>0168h<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>016Fh<br>0176h<br>0177h<br>0177h<br>0177h<br>0177h<br>0177h<br>0177h<br>0177h<br>0177h                            | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register<br>UART1 Transmit/Receive Control Register 0<br>UART1 Transmit/Receive Control Register 1 | U1BRG<br>U1TB<br>U1C0<br>U1C1 | XXh<br>XXh<br>XXh<br>00001000b<br>00000010b<br>XXh |
| 0161h<br>0162h<br>0163h<br>0164h<br>0165h<br>0166h<br>0167h<br>0168h<br>0168h<br>0168h<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>0170h<br>0177h<br>0177h<br>0177h<br>0177h<br>0177h<br>0177h<br>0177h<br>0177h<br>0177h                   | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register<br>UART1 Transmit/Receive Control Register 0<br>UART1 Transmit/Receive Control Register 1 | U1BRG<br>U1TB<br>U1C0<br>U1C1 | XXh<br>XXh<br>XXh<br>00001000b<br>00000010b<br>XXh |
| 0161h<br>0162h<br>0163h<br>0164h<br>0165h<br>0166h<br>0167h<br>0168h<br>0168h<br>0168h<br>016Bh<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>0170h<br>0177h<br>0177h<br>0177h<br>0177h<br>0177h<br>0177h<br>0177h<br>0177h<br>0177h<br>0177h<br>0177h | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register<br>UART1 Transmit/Receive Control Register 0<br>UART1 Transmit/Receive Control Register 1 | U1BRG<br>U1TB<br>U1C0<br>U1C1 | XXh<br>XXh<br>XXh<br>00001000b<br>00000010b<br>XXh |
| 0161h<br>0162h<br>0163h<br>0164h<br>0165h<br>0166h<br>0167h<br>0168h<br>0168h<br>016Ah<br>016Bh<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>016Ch<br>0170h<br>0177h<br>0177h<br>0177h<br>0177h<br>0177h<br>0177h<br>0177h<br>0177h<br>0177h                   | UART1 Bit Rate Register<br>UART1 Transmit Buffer Register<br>UART1 Transmit/Receive Control Register 0<br>UART1 Transmit/Receive Control Register 1 | U1BRG<br>U1TB<br>U1C0<br>U1C1 | XXh<br>XXh<br>XXh<br>00001000b<br>00000010b<br>XXh |

#### SFR Information (6)<sup>(1)</sup> Table 4.6



| Address        | Degister                                  | Curren el | After Deset |
|----------------|-------------------------------------------|-----------|-------------|
| Address        | Register                                  | Symbol    | After Reset |
| 01C0h          | Address Match Interrupt Register 0        | RMAD0     | XXh         |
| 01C1h          |                                           |           | XXh         |
| 01C2h          |                                           |           | 0000XXXXb   |
| 01C3h          | Address Match Interrupt Enable Register 0 | AIER0     | 00h         |
| 010311         |                                           |           |             |
| 01C4h          | Address Match Interrupt Register 1        | RMAD1     | XXh         |
| 01C5h          |                                           |           | XXh         |
| 01C6h          |                                           |           | 0000XXXXb   |
| 01C7h          | Address Match Interrupt Enable Register 1 | AIER1     | 00h         |
|                |                                           |           | 0011        |
| 01C8h          |                                           |           |             |
| 01C9h          |                                           |           |             |
| 01CAh          |                                           |           |             |
| 01CBh          |                                           |           |             |
| 01CCh          |                                           | -         |             |
|                |                                           |           |             |
| 01CDh          |                                           |           |             |
| 01CEh          |                                           |           |             |
| 01CFh          |                                           |           |             |
| 01D0h          |                                           |           |             |
|                |                                           |           |             |
| 01D1h          |                                           |           |             |
| 01D2h          |                                           |           |             |
| 01D3h          |                                           |           |             |
| 01D4h          |                                           |           | 1           |
| 01D5h          |                                           | 1         | 1           |
|                |                                           |           | +           |
| 01D6h          |                                           |           |             |
| 01D7h          |                                           |           |             |
| 01D8h          |                                           |           |             |
| 01D9h          |                                           |           |             |
| 01DAh          |                                           |           |             |
|                |                                           |           |             |
| 01DBh          |                                           |           |             |
| 01DCh          |                                           |           |             |
| 01DDh          |                                           |           |             |
| 01DEh          |                                           |           |             |
|                |                                           |           |             |
| 01DFh          |                                           |           |             |
| 01E0h          | Pull-Up Control Register 0                | PUR0      | 00h         |
| 01E1h          | Pull-Up Control Register 1                | PUR1      | 00h         |
| 01E2h          |                                           |           |             |
|                |                                           |           |             |
| 01E3h          |                                           |           |             |
| 01E4h          |                                           |           |             |
| 01E5h          |                                           |           |             |
| 01E6h          |                                           |           |             |
| 01E7h          |                                           |           |             |
|                |                                           |           |             |
| 01E8h          |                                           |           |             |
| 01E9h          |                                           |           |             |
| 01EAh          |                                           |           |             |
| 01EBh          |                                           |           | 1           |
|                |                                           |           |             |
| 01ECh          |                                           | -         | 1           |
| 01EDh          |                                           |           |             |
| 01EEh          |                                           |           |             |
| 01EFh          |                                           |           | 1           |
| 01F0h          | Port P1 Drive Capacity Control Register   | P1DRR     | 00h         |
|                |                                           |           |             |
| 01F1h          | Port P2 Drive Capacity Control Register   | P2DRR     | 00h         |
| 01F2h          | Drive Capacity Control Register 0         | DRR0      | 00h         |
| 01F3h          | Drive Capacity Control Register 1         | DRR1      | 00h         |
| 01F4h          |                                           | 1         | 1           |
| 01F5h          | Input Threshold Control Register 0        | VLT0      | 00h         |
|                |                                           |           |             |
| 01F6h          | Input Threshold Control Register 1        | VLT1      | 00h         |
| 01F7h          |                                           |           | 1           |
| 01F8h          | Comparator B Control Register 0           | INTCMP    | 00h         |
| 01F9h          |                                           |           |             |
| 011 311        | Letternel lanut Enchle Denister 0         |           | 0.01        |
| 01FAh          | External Input Enable Register 0          | INTEN     | 00h         |
| 01FBh          |                                           |           | 1           |
|                | INT Input Filter Select Register 0        | INTF      | 00h         |
| UTECN          |                                           |           |             |
| 01FCh<br>01FDh |                                           |           |             |
| 01FDh          |                                           |           | 00b         |
| 01FDh<br>01FEh | Key Input Enable Register 0               | KIEN      | 00h         |
| 01FDh          |                                           |           | 00h         |

