

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Betano	
Product Status	Active
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	27
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21334cnfp-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.2 Specifications

Tables 1.1 and 1.2 outline the Specifications for R8C/33C Group.

Item	Function	Specification
CPU	Central processing	R8C CPU core
	unit	Number of fundamental instructions: 89
		Minimum instruction execution time:
		50 ns (f(XIN) = 20 MHz, VCC = 2.7 to 5.5 V)
		200 ns (f(XIN) = 5 MHz, VCC = 1.8 to 5.5 V)
		• Multiplier: 16 bits \times 16 bits \rightarrow 32 bits
		• Multiply-accumulate instruction: 16 bits × 16 bits + 32 bits \rightarrow 32 bits
		Operation mode: Single-chip mode (address space: 1 Mbyte)
Memory	ROM, RAM, Data	Refer to Table 1.3 Product List for R8C/33C Group.
Moniory	flash	
Power Supply	Voltage detection	Power-on reset
Voltage	circuit	Voltage detection 3 (detection level of voltage detection 0 and voltage
Detection	Circuit	detection 1 selectable)
	Programmable I/O	Input-only: 1 pin
I/O Ports	-	
	ports	CMOS I/O ports: 27, selectable pull-up resistor
		High current drive ports: 27
Clock	Clock generation	4 circuits: XIN clock oscillation circuit,
	circuits	XCIN clock oscillation circuit (32 kHz),
		High-speed on-chip oscillator (with frequency adjustment function),
		Low-speed on-chip oscillator
		Oscillation stop detection: XIN clock oscillation stop detection function
		• Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16
		Low power consumption modes:
		Standard operating mode (high-speed clock, low-speed clock, high-speed
		on-chip oscillator, low-speed on-chip oscillator), wait mode, stop mode
		Real-time clock (timer RE)
Interrupts		Number of interrupt vectors: 69
		• External Interrupt: 7 (INT × 3, Key input × 4)
		Priority levels: 7 levels
Watchdog Tim	er	• 14 bits × 1 (with prescaler)
		Reset start selectable
		Low-speed on-chip oscillator for watchdog timer selectable
DTC (Data Tra	Insfer Controller)	1 channel
		Activation sources: 23
		Transfer modes: 2 (normal mode, repeat mode)
Timer	Timer RA	8 bits x 1 (with 8-bit prescaler)
TITIEI		Timer mode (period timer), pulse output mode (output level inverted every
		period), event counter mode, pulse width measurement mode, pulse period
		measurement mode
	Timor PB	
	Timer RB	8 bits × 1 (with 8-bit prescaler) Timer mode (period timer), programmable waveform generation mode (PWM)
		output), programmable one-shot generation mode, programmable wait one-
		shot generation mode
	Timer RC	16 bits × 1 (with 4 capture/compare registers)
		Timer mode (input capture function, output compare function), PWM mode
		(output 3 pins), PWM2 mode (PWM output pin)
	Timer RE	8 bits × 1
		Real-time clock mode (count seconds, minutes, hours, days of week), output
		compare mode
	1	

Table 1.1 Specifications for R8C/33C Group (1)

1.3 Block Diagram

Figure 1.2 shows a Block Diagram.

RENESAS

Item	Pin Name	I/O Type	Description		
Reference voltage input	VREF	I	Reference voltage input pin to A/D converter and D/A converter		
A/D converter	AN0 to AN11	I	Analog input pins to A/D converter		
	ADTRG	I	A/D external trigger input pin		
D/A converter	DA0, DA1	0	D/A converter output pins		
Comparator B	IVCMP1, IVCMP3	I	Comparator B analog voltage input pins		
	IVREF1, IVREF3	I	Comparator B reference voltage input pins		
I/O port	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_2, P3_1, P3_3 to P3_5, P3_7, P4_5 to P4_7	I/O	CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program. All ports can be used as LED drive ports.		
Input port	P4_2	I	Input-only port		

Table 1.6Pin Functions (2)

I: Input O: Output I/O: Input and output

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the starting address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupts are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

Special Function Registers (SFRs) 4.

