



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Details                    |                                                                            |
|----------------------------|----------------------------------------------------------------------------|
| Product Status             | Active                                                                     |
| Core Processor             | PIC                                                                        |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 32MHz                                                                      |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                  |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                      |
| Number of I/O              | 26                                                                         |
| Program Memory Size        | 14KB (8K x 14)                                                             |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | 256 x 8                                                                    |
| RAM Size                   | 1K x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 2.5V ~ 5.5V                                                                |
| Data Converters            | A/D 24x12b; D/A 1x5b                                                       |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 28-SSOP (0.209", 5.30mm Width)                                             |
| Supplier Device Package    | 28-SSOP                                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16f18455-e-ss |
|                            |                                                                            |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### 8.9 **Power-up Timer (PWRT)**

The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow  $V_{DD}$  to stabilize before allowing the device to start running.

The Power-up Timer is controlled by the PWRTS bit field of the Configuration Words.

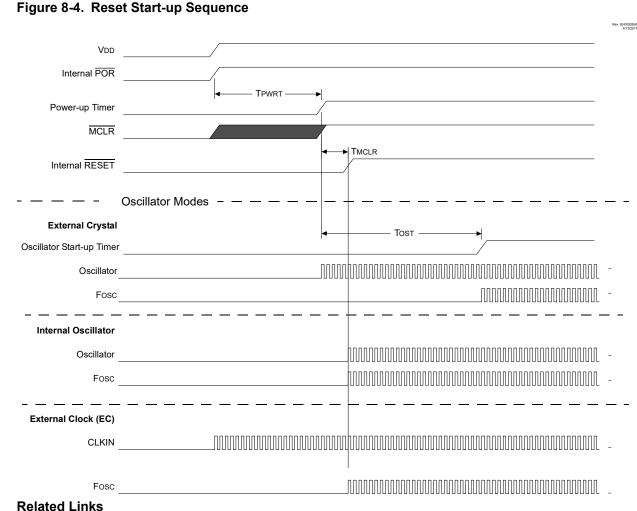
The Power-up Timer provides a nominal 64 ms timeout on POR or Brown-out Reset.

The device is held in Reset as long as PWRT is active. The PWRT delay allows additional time for the  $V_{DD}$  to rise to an acceptable level. The Power-up Timer is enabled by setting a non-zero value in the PWRTS bit field, in Configuration Words.

The Power-up Timer starts after the release of the POR and BOR.

For additional information, refer to Application Note AN607, "Power-up Trouble Shooting" (DS0000607).

#### 8.10 Start-up Sequence


Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. Oscillator start-up timer runs to completion (if required for selected oscillator source).
- 3. MCLR must be released (if enabled).

The total timeout will vary based on oscillator configuration and Power-up Timer configuration.

The Power-up Timer and oscillator start-up timer run independently of  $\overline{\text{MCLR}}$  Reset. If  $\overline{\text{MCLR}}$  is kept low long enough, the Power-up Timer and oscillator Start-up Timer will expire. Upon bringing  $\overline{\text{MCLR}}$  high, the device will begin execution after ten  $F_{\text{OSC}}$  cycles (see figure below). This is useful for testing purposes or to synchronize more than one device operating in parallel.

#### Resets



9. Oscillator Module (with Fail-Safe Clock Monitor)

#### 8.11 **Memory Execution Violation**

A Memory Execution Violation Reset occurs if executing an instruction being fetched from outside the valid execution area. The different valid execution areas are defined as follows:

- Flash Memory: The "Device Sizes and Addresses" table shows the addresses available on the PIC16(L)F18455/56 devices based on user Flash size. Execution outside this region generates a memory execution violation.
- Storage Area Flash (SAF): If Storage Area Flash (SAF) is enabled , the SAF area is not a valid execution area.

Prefetched instructions that are not executed do not cause memory execution violations. For example, a GOTO instruction in the last memory location will prefetch from an invalid location; this is not an error. If an instruction from an invalid location tries to execute, the memory violation is generated immediately, and any concurrent interrupt requests are ignored. When a memory execution violation is generated, the device is reset and flag MEMV is cleared in PCON1 to signal the cause. The flag needs to be set in code after a memory execution violation.

#### **Related Links**

#### 8.15.2 PCON0

Name:PCON0Address:0x813

Power Control Register 0

| Bit    | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|        | STKOVF | STKUNF | WDTWV  | RWDT   | RMCLR  | RĪ     | POR    | BOR    |
| Access | R/W/HS | R/W/HS | R/W/HC | R/W/HC | R/W/HC | R/W/HC | R/W/HC | R/W/HC |
| Reset  | 0      | 0      | 1      | 1      | 1      | 1      | 0      | q      |

Bit 7 – STKOVF Stack Overflow Flag bit

Reset States: POR/BOR = 0

All Other Resets = q

| Value | Description                                                  |
|-------|--------------------------------------------------------------|
| 1     | A Stack Overflow occurred (more CALLs than fit on the stack) |
| 0     | A Stack Overflow has not occurred or set to '0' by firmware  |

#### Bit 6 – STKUNF Stack Underflow Flag bit

Reset States: POR/BOR = 0

All Other Resets = q

| Value | Description                                                  |
|-------|--------------------------------------------------------------|
| 1     | A Stack Underflow occurred (more RETURNS than CALLS)         |
| 0     | A Stack Underflow has not occurred or set to '0' by firmware |