#### SFR Information (8)<sup>(1)</sup> Table 4.8



| Aslahasas    | Deviates            | Oursels al | After Deset |
|--------------|---------------------|------------|-------------|
| Address      | Register            | Symbol     | After Reset |
| 2CB0h        | DTC Control Data 14 | DTCD14     | XXh         |
| 2CB1h        |                     |            | XXh         |
| 2CB2h        |                     |            | XXh         |
| 2CB3h        |                     |            | XXh         |
| 2CB4h        |                     |            | XXh         |
| 2CB5h        | -                   |            | XXh         |
|              |                     |            |             |
| 2CB6h        |                     |            | XXh         |
| 2CB7h        |                     |            | XXh         |
| 2CB8h        | DTC Control Data 15 | DTCD15     | XXh         |
| 2CB9h        |                     |            | XXh         |
| 2CBAh        |                     |            | XXh         |
| 2CBBh        | -                   |            | XXh         |
|              |                     |            |             |
| 2CBCh        |                     |            | XXh         |
| 2CBDh        |                     |            | XXh         |
| 2CBEh        |                     |            | XXh         |
| 2CBFh        |                     |            | XXh         |
| 2CC0h        | DTC Control Data 16 | DTCD16     | XXh         |
| 2000h        |                     | 510510     | XXh         |
| 2CC2h        | 4                   |            | XXh         |
|              | 4                   |            |             |
| 2CC3h        |                     |            | XXh         |
| 2CC4h        |                     |            | XXh         |
| 2CC5h        |                     |            | XXh         |
| 2CC6h        |                     |            | XXh         |
| 2CC7h        |                     |            | XXh         |
| 2CC8h        | DTC Control Data 17 | DTCD17     | XXh         |
|              |                     | DIGDI      |             |
| 2CC9h        |                     |            | XXh         |
| 2CCAh        |                     |            | XXh         |
| 2CCBh        |                     |            | XXh         |
| 2CCCh        |                     |            | XXh         |
| 2CCDh        |                     |            | XXh         |
| 2CCEh        |                     |            | XXh         |
| 2CCFh        | -                   |            | XXh         |
|              | DTC Control Data 18 | DTOD40     |             |
| 2CD0h        | DIC Control Data 18 | DTCD18     | XXh         |
| 2CD1h        |                     |            | XXh         |
| 2CD2h        |                     |            | XXh         |
| 2CD3h        |                     |            | XXh         |
| 2CD4h        |                     |            | XXh         |
| 2CD5h        |                     |            | XXh         |
| 2CD6h        | -                   |            | XXh         |
|              |                     |            |             |
| 2CD7h        |                     |            | XXh         |
| 2CD8h        | DTC Control Data 19 | DTCD19     | XXh         |
| 2CD9h        |                     |            | XXh         |
| 2CDAh        |                     |            | XXh         |
| 2CDBh        |                     |            | XXh         |
| 2CDCh        | 1                   |            | XXh         |
| 2CDDh        | 4                   |            | XXh         |
|              | 4                   |            |             |
| 2CDEh        | 4                   |            | XXh         |
| 2CDFh        |                     |            | XXh         |
| 2CE0h        | DTC Control Data 20 | DTCD20     | XXh         |
| 2CE1h        |                     |            | XXh         |
| 2CE2h        | 1                   |            | XXh         |
| 2CE3h        | 1                   |            | XXh         |
|              | 4                   |            |             |
| 2CE4h        | -                   |            | XXh         |
| 2CE5h        |                     |            | XXh         |
| 2CE6h        |                     |            | XXh         |
| 2CE7h        |                     |            | XXh         |
| 2CE8h        | DTC Control Data 21 | DTCD21     | XXh         |
| 2CE9h        |                     |            | XXh         |
| 2CEAh        | 4                   |            | XXh         |
|              | 4                   |            |             |
| 2CEBh        | 4                   |            | XXh         |
| 2CECh        |                     |            | XXh         |
| 2CEDh        |                     |            | XXh         |
| 2CEEh        | 1                   |            | XXh         |
| 2CEFh        | 1                   |            | XXh         |
| X: Undefined |                     | 1          |             |