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.12 list the special function registers and Table 4.13 lists the ID Code Areas and Option Function Select Area.

Address	Register	Symbol	After Reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	00101000b
0007h	System Clock Control Register 1	CM1	0010000b
0008h	Module Standby Control Register	MSTCR	00h
0009h	System Clock Control Register 3	CM3	00h
000Ah	Protect Register	PRCR	00h
000Bh	Reset Source Determination Register	RSTFR	0XXXXXXXb ⁽²⁾
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDTC	00111111b
0010h			
0011h			
0012h			
0013h			
0014h			
0015h	High-Speed On-Chip Oscillator Control Register 7	FRA7	When shipping
0016h			
0017h			
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protection Mode Register	CSPR	00h 10000000b ⁽³⁾
001Dh			
001Eh			
001Fh			
0020h			
0021h			
0022h		ED A 0	
0023h	High-Speed On-Chip Oscillator Control Register 0	FRAO	00h
0024h	High-Speed On-Chip Oscillator Control Register 1	FRA1	When shipping
0025h	High-Speed On-Chip Oscillator Control Register 2	FRA2	00h
0026h	On-Chip Reference Voltage Control Register	OCVREFCR	00h
0027h 0028h	Clash Presselar Deset Flag	CPSRF	00h
0028h	Clock Prescaler Reset Flag High-Speed On-Chip Oscillator Control Register 4	FRA4	
0029h 002Ah	High-Speed On-Chip Oscillator Control Register 4	FRA4	When Shipping When Shipping
002An 002Bh	High-Speed On-Chip Oscillator Control Register 5	FRA5	When Shipping
002Bn		IT NO	
002Ch 002Dh			
002Dn			
002En	High-Speed On-Chip Oscillator Control Register 3	FRA3	When shipping
002FN 0030h	Voltage Monitor Circuit Control Register S	CMPA	00h
0030h	Voltage Monitor Circuit Edge Select Register	VCAC	00h
0032h			
0032h	Voltage Detect Register 1	VCA1	00001000b
0034h	Voltage Detect Register 1	VCA2	00h ⁽⁴⁾
			00100000b ⁽⁵⁾
0035h			000001111
0036h	Voltage Detection 1 Level Select Register	VD1LS	00000111b
0037h	Velkana Manitan O Oinsuit Operaul During	14400	
0038h	Voltage Monitor 0 Circuit Control Register	VW0C	1100X010b ⁽⁴⁾ 1100X011b ⁽⁵⁾
00205	Voltago Manitar 1 Circuit Control Degister	1104/40	
0039h	Voltage Monitor 1 Circuit Control Register	VW1C	10001010b

X: Undefined Notes:

1.

The blank areas are reserved and cannot be accessed by users. The CWR bit in the RSTFR register is set to 0 after power-on and voltage monitor 0 reset. Hardware reset, Software reset, or watchdog timer 2. reset does not affect this bit.

The CSPROINI bit in the OFS register is set to 0. 3.

The LVDAS bit in the OFS register is set to 1. 4.