Bit 5 – WDTWV Watchdog Window Violation Flag bit

Reset States: POR/BOR = 1

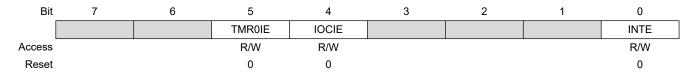
All Other Resets = q

| Value | Description                                                                         |
|-------|-------------------------------------------------------------------------------------|
| 1     | A WDT window violation has not occurred or set to '1' by firmware                   |
| 0     | A CLRWDT instruction was issued when the WDT Reset window was closed (set to '0' in |
|       | hardware when a WDT window violation Reset occurs)                                  |

#### Bit 4 – RWDT WDT Reset Flag bit

Reset States: POR/BOR = 1

All Other Resets = q


| Value | Description                                                                         |
|-------|-------------------------------------------------------------------------------------|
| 1     | A WDT overflow/time-out Reset has not occurred or set to '1' by firmware            |
| 0     | A WDT overflow/time-out Reset has occurred (set to '0' in hardware when a WDT Reset |
|       | occurs)                                                                             |

**Bit 3 – RMCLR** MCLR Reset Flag bit Reset States: POR/BOR = 1 All Other Resets = q

#### 10.7.2 PIE0

Name:PIE0Address:0x716

Peripheral Interrupt Enable Register 0



#### Bit 5 – TMR0IE Timer0 Interrupt Enable bit

| Value | Description |
|-------|-------------|
| 1     | Enabled     |
| 0     | Disabled    |

#### Bit 4 – IOCIE Interrupt-on-Change Enable bit

| Value | Description |
|-------|-------------|
| 1     | Enabled     |
| 0     | Disabled    |

#### Bit 0 – INTE External Interrupt Enable bit<sup>(1)</sup>

| Value | Description |
|-------|-------------|
| 1     | Enabled     |
| 0     | Disabled    |

#### Note:

1. The External Interrupt INT pin is selected by INTPPS.

**Note:** Bit PEIE of the INTCON register must be set to enable any peripheral interrupt controlled by PIE1-PIE8. Interrupt sources controlled by the PIE0 register do not require PEIE to be set in order to allow interrupt vectoring (when GIE is set).

#### **Related Links**

15.9.1 xxxPPS

#### 10.7.4 PIE2

Name:PIE2Address:0x718

Peripheral Interrupt Enable Register 2

| Bit    | 7 | 6     | 5 | 4 | 3 | 2 | 1    | 0    |
|--------|---|-------|---|---|---|---|------|------|
|        |   | ZCDIE |   |   |   |   | C2IE | C1IE |
| Access |   | R/W   |   |   |   |   | R/W  | R/W  |
| Reset  |   | 0     |   |   |   |   | 0    | 0    |

Bit 6 – ZCDIE Zero-Cross Detect Interrupt Enable bit

| Value | Description |
|-------|-------------|
| 1     | Enabled     |
| 0     | Disabled    |

Bits 0, 1 – CnIE Comparator 'n' Interrupt Enable bit

| Value | Description |
|-------|-------------|
| 1     | Enabled     |
| 0     | Disabled    |

**Note:** Bit PEIE of the INTCON register must be set to enable any peripheral interrupt controlled by registers PIE1-PIE8.

#### 16.5.5 PMD4

Name:PMD4Address:0x79A

PMD Control Register 4

| Bit    | 7 | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|--------|---|--------|--------|--------|--------|--------|--------|--------|
|        |   | PWM7MD | PWM6MD | CCP5MD | CCP4MD | CCP3MD | CCP2MD | CCP1MD |
| Access |   | R/W    |
| Reset  |   | 0      | 0      | 0      | 0      | 0      | 0      | 0      |

Bit 6 - PWM7MD Disable Pulse-Width Modulator PWM7 bit

| Value | Description          |
|-------|----------------------|
| 1     | PWM7 module disabled |
| 0     | PWM7 module enabled  |

#### Bit 5 – PWM6MD Disable Pulse-Width Modulator PWM6 bit

| Value | Description          |
|-------|----------------------|
| 1     | PWM6 module disabled |
| 0     | PWM6 module enabled  |

#### Bit 4 – CCP5MD Disable Pulse-Width Modulator CCP5 bit

| Value | Description          |
|-------|----------------------|
| 1     | CCP5 module disabled |
| 0     | CCP5 module enabled  |

#### **Bit 3 – CCP4MD** Disable Pulse-Width Modulator CCP4 bit

| Value | Description          |
|-------|----------------------|
| 1     | CCP4 module disabled |
| 0     | CCP4 module enabled  |

#### Bit 2 – CCP3MD Disable Pulse-Width Modulator CCP3 bit

| Value | Description          |
|-------|----------------------|
| 1     | CCP3 module disabled |
| 0     | CCP3 module enabled  |

#### Bit 1 – CCP2MD Disable Pulse-Width Modulator CCP2 bit

| Value | Description          |
|-------|----------------------|
| 1     | CCP2 module disabled |
| 0     | CCP2 module enabled  |

Bit 0 – CCP1MD Disable Pulse-Width Modulator CCP1 bit

#### 17.6.5 IOCAN

Name:IOCANAddress:0x1F3E

Interrupt-on-Change Negative Edge Register Example

| Bit    | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|        | IOCAN7 | IOCAN6 | IOCAN5 | IOCAN4 | IOCAN3 | IOCAN2 | IOCAN1 | IOCAN0 |
| Access | R/W    |
| Reset  | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |

Bits 0, 1, 2, 3, 4, 5, 6, 7 - IOCANn Interrupt-on-Change Negative Edge Enable bits

| Value | Description                                                                              |
|-------|------------------------------------------------------------------------------------------|
| 1     | Interrupt-on-Change enabled on the IOCA pin for a negative-going edge. Associated Status |
|       | bit and interrupt flag will be set upon detecting an edge.                               |
| 0     | Interrupt-on-Change disabled for the associated pin                                      |

#### 20.8.22 ADACT

Name:ADACTAddress:0x117

ADC AUTO Conversion Trigger Source Selection Register

| Bit    | 7 | 6 | 5 | 4   | 3   | 2        | 1   | 0   |
|--------|---|---|---|-----|-----|----------|-----|-----|
|        |   |   |   |     |     | ACT[4:0] |     |     |
| Access |   |   |   | R/W | R/W | R/W      | R/W | R/W |
| Reset  |   |   |   | 0   | 0   | 0        | 0   | 0   |

#### Bits 4:0 - ACT[4:0] Auto-Conversion Trigger Select Bits

| Value | Description                                    |
|-------|------------------------------------------------|
| 00000 | See ADC Auto-Conversion Trigger Sources table. |
| to    |                                                |
| 11111 |                                                |

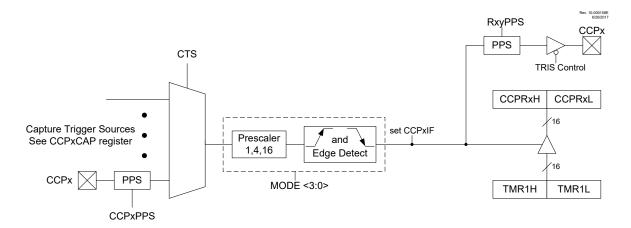
#### 29.1.2 Open-Drain Output Option

When operating in Output mode (the Compare or PWM modes), the drivers for the CCPx pins can be optionally configured as open-drain outputs. This feature allows the voltage level on the pin to be pulled to a higher level through an external pull-up resistor and allows the output to communicate with external circuits without the need for additional level shifters.

#### 29.2 Capture Mode

Capture mode makes use of the 16-bit odd numbered timer resources (Timer1, Timer3, etc.). When an event occurs on the capture source, the 16-bit CCPRx register captures and stores the 16-bit value of the TMRx register. An event is defined as one of the following and is configured by the MODE bits:

- Every falling edge of CCPx input
- Every rising edge of CCPx input
- Every 4<sup>th</sup> rising edge of CCPx input
- Every 16<sup>th</sup> rising edge of CCPx input
- Every edge of CCPx input (rising or falling)


When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIRx register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRx register is read, the old captured value is overwritten by the new captured value.

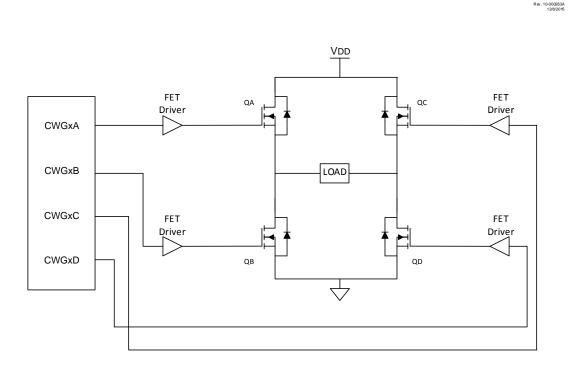


**Important:** If an event occurs during a 2-byte read, the high and low-byte data will be from different events. It is recommended while reading the CCPRxH:CCPRxL register pair to either disable the module or read the register pair twice for data integrity.

The following figure shows a simplified diagram of the capture operation.

#### Figure 29-1. Capture Mode Operation Block Diagram




#### 29.2.1 Capture Sources

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

#### 31.2.3 Full-Bridge Modes

In Forward and Reverse Full-Bridge modes, three outputs drive static values while the fourth is modulated by the input data signal. The mode selection may be toggled between forward and reverse by toggling the MODE<0> bit of the CWGxCON0 while keeping MODE<2:1> static, without disabling the CWG module. When connected, as shown in Figure 31-5, the outputs are appropriate for a full-bridge motor driver. Each CWG output signal has independent polarity control, so the circuit can be adapted to high-active and low-active drivers. A simplified block diagram for the Full-Bridge modes is shown in Figure 31-6.

#### Figure 31-5. Example of Full-Bridge Application



#### 34.6.1 CLKRCON

| Name:    | CLKRCON |
|----------|---------|
| Address: | 0x895   |

Reference Clock Control Register

| Bit    | 7   | 6 | 5 | 4   | 3     | 2   | 1        | 0   |
|--------|-----|---|---|-----|-------|-----|----------|-----|
|        | EN  |   |   | DC[ | [1:0] |     | DIV[2:0] |     |
| Access | R/W |   |   | R/W | R/W   | R/W | R/W      | R/W |
| Reset  | 0   |   |   | 1   | 0     | 0   | 0        | 0   |

#### Bit 7 – EN

Reference Clock Module Enable bit

| Value | Description                        |
|-------|------------------------------------|
| 1     | Reference clock module enabled     |
| 0     | Reference clock module is disabled |

#### Bits 4:3 - DC[1:0]

Reference Clock Duty Cycle bits<sup>(1)</sup>

| Value | Description                     |
|-------|---------------------------------|
| 11    | Clock outputs duty cycle of 75% |
| 10    | Clock outputs duty cycle of 50% |
| 01    | Clock outputs duty cycle of 25% |
| 00    | Clock outputs duty cycle of 0%  |