SFR Information (11)<sup>(1)</sup> Table 4.11



| Symbol    | Parameter                         |                                            |                        | Conditions            |                                                    | Standard |        | Linit    |     |
|-----------|-----------------------------------|--------------------------------------------|------------------------|-----------------------|----------------------------------------------------|----------|--------|----------|-----|
| Symbol    | Falameter                         |                                            |                        | Conditions            | Min.                                               | Тур.     | Max.   | Unit     |     |
| Vcc/AVcc  | Supply voltage                    |                                            |                        |                       |                                                    | 1.8      | -      | 5.5      | V   |
| Vss/AVss  | Supply voltage                    |                                            |                        |                       |                                                    | -        | 0      | -        | V   |
| Viн       | Input "H" voltage                 | Other th                                   | an CMOS in             | put                   |                                                    | 0.8 Vcc  | -      | Vcc      | V   |
|           |                                   | CMOS                                       | Input level            | Input level selection | $4.0~V \leq Vcc \leq 5.5~V$                        | 0.5 Vcc  | -      | Vcc      | V   |
|           |                                   | input                                      | switching              | : 0.35 Vcc            | $2.7~V \leq Vcc < 4.0~V$                           | 0.55 Vcc | -      | Vcc      | V   |
|           |                                   |                                            | function<br>(I/O port) |                       | $1.8~V \leq Vcc < 2.7~V$                           | 0.65 Vcc | -      | Vcc      | V   |
|           |                                   |                                            | (i/O poirt)            | Input level selection | $4.0~V \leq Vcc \leq 5.5~V$                        | 0.65 Vcc | -      | Vcc      | V   |
|           |                                   |                                            |                        | : 0.5 Vcc             | $2.7~V \leq Vcc < 4.0~V$                           | 0.7 Vcc  | -      | Vcc      | V   |
|           |                                   |                                            |                        |                       | $1.8~V \leq Vcc < 2.7~V$                           | 0.8 Vcc  | -      | Vcc      | V   |
|           |                                   |                                            |                        | Input level selection | $4.0~V \leq Vcc \leq 5.5~V$                        | 0.85 Vcc | -      | Vcc      | V   |
|           |                                   |                                            |                        | : 0.7 Vcc             | $2.7~V \leq Vcc < 4.0~V$                           | 0.85 Vcc | -      | Vcc      | V   |
|           |                                   |                                            |                        |                       | $1.8~V \leq Vcc < 2.7~V$                           | 0.85 Vcc | -      | Vcc      | V   |
|           |                                   | Externa                                    | l clock input          | (XOUT)                |                                                    | 1.2      | -      | Vcc      | V   |
| VIL       | Input "L" voltage                 | Other th                                   | an CMOS in             | put                   |                                                    | 0        | -      | 0.2 Vcc  | V   |
|           |                                   | CMOS                                       | Input level            | Input level selection | $4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$ | 0        | -      | 0.2 Vcc  | V   |
|           |                                   | input                                      | switching              | : 0.35 Vcc            | $2.7~\text{V} \leq \text{Vcc} < 4.0~\text{V}$      | 0        | -      | 0.2 Vcc  | V   |
|           |                                   |                                            | function               |                       | $1.8~\text{V} \leq \text{Vcc} < 2.7~\text{V}$      | 0        | -      | 0.2 Vcc  | V   |
|           |                                   |                                            | (I/O port)             | Input level selection | $4.0~V \leq Vcc \leq 5.5~V$                        | 0        | -      | 0.4 Vcc  | V   |
|           |                                   |                                            |                        | : 0.5 Vcc             | $2.7~V \leq Vcc < 4.0~V$                           | 0        | -      | 0.3 Vcc  | V   |
|           |                                   |                                            |                        |                       | $1.8~V \leq Vcc < 2.7~V$                           | 0        | -      | 0.2 Vcc  | V   |
|           |                                   |                                            |                        | Input level selection | $4.0~V \leq Vcc \leq 5.5~V$                        | 0        | -      | 0.55 Vcc | V   |
|           |                                   |                                            |                        | : 0.7 Vcc             | $2.7~V \leq Vcc < 4.0~V$                           | 0        | _      | 0.45 Vcc | V   |
|           |                                   |                                            |                        |                       | $1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$     | 0        | _      | 0.35 Vcc | V   |
|           |                                   | Externa                                    | l clock input          | (XOUT)                |                                                    | 0        | _      | 0.4      | V   |
| IOH(sum)  | Peak sum output<br>"H" current    | Sum of                                     | all pins IOH(p         | eak)                  |                                                    | -        | _      | -160     | mA  |
| IOH(sum)  | Average sum<br>output "H" current | Sum of                                     | all pins Іон(a         | vg)                   |                                                    | -        | _      | -80      | mA  |
| IOH(peak) | Peak output "H"                   | Drive ca                                   | apacity Low            |                       |                                                    | -        | -      | -10      | mA  |
|           | current                           |                                            | apacity High           |                       |                                                    | -        | _      | -40      | mA  |
| IOH(avg)  | Average output                    |                                            | apacity Low            |                       |                                                    | -        | _      | -5       | mA  |
|           | "H" current                       |                                            | apacity High           |                       |                                                    | -        | _      | -20      | mA  |
| IOL(sum)  | Peak sum output<br>"L" current    |                                            | all pins IOL(pe        | eak)                  |                                                    | -        | _      | 160      | mA  |
| IOL(sum)  | Average sum<br>output "L" current | Sum of                                     | all pins IOL(av        | /g)                   |                                                    | -        | _      | 80       | mA  |
| IOL(peak) | Peak output "L"                   | Drive ca                                   | apacity Low            |                       |                                                    | -        | _      | 10       | mA  |
|           | current                           | Drive ca                                   | apacity High           |                       |                                                    | -        | -      | 40       | mA  |
| IOL(avg)  | Average output                    | Drive ca                                   | apacity Low            |                       |                                                    | -        | -      | 5        | mA  |
|           | "L" current                       | Drive ca                                   | apacity High           |                       |                                                    | -        | _      | 20       | mA  |
| f(XIN)    | XIN clock input os                | cillation f                                | requency               |                       | $2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$ | -        | _      | 20       | MHz |
|           | -                                 |                                            | -                      |                       | $1.8~\text{V} \leq \text{Vcc} < 2.7~\text{V}$      | -        | -      | 5        | MHz |
| f(XCIN)   | XCIN clock input of               | oscillation frequency                      |                        |                       | $1.8 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$ | -        | 32.768 | 50       | kHz |
| fOCO40M   | When used as the                  | e count source for timer RC <sup>(3)</sup> |                        |                       | $2.7~V \leq Vcc \leq 5.5~V$                        | 32       | -      | 40       | MHz |
| fOCO-F    | fOCO-F frequency                  |                                            |                        |                       | $2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$ | -        | -      | 20       | MHz |
|           | . ,                               |                                            |                        |                       | $1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$     | -        | _      | 5        | MHz |
| -         | System clock freq                 | uency                                      |                        |                       | $2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$ | -        | _      | 20       | MHz |
|           |                                   | ÷                                          |                        |                       | $1.8~V \leq Vcc < 2.7~V$                           | -        | -      | 5        | MHz |
| f(BCLK)   | CPU clock freque                  | ncy                                        |                        |                       | $2.7~V \leq Vcc \leq 5.5~V$                        | -        | -      | 20       | MHz |
|           | -                                 |                                            |                        |                       | $1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$     | -        | -      | 5        | MHz |