5. The LVDAS bit in the OFS register is set to 0.

	()		
Address	Register	Symbol	After Reset
2C70h	DTC Control Data 6	DTCD6	XXh
2C71h			XXh
2C72h			XXh
2C73h			XXh
2C74h			XXh
2C75h	-		XXh
2C76h			XXh
2C77h			XXh
2C78h	DTC Control Data 7	DTCD7	XXh
		DICDI	
2C79h			XXh
2C7Ah			XXh
2C7Bh			XXh
2C7Ch			XXh
20701			
2C7Dh			XXh
2C7Eh			XXh
2C7Fh			XXh
	DTO O I ID I O	DTODO	
2C80h	DTC Control Data 8	DTCD8	XXh
2C81h			XXh
2C82h	1		XXh
2C83h	4		XXh
	-		
2C84h			XXh
2C85h			XXh
2C86h			XXh
2C80h	4		XXh
2C88h	DTC Control Data 9	DTCD9	XXh
2C89h			XXh
2C8Ah			XXh
2C8Bh			XXh
2C8Ch			XXh
2C8Dh			XXh
2C8Eh			XXh
2C8Fh			XXh
2C90h	DTC Control Data 10	DTCD10	XXh
2C91h			XXh
2C92h			XXh
2C93h			XXh
2C94h			XXh
	-		
2C95h			XXh
2C96h			XXh
2C97h			XXh
2C98h	DTC Control Data 11	DTCD11	XXh
		DICDII	
2C99h			XXh
2C9Ah			XXh
2C9Bh	1		XXh
	4		
2C9Ch	-		XXh
2C9Dh			XXh
2C9Eh			XXh
2C9Fh	1		XXh
	DTO Constant Data 40	DTOD40	
2CA0h	DTC Control Data 12	DTCD12	XXh
2CA1h			XXh
2CA2h	1		XXh
	4		
2CA3h	-		XXh
2CA4h			XXh
2CA5h]		XXh
2CA6h	1		XXh
	-		
2CA7h			XXh
2CA8h	DTC Control Data 13	DTCD13	XXh
2CA9h			XXh
	4		
2CAAh			XXh
2CABh			XXh
2CACh	1		XXh
2CADh	4		
	-		XXh
2CAEh			XXh
2CAFh	7		XXh

SFR Information (10)⁽¹⁾ Table 4.10

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Aslahasas	Deviates	Oursels al	
Address	Register	Symbol	After Reset
2CB0h	DTC Control Data 14	DTCD14	XXh
2CB1h			XXh
2CB2h			XXh
2CB3h			XXh
2CB4h			XXh
2CB5h	-		XXh
2CB6h			XXh
2CB7h			XXh
2CB8h	DTC Control Data 15	DTCD15	XXh
2CB9h			XXh
2CBAh			XXh
2CBBh	-		XXh
2CBCh			XXh
2CBDh			XXh
2CBEh			XXh
2CBFh			XXh
2CC0h	DTC Control Data 16	DTCD16	XXh
2000h		510510	XXh
2CC2h	4		XXh
	4		
2CC3h			XXh
2CC4h			XXh
2CC5h			XXh
2CC6h			XXh
2CC7h			XXh
2CC8h	DTC Control Data 17	DTCD17	XXh
		DIGDI	
2CC9h			XXh
2CCAh			XXh
2CCBh			XXh
2CCCh			XXh
2CCDh			XXh
2CCEh			XXh
2CCFh	-		XXh
	DTC Control Data 18	DTOD40	
2CD0h	DIC Control Data 18	DTCD18	XXh
2CD1h			XXh
2CD2h			XXh
2CD3h			XXh
2CD4h			XXh
2CD5h			XXh
2CD6h	-		XXh
2CD7h			XXh
2CD8h	DTC Control Data 19	DTCD19	XXh
2CD9h			XXh
2CDAh			XXh
2CDBh			XXh
2CDCh	1		XXh
2CDDh	4		XXh
	4		
2CDEh	4		XXh
2CDFh			XXh
2CE0h	DTC Control Data 20	DTCD20	XXh
2CE1h			XXh
2CE2h	1		XXh
2CE3h	1		XXh
	4		
2CE4h	-		XXh
2CE5h			XXh
2CE6h			XXh
2CE7h			XXh
2CE8h	DTC Control Data 21	DTCD21	XXh
2CE9h			XXh
2CEAh	4		XXh
	4		
2CEBh	4		XXh
2CECh			XXh
2CEDh			XXh
2CEEh	1		XXh
2CEFh	1		XXh
X: Undefined		1	