#### Bits 2:0 – DIV[2:0]

Reference Clock Divider bits

| Value | Description                     |
|-------|---------------------------------|
| 111   | Base clock value divided by 128 |
| 110   | Base clock value divided by 64  |
| 101   | Base clock value divided by 32  |
| 100   | Base clock value divided by 16  |
| 011   | Base clock value divided by 8   |
| 010   | Base clock value divided by 4   |
| 001   | Base clock value divided by 2   |
| 000   | Base clock value                |

#### Note:

1. Bits are valid for reference clock divider values of two or larger, the base clock cannot be further divided.

(MSSP) Master Synchronous Serial Port Module

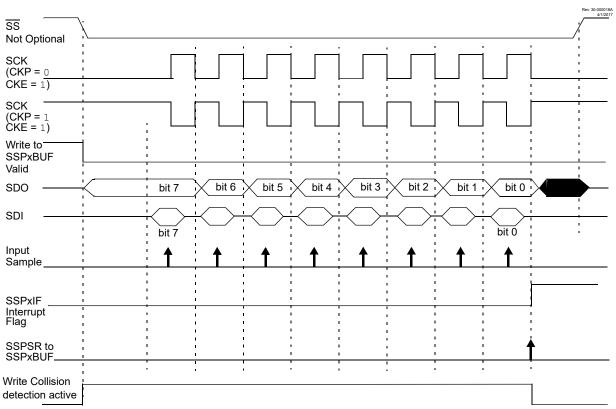


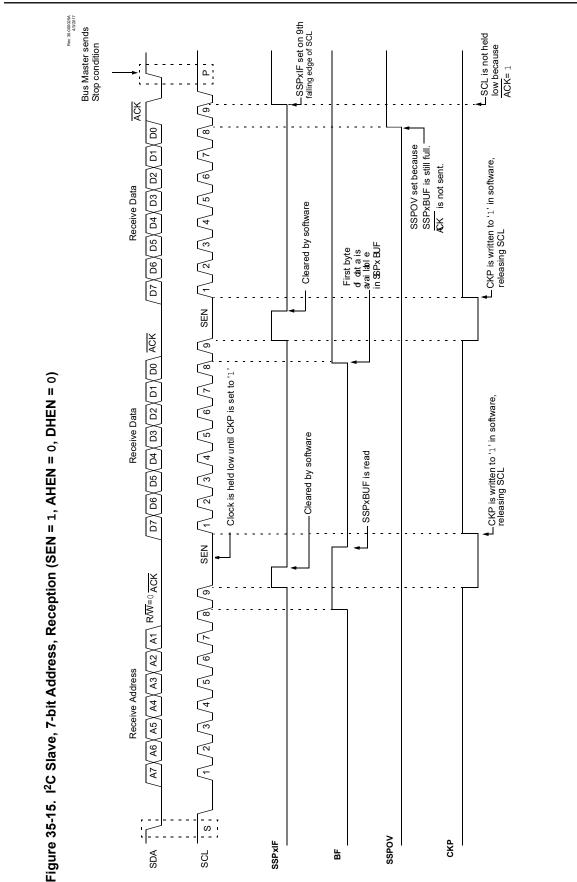

Figure 35-8. SPI Mode Waveform (Slave Mode with CKE = 1)

#### 35.2.5 SPI Operation in Sleep Mode

In SPI Master mode, module clocks may be operating at a different speed than when in Full-Power mode; in the case of the Sleep mode, all clocks are halted.

Special care must be taken by the user when the MSSP clock is much faster than the system clock.

In Slave mode, when MSSP interrupts are enabled, after the master completes sending data, an MSSP interrupt will wake the controller from Sleep.


If an exit from Sleep mode is not desired, MSSP interrupts should be disabled.

In SPI Master mode, when the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device.

#### 35.3 I<sup>2</sup>C Mode Overview

The Inter-Integrated Circuit (I<sup>2</sup>C) bus is a multi-master serial data communication bus. Devices communicate in a master/slave environment where the master devices initiate the communication. A



### PIC16(L)F18455/56 (MSSP) Master Synchronous Serial Port Module

© 2018 Microchip Technology Inc.