#### **Recommended Operating Conditions** Table 5.2

Notes:

Vcc = 1.8 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
 The average output current indicates the average value of current measured during 100 ms.

3. fOCO40M can be used as the count source for timer RC in the range of Vcc = 2.7 V to 5.5 V.



| Symbol        | Parameter Conditions      |             |                                                     | Standard                               |      |      |      |      |
|---------------|---------------------------|-------------|-----------------------------------------------------|----------------------------------------|------|------|------|------|
| Symbol        | Falailletei               |             | Conditions                                          |                                        | Min. | Тур. | Max. | Unit |
| _             | Resolution                |             | Vref = AVCC                                         | Vref = AVcc                            |      | -    | 10   | Bit  |
| -             | Absolute accuracy         | 10-bit mode | Vref = AVcc = 5.0 V                                 | AN0 to AN7 input,<br>AN8 to AN11 input | -    | -    | ±3   | LSB  |
|               |                           |             | Vref = AVCC = 3.3 V                                 | AN0 to AN7 input,<br>AN8 to AN11 input | _    | -    | ±5   | LSB  |
|               |                           |             | Vref = AVCC = 3.0 V                                 | AN0 to AN7 input,<br>AN8 to AN11 input | -    | _    | ±5   | LSB  |
|               |                           |             | Vref = AVCC = 2.2 V                                 | AN0 to AN7 input,<br>AN8 to AN11 input | -    | -    | ±5   | LSB  |
|               |                           | 8-bit mode  | Vref = AVCC = 5.0 V                                 | AN0 to AN7 input,<br>AN8 to AN11 input | -    | -    | ±2   | LSB  |
|               |                           |             | Vref = AVCC = 3.3 V                                 | AN0 to AN7 input,<br>AN8 to AN11 input | -    | —    | ±2   | LSB  |
|               |                           |             | Vref = AVcc = 3.0 V                                 | AN0 to AN7 input,<br>AN8 to AN11 input | -    | _    | ±2   | LSB  |
|               |                           |             | Vref = AVCC = 2.2 V                                 | AN0 to AN7 input,<br>AN8 to AN11 input | _    | -    | ±2   | LSB  |
| φAD           | A/D conversion clock      |             | $4.0 \leq V_{ref} = AV_{CC} \leq 5.5 \ V^{(2)}$     |                                        | 2    | -    | 20   | MHz  |
|               |                           |             | $3.2 \leq V_{ref} = AV_{CC} \leq 5.5 \ V^{(2)}$     |                                        | 2    | -    | 16   | MHz  |
|               |                           |             | $2.7 \le Vref = AVCC \le 5.1$                       | .5 V (2)                               | 2    | -    | 10   | MHz  |
|               |                           |             | $2.2 \le Vref = AVCC \le 5.1$                       | .5 V <sup>(2)</sup>                    | 2    | -    | 5    | MHz  |
| _             | Tolerance level impedance |             |                                                     |                                        | _    | 3    | _    | kΩ   |
| <b>t</b> CONV | Conversion time           | 10-bit mode | $Vref = AVCC = 5.0 V, \phi$                         | AD = 20 MHz                            | 2.2  | -    | -    | μS   |
|               |                           | 8-bit mode  | $Vref = AVCC = 5.0 V, \phi$                         | AD = 20 MHz                            | 2.2  | -    | -    | μS   |
| <b>t</b> SAMP | Sampling time             |             | $\phi AD = 20 MHz$                                  |                                        | 0.8  | -    | -    | μS   |
| IVref         | Vref current              |             | Vcc = 5 V, XIN = f1 =                               | $\phi AD = 20 \text{ MHz}$             | -    | 45   | -    | μA   |
| Vref          | Reference voltage         |             |                                                     |                                        | 2.2  | -    | AVcc | V    |
| Via           | Analog input voltage (3)  |             |                                                     |                                        | 0    | -    | Vref | V    |
| OCVREF        | On-chip reference voltage |             | $2 \text{ MHz} \le \phi \text{AD} \le 4 \text{ MH}$ | Z                                      | 1.19 | 1.34 | 1.49 | V    |

## Table 5.3 A/D Converter Characteristics

Notes:

1. Vcc/AVcc = Vref = 2.2 to 5.5 V, Vss = 0 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. The A/D conversion result will be undefined in wait mode, stop mode, when the flash memory stops, and in low-currentconsumption mode. Do not perform A/D conversion in these states or transition to these states during A/D conversion.

3. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.



| Symbol  | Parameter                                                                    | Condition                                           |      | Unit |      |      |
|---------|------------------------------------------------------------------------------|-----------------------------------------------------|------|------|------|------|
| Symbol  | Falalletei                                                                   | Condition                                           | Min. | Тур. | Max. | Unit |
| Vdet0   | Voltage detection level Vdet0_0 (2)                                          |                                                     | 1.80 | 1.90 | 2.05 | V    |
|         | Voltage detection level Vdet0_1 <sup>(2)</sup>                               |                                                     | 2.15 | 2.35 | 2.50 | V    |
|         | Voltage detection level Vdet0_2 (2)                                          |                                                     | 2.70 | 2.85 | 3.05 | V    |
|         | Voltage detection level Vdet0_3 <sup>(2)</sup>                               |                                                     | 3.55 | 3.80 | 4.05 | V    |
| _       | Voltage detection 0 circuit response time (4)                                | At the falling of Vcc from 5 V to (Vdet0_0 - 0.1) V | _    | 6    | 150  | μs   |
| -       | Voltage detection circuit self power consumption                             | VCA25 = 1, Vcc = 5.0 V                              | -    | 1.5  | -    | μA   |
| td(E-A) | Waiting time until voltage detection circuit operation starts <sup>(3)</sup> |                                                     | -    | -    | 100  | μS   |

| Table 5.8 | Voltage Detection 0 Circuit Electrical Characteristics |
|-----------|--------------------------------------------------------|
|           | Voltage Deteotion & Onean Electrical Onalabteristics   |

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and  $T_{opr} = -20$  to 85°C (N version) / -40 to 85°C (D version).

2. Select the voltage detection level with bits VDSEL0 and VDSEL1 in the OFS register.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

4. Time until the voltage monitor 0 reset is generated after the voltage passes Vdet0.

| Symbol  | Parameter                                                                    | Condition                                              |      | Standard |      |      |
|---------|------------------------------------------------------------------------------|--------------------------------------------------------|------|----------|------|------|
| Symbol  |                                                                              |                                                        | Min. | Тур.     | Max. | Unit |
| Vdet1   | Voltage detection level Vdet1_0 <sup>(2)</sup>                               | At the falling of Vcc                                  | 2.00 | 2.20     | 2.40 | V    |
|         | Voltage detection level Vdet1_1 <sup>(2)</sup>                               | At the falling of Vcc                                  | 2.15 | 2.35     | 2.55 | V    |
|         | Voltage detection level Vdet1_2 <sup>(2)</sup>                               | At the falling of Vcc                                  | 2.30 | 2.50     | 2.70 | V    |
|         | Voltage detection level Vdet1_3 <sup>(2)</sup>                               | At the falling of Vcc                                  | 2.45 | 2.65     | 2.85 | V    |
|         | Voltage detection level Vdet1_4 (2)                                          | At the falling of Vcc                                  | 2.60 | 2.80     | 3.00 | V    |
|         | Voltage detection level Vdet1_5 <sup>(2)</sup>                               | At the falling of Vcc                                  | 2.75 | 2.95     | 3.15 | V    |
|         | Voltage detection level Vdet1_6 <sup>(2)</sup>                               | At the falling of Vcc                                  | 2.85 | 3.10     | 3.40 | V    |
|         | Voltage detection level Vdet1_7 (2)                                          | At the falling of Vcc                                  | 3.00 | 3.25     | 3.55 | V    |
|         | Voltage detection level Vdet1_8 <sup>(2)</sup>                               | At the falling of Vcc                                  | 3.15 | 3.40     | 3.70 | V    |
|         | Voltage detection level Vdet1_9 <sup>(2)</sup>                               | At the falling of Vcc                                  | 3.30 | 3.55     | 3.85 | V    |
|         | Voltage detection level Vdet1_A <sup>(2)</sup>                               | At the falling of Vcc                                  | 3.45 | 3.70     | 4.00 | V    |
|         | Voltage detection level Vdet1_B <sup>(2)</sup>                               | At the falling of Vcc                                  | 3.60 | 3.85     | 4.15 | V    |
|         | Voltage detection level Vdet1_C <sup>(2)</sup>                               | At the falling of Vcc                                  | 3.75 | 4.00     | 4.30 | V    |
|         | Voltage detection level Vdet1_D (2)                                          | At the falling of Vcc                                  | 3.90 | 4.15     | 4.45 | V    |
|         | Voltage detection level Vdet1_E <sup>(2)</sup>                               | At the falling of Vcc                                  | 4.05 | 4.30     | 4.60 | V    |
|         | Voltage detection level Vdet1_F <sup>(2)</sup>                               | At the falling of Vcc                                  | 4.20 | 4.45     | 4.75 | V    |
| -       | Hysteresis width at the rising of Vcc in voltage detection 1 circuit         | Vdet1_0 to Vdet1_5<br>selected                         | -    | 0.07     | -    | V    |
|         |                                                                              | Vdet1_6 to Vdet1_F<br>selected                         | _    | 0.10     | -    | V    |
| -       | Voltage detection 1 circuit response time <sup>(3)</sup>                     | At the falling of Vcc from<br>5 V to (Vdet1_0 – 0.1) V | -    | 60       | 150  | μS   |
| -       | Voltage detection circuit self power consumption                             | VCA26 = 1, Vcc = 5.0 V                                 | _    | 1.7      | -    | μA   |
| td(E-A) | Waiting time until voltage detection circuit operation starts <sup>(4)</sup> |                                                        | -    | -        | 100  | μS   |

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = -20 to  $85^{\circ}C$  (N version) / -40 to  $85^{\circ}C$  (D version).

2. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register.

3. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.

4. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.



| Symbol                    | Parameter                       |        | Conditions                                      |            | 1.1.4.14 |               |                     |
|---------------------------|---------------------------------|--------|-------------------------------------------------|------------|----------|---------------|---------------------|
|                           |                                 |        | Conditions                                      | Min.       | Тур.     | Max.          | - Unit              |
| tsucyc                    | SSCK clock cycle time           |        |                                                 | 4          | -        | -             | tCYC <sup>(2)</sup> |
| tнı                       | SSCK clock "H" width            |        |                                                 | 0.4        | -        | 0.6           | tsucyc              |
| tlo                       | SSCK clock "L" width            |        |                                                 | 0.4        | I        | 0.6           | tsucyc              |
| trise                     | SSCK clock rising               | Master |                                                 | -          | -        | 1             | tCYC (2)            |
|                           | time                            | Slave  |                                                 | -          |          | 1             | μS                  |
| tFALL                     | SSCK clock falling time         | Master |                                                 | -          | I        | 1             | tCYC (2)            |
|                           |                                 | Slave  |                                                 | -          | I        | 1             | μS                  |
| ts∪                       | SSO, SSI data input setup time  |        |                                                 | 100        | I        | -             | ns                  |
| tн                        | SSO, SSI data input hold time   |        |                                                 | 1          | I        | -             | tCYC (2)            |
| tlead                     | SCS setup time                  | Slave  |                                                 | 1tcyc + 50 | -        | -             | ns                  |
| tlag                      | SCS hold time                   | Slave  |                                                 | 1tcyc + 50 | -        | -             | ns                  |
| tod                       | SSO, SSI data output delay time |        |                                                 | -          | -        | 1             | tCYC <sup>(2)</sup> |
| tsa SSI slave access time |                                 | Э      | $2.7~V \leq Vcc \leq 5.5~V$                     | _          | -        | 1.5tcyc + 100 | ns                  |
|                           |                                 |        | $1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$ | -          | _        | 1.5tcyc + 200 | ns                  |
| tor                       | SSI slave out open tir          | ne     | $2.7~V \leq Vcc \leq 5.5~V$                     | -          | _        | 1.5tcyc + 100 | ns                  |
|                           |                                 |        | $1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$  | -          | _        | 1.5tcyc + 200 | ns                  |

## Table 5.15 Timing Requirements of Synchronous Serial Communication Unit (SSU) <sup>(1)</sup>

Notes:

1. Vcc = 1.8 to 5.5 V, Vss = 0 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. 1tcyc = 1/f1(s)





Figure 5.6 I/O Timing of Synchronous Serial Communication Unit (SSU) (Clock Synchronous Communication Mode)



| Symbol | Parameter                                                | Condition                                |                                                                                                                                                                                                                                      |      | Standard |      |      |
|--------|----------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|------|------|
| -      |                                                          |                                          |                                                                                                                                                                                                                                      | Min. | Тур.     | Max. | Unit |
| lcc    | Power supply<br>current<br>(Vcc = 3.3 to 5.5 V)          | High-speed<br>clock mode                 | XIN = 20 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                                          | -    | 6.5      | 15   | mA   |
|        | Single-chip mode,<br>output pins are<br>open, other pins |                                          | XIN = 16 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                                          | -    | 5.3      | 12.5 | mA   |
|        | are Vss                                                  |                                          | XIN = 10 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                                          | -    | 3.6      | -    | mA   |
|        |                                                          |                                          | XIN = 20 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                                          | -    | 3.0      | —    | mA   |
|        |                                                          |                                          | XIN = 16 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                                          | -    | 2.2      | —    | mA   |
|        |                                                          |                                          | XIN = 10 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                                          | -    | 1.5      |      | mA   |
|        |                                                          | High-speed<br>on-chip<br>oscillator mode | XIN clock off<br>High-speed on-chip oscillator on fOCO-F = 20 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                                        | -    | 7.0      | 15   | mA   |
|        |                                                          |                                          | XIN clock off<br>High-speed on-chip oscillator on fOCO-F = 20 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                                        | -    | 3.0      | -    | mA   |
|        |                                                          |                                          | XIN clock off<br>High-speed on-chip oscillator on fOCO-F = 4 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-16<br>MSTIIC = MSTTRD = MSTTRC = 1                                                                        | -    | 1        | _    | mA   |
|        |                                                          | Low-speed<br>on-chip<br>oscillator mode  | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8, FMR27 = 1, VCA20 = 0                                                                                                 | -    | 90       | 400  | μA   |
|        |                                                          | Low-speed<br>clock mode                  | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz<br>No division<br>FMR27 = 1, VCA20 = 0                                                                   | -    | 85       | 400  | μA   |
|        |                                                          |                                          | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz<br>No division<br>Program operation on RAM<br>Flash memory off, FMSTP = 1, VCA20 = 0                     | -    | 47       | _    | μA   |
|        |                                                          | Wait mode                                | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock operation<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1                      | -    | 15       | 100  | μA   |
|        |                                                          |                                          | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1                            | -    | 4        | 90   | μA   |
|        |                                                          |                                          | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz (peripheral clock off)<br>While a WAIT instruction is executed<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1 | -    | 3.5      | _    | μA   |
|        |                                                          | Stop mode                                | XIN clock off, Topr = 25°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0                                                                 | _    | 2.0      | 5.0  | μA   |
|        |                                                          |                                          | XIN clock off, Topr = 85°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0                                                                 | -    | 5.0      | _    | μA   |

# Table 5.18Electrical Characteristics (2) [3.3 V $\leq$ Vcc $\leq$ 5.5 V]<br/>(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)