SFR Information (11)⁽¹⁾ Table 4.11

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Symbol	Parameter	Condition	Standard			Unit
Symbol			Min.	Тур.	Max.	Unit
-	Resolution		-	-	8	Bit
-	Absolute accuracy		-	-	2.5	LSB
tsu	Setup time		-	-	3	μS
Ro	Output resistor		-	6	-	kΩ
l∨ref	Reference power input current	(Note 2)	-	-	1.5	mA

 Table 5.4
 D/A Converter Characteristics

Notes:

- 1. Vcc/AVcc = Vref = 2.7 to 5.5 V and $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
- 2. This applies when one D/A converter is used and the value of the DAi register (i = 0 or 1) for the unused D/A converter is 00h. The resistor ladder of the A/D converter is not included.

Table 5.5 Comparator B Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol		Condition	Min.	Тур.	Max.	Unit
Vref	IVREF1, IVREF3 input reference voltage		0	-	Vcc - 1.4	V
Vi	IVCMP1, IVCMP3 input voltage		-0.3	-	Vcc + 0.3	V
-	Offset		-	5	100	mV
ta	Comparator output delay time (2)	VI = Vref ± 100 mV	-	0.1	-	μs
ICMP	Comparator operating current	Vcc = 5.0 V	_	17.5	-	μΑ

Notes:

1. Vcc = 2.7 to 5.5 V, T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. When the digital filter is disabled.

Symbol	Parameter	Conditions		Unit		
		Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance (2)		1,000 (3)	-	-	times
-	Byte program time		-	80	500	μs
-	Block erase time		-	0.3	-	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-	5+CPU clock × 3 cycles	ms
_	Interval from erase start/restart until following suspend request		0	-	_	μS
_	Time from suspend until erase restart		-	-	30+CPU clock × 1 cycle	μS
td(CMDRST- READY)	Time from when command is forcibly terminated until reading is enabled		-	-	30+CPU clock × 1 cycle	μS
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		1.8	_	5.5	V
-	Program, erase temperature		0	-	60	°C
-	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	-	-	year

Table 5.6 Flash Memory (Program ROM) Electrical Characteristics

Notes: 1. Vcc = 2.7 to 5.5 V and $T_{opr} = 0$ to 60°C, unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed). 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

7. The data hold time includes time that the power supply is off or the clock is not supplied.

Symbol	Parameter Condition -	Condition	Standard			Unit
Symbol		Min.	Тур.	Max.	Unit	
Vdet0	Voltage detection level Vdet0_0 (2)		1.80	1.90	2.05	V
	Voltage detection level Vdet0_1 ⁽²⁾		2.15	2.35	2.50	V
	Voltage detection level Vdet0_2 (2)		2.70	2.85	3.05	V
	Voltage detection level Vdet0_3 ⁽²⁾		3.55	3.80	4.05	V
_	Voltage detection 0 circuit response time (4)	At the falling of Vcc from 5 V to (Vdet0_0 - 0.1) V	_	6	150	μs
-	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	-	1.5	-	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

Table 5.8	Voltage Detection 0 Circuit Electrical Characteristics
	Voltage Deteotion & Onean Electrical Onalabteristics

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version).

2. Select the voltage detection level with bits VDSEL0 and VDSEL1 in the OFS register.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