### 38. Register Summary

| Address | Name     | Bit Pos. |           |              |        |        |             |        |        |        |
|---------|----------|----------|-----------|--------------|--------|--------|-------------|--------|--------|--------|
| 0x00    | INDF0    | 7:0      |           | INDF0[7:0]   |        |        |             |        |        |        |
| 0x01    | INDF1    | 7:0      |           | INDF1[7:0]   |        |        |             |        |        |        |
| 0x02    | PCL      | 7:0      |           |              |        | PCL    | [7:0]       |        |        |        |
| 0x03    | STATUS   | 7:0      |           | TO PD Z DC C |        |        |             |        |        | С      |
| 0.04    | 5000     | 7:0      | FSRL[7:0] |              |        |        |             |        |        |        |
| 0x04    | FSR0     | 15:8     |           |              |        | FSR    | H[7:0]      |        |        |        |
| 0x06    | FSR1     | 7:0      | FSRL[7:0] |              |        |        |             |        |        |        |
| 0000    | FORT     | 15:8     |           |              |        | FSR    | H[7:0]      |        |        |        |
| 0x08    | BSR      | 7:0      |           |              |        |        | BSR         | R[5:0] |        |        |
| 0x09    | WREG     | 7:0      |           | 1            |        | WRE    | G[7:0]      |        |        |        |
| 0x0A    | PCLATH   | 7:0      |           |              |        |        | PCLATH[6:0] |        |        |        |
| 0x0B    | INTCON   | 7:0      | GIE       | PEIE         |        |        |             |        |        | INTEDG |
| 0x0C    | PORTA    | 7:0      | RA7       | RA6          | RA5    | RA4    | RA3         | RA2    | RA1    | RA0    |
| 0x0D    | PORTB    | 7:0      | RB7       | RB6          | RB5    | RB4    | RB3         | RB2    | RB1    | RB0    |
| 0x0E    | PORTC    | 7:0      | RC7       | RC6          | RC5    | RC4    | RC3         | RC2    | RC1    | RC0    |
| 0x0F    | Reserved |          |           |              |        |        |             |        |        |        |
| 0x10    | PORTE    | 7:0      |           |              |        |        | RE3         |        |        |        |
| 0x11    | Reserved |          |           |              |        |        |             |        |        |        |
| 0x12    | TRISA    | 7:0      | TRISA7    | TRISA6       | TRISA5 | TRISA4 | TRISA3      | TRISA2 | TRISA1 | TRISA0 |
| 0x13    | TRISB    | 7:0      | TRISB7    | TRISB6       | TRISB5 | TRISB4 | TRISB3      | TRISB2 | TRISB1 | TRISB0 |
| 0x14    | TRISC    | 7:0      | TRISC7    | TRISC6       | TRISC5 | TRISC4 | TRISC3      | TRISC2 | TRISC1 | TRISC0 |
| 0x15    |          |          |           |              |        |        |             |        |        |        |
|         | Reserved |          |           |              |        |        |             |        |        |        |
| 0x17    |          |          |           |              |        |        |             |        |        |        |
| 0x18    | LATA     | 7:0      | LATA7     | LATA6        | LATA5  | LATA4  | LATA3       | LATA2  | LATA1  | LATA0  |
| 0x19    | LATB     | 7:0      | LATB7     | LATB6        | LATB5  | LATB4  | LATB3       | LATB2  | LATB1  | LATB0  |
| 0x1A    | LATC     | 7:0      | LATC7     | LATC6        | LATC5  | LATC4  | LATC3       | LATC2  | LATC1  | LATC0  |
| 0x1B    |          |          |           |              |        |        |             |        |        |        |
|         | Reserved |          |           |              |        |        |             |        |        |        |
| 0x7F    |          |          |           |              |        |        |             |        |        |        |
| 0x80    | INDF0    | 7:0      |           |              |        | INDF   |             |        |        |        |
| 0x81    | INDF1    | 7:0      |           |              |        | INDF   |             |        |        |        |
| 0x82    | PCL      | 7:0      |           |              |        |        | [7:0]       |        | 1      | 1      |
| 0x83    | STATUS   | 7:0      |           |              |        | TO     | PD          | Z      | DC     | C      |
| 0x84    | FSR0     | 7:0      |           |              |        | FSRI   |             |        |        |        |
|         |          | 15:8     |           |              |        |        | H[7:0]      |        |        |        |
| 0x86    | FSR1     | 7:0      |           |              |        | FSRI   |             |        |        |        |
|         |          | 15:8     |           |              |        | FSR    | H[7:0]      |        |        |        |
| 0x88    | BSR      | 7:0      |           |              |        |        | BSR         | 8[5:0] |        |        |
| 0x89    | WREG     | 7:0      |           |              |        | WRE    |             |        |        |        |
| 0x8A    | PCLATH   | 7:0      |           |              |        |        | PCLATH[6:0] |        |        | 1      |
| 0x8B    | INTCON   | 7:0      | GIE       | PEIE         |        |        |             |        |        | INTEDG |
| 0x8C    | ADLTH    | 7:0      |           |              |        | LTHL   | [7:0]       |        |        |        |