# Table 5.24Electrical Characteristics (4) $[2.7 V \le Vcc < 3.3 V]$ <br/>(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

| Deremeter                                                         |                                                                    | Condition                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lloit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                                                         |                                                                    | Condition                                                                                                                                                                                                                                                                                            | Min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Тур.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Power supply current<br>(Vcc = 2.7 to 3.3 V)<br>Single-chip mode, | High-speed<br>clock mode                                           | XIN = 10 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| output pins are open,<br>other pins are Vss                       |                                                                    | XIN = 10 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                   | High-speed<br>on-chip<br>oscillator                                | XIN clock off<br>High-speed on-chip oscillator on fOCO-F = 20 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                   | mode                                                               | XIN clock off<br>High-speed on-chip oscillator on fOCO-F = 20 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                   |                                                                    | XIN clock off<br>High-speed on-chip oscillator on fOCO-F = 10 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                   |                                                                    | XIN clock off<br>High-speed on-chip oscillator on fOCO-F = 10 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                   |                                                                    | XIN clock off<br>High-speed on-chip oscillator on fOCO-F = 4 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-16<br>MSTIIC = MSTTRD = MSTTRC = 1                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                   | Low-speed<br>on-chip<br>oscillator<br>mode                         | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8, FMR27 = 1, VCA20 = 0                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                   | Low-speed<br>clock mode                                            | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz<br>No division<br>FMR27 = 1. VCA20 = 0                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                   |                                                                    | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz<br>No division<br>Program operation on RAM                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                   | Wait mode                                                          | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock operation                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                   |                                                                    | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0, VCA20 = 1                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                   |                                                                    | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz (peripheral clock<br>off)<br>While a WAIT instruction is executed                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                   | Stop mode                                                          | VCA27 = VCA26 = VCA25 = 0, VCA20 = 1<br>XIN clock off, Topr = 25°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                   |                                                                    | VCA27 = VCA26 = VCA25 = 0<br>XIN clock off, Topr = 85°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | μΑ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                   | (Vcc = 2.7 to 3.3 V)<br>Single-chip mode,<br>output pins are open, | Power supply current<br>(Vcc = 2.7 to 3.3 V)<br>Single-chip mode,<br>output pins are open,<br>other pins are Vss       High-speed<br>clock mode         High-speed<br>on-chip<br>oscillator<br>mode       Low-speed<br>on-chip<br>oscillator<br>mode         Low-speed<br>clock mode       Mait mode | Power supply current<br>(Vcc = 2,7 to 3,3 v)       XIN = 10 MHz (square wave)<br>High-speed on-chip oscillator of<br>Low-speed on-chip oscillator of = 125 kHz<br>No division         Single-chip mode,<br>other pins are open,<br>other pins are vss       High-speed on-chip oscillator of = 125 kHz<br>Divide-by-8         High-speed on-chip oscillator on = 125 kHz<br>Divide-by-8       High-speed on-chip oscillator on = 125 kHz<br>Divide-by-8         High-speed on-chip oscillator on = 125 kHz<br>Divide-by-8       TiN clock off<br>High-speed on-chip oscillator on 10CO-F = 20 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8         XIN clock off<br>High-speed on-chip oscillator on 10CO-F = 10 MHz<br>Low-speed on-chip oscillator on 10CO-F = 10 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8         XIN clock off<br>High-speed on-chip oscillator on = 125 kHz<br>Divide-by-8         XIN clock off<br>High-speed on-chip oscillator on = 125 kHz<br>Divide-by-8         XIN clock off<br>High-speed on-chip oscillator on = 125 kHz<br>Divide-by-8, FMR27 = 1, VCA20 = 0         XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed<br>on-chip oscillator off = 125 kHz<br>Divide-by-8, FMR27 = 1, VCA20 = 0         XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>Low | Parameter         Condition         Min.           Power supply current<br>No division         High-speed<br>isok mode,<br>output prins are open,<br>other pins are Vss         High-speed<br>Isok off         Isok off         -           High-speed<br>on-chip oscillator on<br>comput prins are vss         High-speed<br>on-chip oscillator on<br>comput prins are vss         -         -           High-speed<br>on-chip oscillator on<br>compared on-chip oscillator on ISCO-F = 20 MHz<br>on-chip oscillator on ISCO-F = 20 MHz<br>isol vsision         -         -           Wide-by-8         XIN clock off         -         -         -           Vision         XIN clock off         -         -         -           High-speed on-chip oscillator on ISCO-F = 20 MHz<br>isol vsision         -         -         -           XIN clock off         High-speed on-chip oscillator on ISCO-F = 10 MHz<br>isol vsision         -         -           XIN clock off         High-speed on-chip oscillator on ISCO-F = 10 MHz<br>isol vsision         -         -           XIN clock off         High-speed on-chip oscillator on ISCO-F = 10 MHz<br>isol vsision         -         -           Vision         XIN clock off         -         -         -           Vision         XIN clock off         -         -         -           Vision         XIN clock off         -         -         - | Parameter         Condution         Min.         Typ.           Dever supply current<br>(Vcc = 2.7 to 3.3 V)<br>Single-chip mode,<br>output pins are open,<br>other pins are Vss         Imp-speed         TM = Columer wave)         -         1.5           High-speed on-chip oscillator off<br>coverspeed on-chip oscillator on = 125 kHz         -         -         1.5           High-speed on-chip oscillator on = 125 kHz         -         -         7.0           Nin Erock off<br>on-chip<br>oscillator on = 125 kHz         -         -         7.0           Nin Clock off<br>High-speed on-chip oscillator on 10CO-F = 20 MHz<br>Low-speed on-chip oscillator on = 125 kHz         -         -         3.0           Nin Clock off<br>High-speed on-chip oscillator on 10CO-F = 10 MHz<br>Low-speed on-chip oscillator on = 125 kHz         -         1.5           Nin Clock off<br>High-speed on-chip oscillator on 10CO-F = 10 MHz<br>Low-speed on-chip oscillator on = 125 kHz         -         1.5           Nin Clock off<br>High-speed on-chip oscillator on = 125 kHz         -         1.5         -           Nin Clock off<br>High-speed on-chip oscillator on = 125 kHz         -         1         -           Nin Clock off<br>High-speed on-chip oscillator off<br>On-chip<br>oscillator off         -         10         -         10           Vix Clock off<br>High-speed on-chip oscillator off         -         1         -         1           Low-sp | Power supply current<br>(YCc = 2.7 to 3.3 V)<br>Single-chip model<br>in ser open,<br>other pins are vssXIN = 10 MHz (square wave)<br>High-speed on-chip oscillator of<br>High-speed on-chip oscillator of = 125 kHz<br>No division<br>model-3.510High-speed<br>on-chip<br>oscillatorHigh-speed on-chip oscillator on = 125 kHz<br>Low-speed on-chip oscillator on = 125 kHz<br>No division<br>NIIC = MSTTR = MSTTR = 1-1-Low-speed<br>N dock off<br>High-speed on-chip oscillator on = 125 kHz<br>No division<br>modeNIIC = MSTTR = 1, VCA20 = 0-80400Low-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br> |