4. Time until the voltage monitor 0 reset is generated after the voltage passes Vdet0.

Symbol	Parameter	Condition		Unit		
Symbol	Falalleter	Condition	Min.	Тур.	Max.	Unit
Vdet1	Voltage detection level Vdet1_0 ⁽²⁾	At the falling of Vcc	2.00	2.20	2.40	V
	Voltage detection level Vdet1_1 ⁽²⁾	At the falling of Vcc	2.15	2.35	2.55	V
	Voltage detection level Vdet1_2 (2)	At the falling of Vcc	2.30	2.50	2.70	V
	Voltage detection level Vdet1_3 ⁽²⁾	At the falling of Vcc	2.45	2.65	2.85	V
	Voltage detection level Vdet1_4 ⁽²⁾	At the falling of Vcc	2.60	2.80	3.00	V
	Voltage detection level Vdet1_5 ⁽²⁾	At the falling of Vcc	2.75	2.95	3.15	V
	Voltage detection level Vdet1_6 ⁽²⁾	At the falling of Vcc	2.85	3.10	3.40	V
	Voltage detection level Vdet1_7 ⁽²⁾	At the falling of Vcc	3.00	3.25	3.55	V
	Voltage detection level Vdet1_8 ⁽²⁾	At the falling of Vcc	3.15	3.40	3.70	V
	Voltage detection level Vdet1_9 ⁽²⁾	At the falling of Vcc	3.30	3.55	3.85	V
	Voltage detection level Vdet1_A ⁽²⁾	At the falling of Vcc	3.45	3.70	4.00	V
	Voltage detection level Vdet1_B (2)	At the falling of Vcc	3.60	3.85	4.15	V
	Voltage detection level Vdet1_C ⁽²⁾	At the falling of Vcc	3.75	4.00	4.30	V
	Voltage detection level Vdet1_D (2)	At the falling of Vcc	3.90	4.15	4.45	V
	Voltage detection level Vdet1_E ⁽²⁾	At the falling of Vcc	4.05	4.30	4.60	V
	Voltage detection level Vdet1_F (2)	At the falling of Vcc	4.20	4.45	4.75	V
-	Hysteresis width at the rising of Vcc in voltage detection 1 circuit	Vdet1_0 to Vdet1_5 selected	-	0.07	-	V
		Vdet1_6 to Vdet1_F selected	-	0.10	-	V
-	Voltage detection 1 circuit response time ⁽³⁾	At the falling of Vcc from 5 V to (Vdet1_0 – 0.1) V	_	60	150	μS
_	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	_	1.7	-	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽⁴⁾		-	-	100	μS

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = -20 to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version).

2. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register.

3. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.

4. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

Symbol	Parameter	Condition		Unit		
Symbol	Falanleter	Condition	Min.	Тур.	Max.	Unit
-	High-speed on-chip oscillator frequency after reset	$\label{eq:VCC} \begin{array}{l} Vcc = 1.8 \ V \ to \ 5.5 \ V \\ -20^{\circ}C \leq T_{opr} \leq 85^{\circ}C \end{array}$	38.4	40	41.6	MHz
		$\label{eq:Vcc} \begin{array}{l} Vcc = 1.8 \ V \ to \ 5.5 \ V \\ -40^{\circ}C \leq T_{opr} \leq 85^{\circ}C \end{array}$	38.0	40	42.0	MHz
	High-speed on-chip oscillator frequency when the FRA4 register correction value is written into	Vcc = 1.8 V to 5.5 V −20°C ≤ Topr ≤ 85°C	35.389	36.864	38.338	MHz
	the FRA6 register correction value is written into	Vcc = 1.8 V to 5.5 V −40°C ≤ Topr ≤ 85°C	35.020	36.864	38.707	MHz
		Vcc = 1.8 V to 5.5 V −20°C ≤ Topr ≤ 85°C	30.72	32	33.28	MHz
		$\label{eq:Vcc} \begin{array}{l} Vcc = 1.8 \ V \ to \ 5.5 \ V \\ -40^{\circ}C \leq T_{opr} \leq 85^{\circ}C \end{array}$	30.40	32	33.60	MHz
-	Oscillation stability time	Vcc = 5.0 V, Topr = 25°C	-	0.5	3	ms
-	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	-	400	-	μΑ

Table 5.12	High-speed On-Chip Oscillator Circuit Electrical Characteristics

Notes:

1. Vcc = 1.8 to 5.5 V, Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. This enables the setting errors of bit rates such as 9600 bps and 38400 bps to be 0% when the serial interface is used in UART mode.