### Register Summary

| Address | Name     | Bit Pos. |      |      |           |      |             |           |           |        |
|---------|----------|----------|------|------|-----------|------|-------------|-----------|-----------|--------|
|         |          | 15:8     |      |      |           | LTHI | H[7:0]      |           |           |        |
| 0.05    |          | 7:0      |      |      |           | UTH  | L[7:0]      |           |           |        |
| 0x8E    | ADUTH    | 15:8     |      |      |           | UTH  | H[7:0]      |           |           |        |
|         |          | 7:0      |      |      |           | ADER | RL[7:0]     |           |           |        |
| 0x90    | ADERR    | 15:8     |      |      |           | ERR  | H[7:0]      |           |           |        |
|         |          | 7:0      |      |      |           | STPT | L[7:0]      |           |           |        |
| 0x92    | ADSTPT   | 15:8     |      |      |           | STPT | H[7:0]      |           |           |        |
|         |          | 7:0      |      |      |           | FLTF | RL[7:0]     |           |           |        |
| 0x94    | ADFLTR   | 15:8     |      |      |           | FLTR | H[7:0]      |           |           |        |
|         |          | 7:0      |      |      |           | ACC  | L[7:0]      |           |           |        |
| 0x96    | ADACC    | 15:8     |      |      |           | ACC  | H[7:0]      |           |           |        |
|         |          | 23:16    |      |      |           |      |             |           | ACC       | U[1:0] |
| 0x99    | ADCNT    | 7:0      |      |      |           | CN   | [7:0]       |           |           |        |
| 0x9A    | ADRPT    | 7:0      |      |      |           | RPT  | [7:0]       |           |           |        |
|         |          | 7:0      |      |      |           |      | /L[7:0]     |           |           |        |
| 0x9B    | ADPREV   | 15:8     |      |      |           | PRE\ | /H[7:0]     |           |           |        |
|         |          | 7:0      |      |      |           | RES  | L[7:0]      |           |           |        |
| 0x9D    | ADRES    | 15:8     |      |      |           | RES  | H[7:0]      |           |           |        |
| 0x9F    | ADPCH    | 7:0      |      |      |           |      | PCH         | H[5:0]    |           |        |
| 0xA0    |          |          |      |      |           |      |             |           |           |        |
|         | Reserved |          |      |      |           |      |             |           |           |        |
| 0xFF    |          |          |      |      |           |      |             |           |           |        |
| 0x0100  | INDF0    | 7:0      |      |      |           | INDF | 0[7:0]      |           |           | 1      |
| 0x0101  | INDF1    | 7:0      |      |      |           | INDF | 1[7:0]      |           |           |        |
| 0x0102  | PCL      | 7:0      |      |      |           | PCL  | .[7:0]      |           |           |        |
| 0x0103  | STATUS   | 7:0      |      |      |           | TO   | PD          | Z         | DC        | С      |
| 0×0104  | FSBO     | 7:0      |      |      |           | FSR  | L[7:0]      |           |           |        |
| 0x0104  | FSR0     | 15:8     |      |      |           | FSR  | H[7:0]      |           |           |        |
| 00400   | 50.04    | 7:0      |      |      |           | FSR  | L[7:0]      |           |           |        |
| 0x0106  | FSR1     | 15:8     |      |      |           | FSR  | H[7:0]      |           |           |        |
| 0x0108  | BSR      | 7:0      |      |      |           |      | BSF         | R[5:0]    |           |        |
| 0x0109  | WREG     | 7:0      |      |      |           | WRE  | G[7:0]      |           |           |        |
| 0x010A  | PCLATH   | 7:0      |      |      |           |      | PCLATH[6:0] |           |           |        |
| 0x010B  | INTCON   | 7:0      | GIE  | PEIE |           |      |             |           |           | INTEDG |
| 0x010C  | ADACQ    | 7:0      |      |      |           | ACQ  | L[7:0]      |           |           |        |
| UXUTUC  | ADACQ    | 15:8     |      |      |           |      |             | ACQH[4:0] |           |        |
| 0x010E  | ADCAP    | 7:0      |      |      |           |      |             | CAP[4:0]  |           |        |
| 0x010F  | ADPRE    | 7:0      |      |      |           | PRE  | L[7:0]      |           |           |        |
| UNUTUF  | AUTRE    | 15:8     |      |      |           |      |             | PREH[4:0] |           |        |
| 0x0111  | ADCON0   | 7:0      | ON   | CONT |           | CS   |             | FRM       |           | GO     |
| 0x0112  | ADCON1   | 7:0      | PPOL | IPEN | GPOL      |      |             |           |           | DSEN   |
| 0x0113  | ADCON2   | 7:0      | PSIS |      | CRS[2:0]  |      | ACLR        |           | MD[2:0]   |        |
| 0x0114  | ADCON3   | 7:0      |      |      | CALC[2:0] |      | SOI         |           | TMD[2:0]  |        |
| 0x0115  | ADSTAT   | 7:0      | OV   | UTHR | LTHR      | MATH |             |           | STAT[2:0] |        |
| 0x0116  | ADREF    | 7:0      |      |      |           | NREF |             |           | PRE       | F[1:0] |
| 0x0117  | ADACT    | 7:0      |      |      |           |      |             | ACT[4:0]  |           |        |