| Symbol  | Parameter              |                                                                                                                                                                                                              | Condition             |               | S         | Standard |      |       |
|---------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|-----------|----------|------|-------|
| Symbol  | Fai                    |                                                                                                                                                                                                              |                       | Min.          | Тур.      | Max.     | Unit |       |
| Vон     | Output "H" voltage     | Other than XOUT                                                                                                                                                                                              | Drive capacity High   | Іон = -2 mA   | Vcc - 0.5 | -        | Vcc  | V     |
|         |                        |                                                                                                                                                                                                              | Drive capacity Low    | Iон = -1 mA   | Vcc - 0.5 | -        | Vcc  | V     |
|         |                        | XOUT                                                                                                                                                                                                         |                       | Іон = -200 μА | 1.0       | -        | Vcc  | V     |
| Vol     | Output "L" voltage     | Other than XOUT                                                                                                                                                                                              | Drive capacity High   | Iol = 2 mA    | -         | -        | 0.5  | V     |
|         |                        |                                                                                                                                                                                                              | Drive capacity Low    | lo∟ = 1 mA    | -         | -        | 0.5  | V     |
|         |                        | XOUT                                                                                                                                                                                                         |                       | IOL = 200 μA  | -         | -        | 0.5  | V     |
| VT+-VT- | Hysteresis             | INTO, INT1, INT3,<br>KIO, KI1, KI2, KI3,<br>TRAIO, TRBO,<br>TRCIOA, TRCIOB,<br>TRCIOC, TRCIOD,<br><u>TRCTRG</u> , TRCCLK,<br>ADTRG,<br>RXD0, RXD1, RXD2,<br>CLK0, CLK1, CLK2,<br>SSI, SCL, SDA, SSO<br>RESET |                       |               | 0.05      | 0.20     | _    | V<br> |
| Ін      | Input "H" current      | _                                                                                                                                                                                                            | VI = 2.2 V, Vcc = 2.2 | 2 V           | _         | _        | 4.0  | μA    |
| lı∟     | Input "L" current      |                                                                                                                                                                                                              | VI = 0 V, Vcc = 2.2 \ | /             | -         | -        | -4.0 | μA    |
| Rpullup | Pull-up resistance     |                                                                                                                                                                                                              | VI = 0 V, Vcc = 2.2 \ | /             | 70        | 140      | 300  | kΩ    |
| Rfxin   | Feedback<br>resistance | XIN                                                                                                                                                                                                          |                       |               | -         | 0.3      | _    | MΩ    |
| RfxCIN  | Feedback<br>resistance | XCIN                                                                                                                                                                                                         |                       |               | -         | 8        | _    | MΩ    |
| Vram    | RAM hold voltage       |                                                                                                                                                                                                              | During stop mode      |               | 1.8       | -        | -    | V     |

| Table 5.29 | Electrical Characteristics (5) [1.8 V $\leq$ Vcc $<$ 2.7 V] |
|------------|-------------------------------------------------------------|
|------------|-------------------------------------------------------------|

Note:

1.  $1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$  and  $\text{T}_{opr} = -20 \text{ to } 85^{\circ}\text{C}$  (N version) / -40 to  $85^{\circ}\text{C}$  (D version), f(XIN) = 5 MHz, unless otherwise specified.



# **Package Dimensions**

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Electronics website.





| <b>REVISION HISTORY</b> | R8C/33C Group Datasheet |
|-------------------------|-------------------------|
|-------------------------|-------------------------|

Γ

| Rev. I | Date          | Description |                                               |  |
|--------|---------------|-------------|-----------------------------------------------|--|
|        | Dale          | Page        | Summary                                       |  |
| 0.01   | Sep. 01, 2009 | -           | First Edition issued                          |  |
| 1.00   | Aug. 24, 2010 | All         | "Preliminary" and "Under development" deleted |  |
|        |               | 4           | Table1.3 revised                              |  |
|        |               | 26 to 52    | "5. Electrical Characteristics" added         |  |
|        |               |             |                                               |  |

All trademarks and registered trademarks are the property of their respective owners.

## General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
  - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
  not access these addresses; the correct operation of LSI is not guaranteed if they are
  accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.