Table 5.13 Low-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Falameter	Condition	Min.	Тур.	Max.	Unit
fOCO-S	Low-speed on-chip oscillator frequency		60	125	250	kHz
-	Oscillation stability time	Vcc = 5.0 V, Topr = 25°C	-	30	100	μS
-	Self power consumption at oscillation	VCC = 5.0 V, Topr = $25^{\circ}C$	-	2	-	μΑ

Note:

1. Vcc = 1.8 to 5.5 V, $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

Table 5.14 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Falanetei	Condition	Min.	Тур.	Max.	Unit
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾		-	-	2,000	μS

Notes:

1. The measurement condition is Vcc = 1.8 to 5.5 V and Topr = 25° C.

2. Waiting time until the internal power supply generation circuit stabilizes during power-on.

Symbol	Parameter		Conditions		Linit		
			Conditions	Min.	Тур.	Max.	- Unit
tsucyc	SSCK clock cycle tim	е		4	-	-	tCYC ⁽²⁾
tнı	SSCK clock "H" width	1		0.4	-	0.6	tsucyc
tlo	SSCK clock "L" width			0.4	-	0.6	tsucyc
trise	SSCK clock rising	Master		-	-	1	tcyc (2)
	time	Slave		-	-	1	μS
TFALL	SSCK clock falling time	Master		-	-	1	tCYC (2)
		Slave		-	-	1	μS
ts∪	SSO, SSI data input	setup time		100	-	-	ns
tн	SSO, SSI data input I	nold time		1	-	-	tcyc (2)
tlead	SCS setup time	Slave		1tcyc + 50	-	_	ns
tlag	SCS hold time	Slave		1tcyc + 50	-	-	ns
tod	SSO, SSI data output	delay time		-	-	1	tCYC ⁽²⁾
tsa	SSI slave access time	Э	$2.7~V \leq Vcc \leq 5.5~V$	_	-	1.5tcyc + 100	ns
				-	-	1.5tcyc + 200	ns
tor	SSI slave out open tir	ne	$2.7~V \leq Vcc \leq 5.5~V$	-	_	1.5tcyc + 100	ns
				-	-	1.5tcyc + 200	ns

Table 5.15 Timing Requirements of Synchronous Serial Communication Unit (SSU) ⁽¹⁾

Notes:

1. Vcc = 1.8 to 5.5 V, Vss = 0 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. 1tcyc = 1/f1(s)

Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C)

Table 5.19 External Clock Input (XOUT, XCIN)

Symbol	Parameter		Standard		
			Max.	Unit	
tc(XOUT)	XOUT input cycle time	50	-	ns	
twh(xout)	XOUT input "H" width	24	-	ns	
twl(xout)	XOUT input "L" width	24	-	ns	
tc(XCIN)	XCIN input cycle time	14	-	μS	
twh(xcin)	XCIN input "H" width	7	-	μS	
twl(xcin)	XCIN input "L" width	7	-	μS	

Figure 5.8 External Clock Input Timing Diagram when Vcc = 5 V

Table 5.20 TRAIO Input

Symbol	Parameter		Standard		
			Max.	Unit	
tc(TRAIO)	TRAIO input cycle time	100	-	ns	
twh(traio)	TRAIO input "H" width	40	-	ns	
twl(traio)	TRAIO input "L" width	40	-	ns	