### Register Summary

| Address | Name     | Bit Pos. |        |            |       |          |             |       |        |        |
|---------|----------|----------|--------|------------|-------|----------|-------------|-------|--------|--------|
| 0x0118  | ADCLK    | 7:0      |        |            |       |          | CS          | 5:0]  |        |        |
| 0x0119  | RC1REG   | 7:0      |        | RCREG[7:0] |       |          |             |       |        |        |
| 0x011A  | TX1REG   | 7:0      |        |            |       | TXRE     | G[7:0]      |       |        |        |
| 0x011B  | SP1BRG   | 7:0      |        |            |       | SPBRO    | GL[7:0]     |       |        |        |
|         |          | 15:8     |        |            |       | SPBRO    | GH[7:0]     |       |        |        |
| 0x011D  | RC1STA   | 7:0      | SPEN   | RX9        | SREN  | CREN     | ADDEN       | FERR  | OERR   | RX9D   |
| 0x011E  | TX1STA   | 7:0      | CSRC   | TX9        | TXEN  | SYNC     | SENDB       | BRGH  | TRMT   | TX9D   |
| 0x011F  | BAUD1CON | 7:0      | ABDOVF | RCIDL      |       | SCKP     | BRG16       |       | WUE    | ABDEN  |
| 0x0120  |          |          |        |            |       |          |             |       |        |        |
|         | Reserved |          |        |            |       |          |             |       |        |        |
| 0x017F  |          |          |        |            |       |          |             |       |        |        |
| 0x0180  | INDF0    | 7:0      |        |            |       | INDF     |             |       |        |        |
| 0x0181  | INDF1    | 7:0      |        |            |       | INDF     | • •         |       |        |        |
| 0x0182  | PCL      | 7:0      |        |            |       | PCL      |             |       |        | 1      |
| 0x0183  | STATUS   | 7:0      |        |            |       | TO       | PD          | Z     | DC     | С      |
| 0x0184  | FSR0     | 7:0      |        |            |       | FSRI     |             |       |        |        |
|         |          | 15:8     |        |            |       | FSR      |             |       |        |        |
| 0x0186  | FSR1     | 7:0      |        |            |       | FSRI     |             |       |        |        |
|         |          | 15:8     |        | 1          |       | FSR      |             |       |        |        |
| 0x0188  | BSR      | 7:0      |        |            |       |          |             | [5:0] |        |        |
| 0x0189  | WREG     | 7:0      |        |            |       | WRE      |             |       |        |        |
| 0x018A  | PCLATH   | 7:0      |        |            |       |          | PCLATH[6:0] |       |        | 1      |
| 0x018B  | INTCON   | 7:0      | GIE    | PEIE       |       |          |             |       |        | INTEDG |
| 0x018C  | SSP1BUF  | 7:0      |        |            |       | BUF      |             |       |        |        |
| 0x018D  | SSP1ADD  | 7:0      |        |            |       | ADD      | [7:0]       |       |        | 1      |
| 0x018E  | SSP1MSK  | 7:0      |        | 1          |       | MSK[6:0] |             | 1     |        | MSK0   |
| 0x018F  | SSP1STAT | 7:0      | SMP    | CKE        | D/A   | Р        | S           | R/W   | UA     | BF     |
| 0x0190  | SSP1CON1 | 7:0      | WCOL   | SSPOV      | SSPEN | CKP      |             | 1     | M[3:0] | 1      |
| 0x0191  | SSP1CON2 | 7:0      | GCEN   | ACKSTAT    | ACKDT | ACKEN    | RCEN        | PEN   | RSEN   | SEN    |
| 0x0192  | SSP1CON3 | 7:0      | ACKTIM | PCIE       | SCIE  | BOEN     | SDAHT       | SBCDE | AHEN   | DHEN   |
| 0x0193  |          |          |        |            |       |          |             |       |        |        |
|         | Reserved |          |        |            |       |          |             |       |        |        |
| 0x0195  |          |          |        |            |       |          |             |       |        |        |
| 0x0196  | SSP2BUF  | 7:0      |        |            |       | BUF      |             |       |        |        |
| 0x0197  | SSP2ADD  | 7:0      |        |            |       | ADD      | [7:0]       |       |        |        |
| 0x0198  | SSP2MSK  | 7:0      |        |            |       | MSK[6:0] |             |       |        | MSK0   |
| 0x0199  | SSP2STAT | 7:0      | SMP    | CKE        | D/A   | Р        | S           | R/W   | UA     | BF     |
| 0x019A  | SSP2CON1 | 7:0      | WCOL   | SSPOV      | SSPEN | CKP      |             |       | M[3:0] |        |
| 0x019B  | SSP2CON2 | 7:0      | GCEN   | ACKSTAT    | ACKDT | ACKEN    | RCEN        | PEN   | RSEN   | SEN    |
| 0x019C  | SSP2CON3 | 7:0      | ACKTIM | PCIE       | SCIE  | BOEN     | SDAHT       | SBCDE | AHEN   | DHEN   |
| 0x019D  |          |          |        |            |       |          |             |       |        |        |
|         | Reserved |          |        |            |       |          |             |       |        |        |
| 0x01FF  | IN IDEA  | 7.0      |        |            |       |          | 0[7.0]      |       |        |        |
| 0x0200  | INDF0    | 7:0      |        |            |       | INDF     |             |       |        |        |
| 0x0201  | INDF1    | 7:0      |        |            |       | INDF     |             |       |        |        |
| 0x0202  | PCL      | 7:0      |        |            |       | PCL      | [7:0]       |       |        |        |

### Instruction Set Summary

| RETLW        | Return literal to W                                                                                                                                                     |  |  |  |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Description: | The W register is loaded with the 8-bit literal 'k'.<br>The program counter is loaded from the top of the stack (the return address).<br>This is a 2-cycle instruction. |  |  |  |  |  |
| Words:       | 1                                                                                                                                                                       |  |  |  |  |  |
| Cycles:      | 2                                                                                                                                                                       |  |  |  |  |  |

#### Example:

| CALL TABLE<br>; offset value<br>; W now has<br>; table value<br>:<br>TABLE<br>ADDWF PC<br>RETLW k1<br>RETLW k2 | ; W contains table<br>; W = offset<br>; Begin table<br>; |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| :<br>RETLW kn                                                                                                  | ; End of table                                           |

#### **Before Instruction**

W = 07h

After Instruction

W = value of k8

| RETURN           | Return from Subrou                                                                                                                                     | Return from Subroutine |      |      |  |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------|------|--|--|--|
| Syntax:          | [ <i>label</i> ] RETURN                                                                                                                                | [ label ] RETURN       |      |      |  |  |  |
| Operands:        | None                                                                                                                                                   |                        |      |      |  |  |  |
| Operation:       | $(TOS) \rightarrow PC$ ,                                                                                                                               |                        |      |      |  |  |  |
| Status Affected: | None                                                                                                                                                   |                        |      |      |  |  |  |
| Encoding:        | 0000                                                                                                                                                   | 0000                   | 0001 | 001s |  |  |  |
| Description:     | Return from subroutine.<br>The stack is POPped and the top of the stack (TOS) is loaded into the Program<br>Counter.<br>This is a 2-cycle instruction. |                        |      |      |  |  |  |

| RLF        | Rotate Left f through Carry                                           |
|------------|-----------------------------------------------------------------------|
| Syntax:    | [ <i>label</i> ] RLF f, d                                             |
| Operands:  | $\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$           |
| Operation: | $(f < n >) \rightarrow dest < n + 1 >,$<br>$(f < 7 >) \rightarrow C,$ |