Figure 5.9 TRAIO Input Timing Diagram when Vcc = 5 V

Symbol	Dor	Parameter		Condition		Standard			
Symbol	Fai	amelei	Condition		Min.	Тур.	Max.	Unit	
Vон	Output "H" voltage	Other than XOUT	Drive capacity High	Іон = -2 mA	Vcc - 0.5	-	Vcc	V	
			Drive capacity Low	Iон = -1 mA	Vcc - 0.5	-	Vcc	V	
		XOUT		Іон = -200 μА	1.0	-	Vcc	V	
Vol	Output "L" voltage	Other than XOUT	Drive capacity High	Iol = 2 mA	-	-	0.5	V	
			Drive capacity Low	lo∟ = 1 mA	-	-	0.5	V	
		XOUT		IOL = 200 μA	-	-	0.5	V	
VT+-VT-	Hysteresis	INTO, INT1, INT3, KIO, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, <u>TRCTRG</u> , TRCCLK, ADTRG, RXD0, RXD1, RXD2, CLK0, CLK1, CLK2, SSI, SCL, SDA, SSO RESET			0.05	0.20	_	V 	
Ін	Input "H" current	_	VI = 2.2 V, Vcc = 2.2	2 V	_	_	4.0	μA	
lı∟	Input "L" current		VI = 0 V, Vcc = 2.2 \	/	-	-	-4.0	μA	
Rpullup	Pull-up resistance		VI = 0 V, Vcc = 2.2 \	/	70	140	300	kΩ	
Rfxin	Feedback resistance	XIN			-	0.3	_	MΩ	
RfxCIN	Feedback resistance	XCIN			-	8	_	MΩ	
Vram	RAM hold voltage		During stop mode		1.8	-	-	V	

Table 5.29	Electrical Characteristics (5) [1.8 V \leq Vcc $<$ 2.7 V]
------------	---

Note:

1. $1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$ and $\text{T}_{opr} = -20 \text{ to } 85^{\circ}\text{C}$ (N version) / -40 to 85°C (D version), f(XIN) = 5 MHz, unless otherwise specified.

Timing requirements (Unless Otherwise Specified: Vcc = 2.2 V, Vss = 0 V at Topr = 25°C)

Table 5.31 External Clock Input (XOUT, XCIN)

Symbol	Parameter		Standard		
			Max.	Unit	
tc(XOUT)	XOUT input cycle time	200	-	ns	
twh(xout)	XOUT input "H" width	90	-	ns	
twl(xout)	XOUT input "L" width	90	-	ns	
tc(XCIN)	XCIN input cycle time	14	-	μS	
twh(xcin)	XCIN input "H" width	7	-	μS	
twl(xcin)	XCIN input "L" width	7	-	μS	

Figure 5.16 External Clock Input Timing Diagram when Vcc = 2.2 V

Table 5.32 TRAIO Input

Symbol	Parameter	Standard		Unit
		Min.	Max.	Offic
tc(TRAIO)	TRAIO input cycle time	500	-	ns
twh(traio)	TRAIO input "H" width	200	-	ns
twl(traio)	TRAIO input "L" width	200	-	ns

Figure 5.17 TRAIO Input Timing Diagram when Vcc = 2.2 V

REVISION HISTORY	R8C/33C Group Datasheet
-------------------------	-------------------------

Γ

Rev.	Date	Description			
		Page	Summary		
0.01	Sep. 01, 2009	-	First Edition issued		
1.00	Aug. 24, 2010	All	"Preliminary" and "Under development" deleted		
		4	Table1.3 revised		
		26 to 52	"5. Electrical Characteristics" added		

All trademarks and registered trademarks are the property of their respective owners.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renease Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renease Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product for which the soften where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product of soften an application categorized as "Specific" for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product of uses of any expression product of the prior written consent of Renesas Electronics.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools
- personal electronic equipment; and industrial robots.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
 designed for life support.
- "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renease Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renease Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renease Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renease Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics Corpog GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics Corpog Const Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-10-2825-1155, Fras: +86-21-6837-7859 Renease Electronics (Shanghai) Co., Ltd. 10n1 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 Renease Electronics Hong Kong Limited Unit 1801-1613, 16/F., Towre 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +86-28475-9800, Fax: +862-2467-9708 Renease Electronics Singapore Pte. Ltd. 7r, No. 363 Fu Shing North Road Taipei, Taiwan Tel: +862-2457-9800, Fax: +8682-24175-9670 Renease Electronics Malagyia Sch. Btd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +65-6273-0900, Fax: +8682-24175-9670 Renease Electronics Malagyia Sch. Btd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +65-6273-0900, Fax: +8682-24175-9670 Renease Electronics Malagyia Sch. Btd. Unit 906, Block B, Menara Amoorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9300, Fax: +86-3-7955-9510