### Instruction Set Summary

| RLF                                    | Rotate Left f throug                                                                                                                                                                                     | Rotate Left f through Carry |         |      |  |  |  |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------|------|--|--|--|--|
|                                        | $(C) \rightarrow dest < 0 >$                                                                                                                                                                             |                             |         |      |  |  |  |  |
| Status Affected:                       | С                                                                                                                                                                                                        |                             |         |      |  |  |  |  |
| Encoding:                              | 0011                                                                                                                                                                                                     | 01da                        | ffff    | ffff |  |  |  |  |
| Description:                           | The contents of register 'f' are rotated one bit to the left through the CARRY flag.<br>If 'd' is '0', the result is placed in W.<br>If 'd' is '1', the result is stored back in register 'f' (default). |                             |         |      |  |  |  |  |
| Words:                                 | 1                                                                                                                                                                                                        |                             |         |      |  |  |  |  |
| Cycles:                                | 1                                                                                                                                                                                                        |                             |         |      |  |  |  |  |
| Example:                               |                                                                                                                                                                                                          | RLF                         | REG1, 0 |      |  |  |  |  |
| Before Instruction<br>REG1 = 1110 0110 |                                                                                                                                                                                                          |                             |         |      |  |  |  |  |
| C = 0                                  |                                                                                                                                                                                                          |                             |         |      |  |  |  |  |
| After Instruction                      |                                                                                                                                                                                                          |                             |         |      |  |  |  |  |

REG = 1110 0110

W = 1100 1100

C = 1

| RRF              | Rotate Right f through Carry                                                                                                                                                                              |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] RRF f, d                                                                                                                                                                                 |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$                                                                                                                                           |
| Operation:       | $(f < n >) \rightarrow dest < n - 1 >,$<br>$(f < 0 >) \rightarrow C,$<br>$(C) \rightarrow dest < 7 >$                                                                                                     |
| Status Affected: | C                                                                                                                                                                                                         |
| Description:     | The contents of register 'f' are rotated one bit to the right through the CARRY flag.<br>If 'd' is '0', the result is placed in W.<br>If 'd' is '1', the result is placed back in register 'f' (default). |

### **Electrical Specifications**

| PIC16F18455/56 only                                                 |                      |                                             |      |        |       |        |       |            |                              |
|---------------------------------------------------------------------|----------------------|---------------------------------------------|------|--------|-------|--------|-------|------------|------------------------------|
| Standard Operating Conditions (unless otherwise stated), VREGPM = 1 |                      |                                             |      |        |       |        |       |            |                              |
| Param.                                                              | Sym.                 | Device                                      | Min. | Typ.†  | Max.  | Max.   | Units | Conditions |                              |
| No.                                                                 | oyni.                | Characteristics                             |      | 1,46,1 | +85°C | +125°C |       | $V_{DD}$   | Note                         |
| D202                                                                | I <sub>PD_SOSC</sub> | Secondary<br>Oscillator (S <sub>OSC</sub> ) | —    | 0.8    | 5.5   | 13     | μA    | 3.0V       |                              |
| D203                                                                | I <sub>PD_FVR</sub>  | FVR                                         | —    | 28     | 70    | 75     | μA    | 3.0V       |                              |
| D204                                                                | I <sub>PD_BOR</sub>  | Brown-out Reset<br>(BOR)                    | _    | 14     | 18    | 20     | μA    | 3.0V       |                              |
| D207                                                                | I <sub>PD_ADCA</sub> | ADC - Non-<br>converting                    | _    | 0.4    | 3     | 12     | μA    | 3.0V       | ADC not<br>converting<br>(4) |
| D208                                                                | I <sub>PD_CMP</sub>  | Comparator                                  | _    | 33     | 49    | 57     | μA    | 3.0V       |                              |

† - Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

#### Note:

- 1. The peripheral current is the sum of the base  $I_{DD}$  and the additional current consumed when this peripheral is enabled. The peripheral  $\Delta$  current can be determined by subtracting the base  $I_{DD}$  or  $I_{PD}$  current from this limit. Max. values should be used when calculating total current consumption.
- 2. The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode with all I/O pins in high-impedance state and tied to V<sub>SS</sub>.
- 3. All peripheral currents listed are on a per-peripheral basis if more than one instance of a peripheral is available.
- 4. ADC clock source is FRC.

#### 42.3.4 I/O Ports

#### Table 42-4.

| Standard Operating Conditions (unless otherwise stated) |                 |                                 |      |       |                      |       |                            |
|---------------------------------------------------------|-----------------|---------------------------------|------|-------|----------------------|-------|----------------------------|
| Param.<br>No.                                           | Sym.            | Device<br>Characteristics       | Min. | Тур.† | Max.                 | Units | Conditions                 |
| Input Low                                               | Voltage         |                                 |      |       |                      |       |                            |
|                                                         | V <sub>IL</sub> | I/O PORT:                       |      |       |                      |       |                            |
| D300                                                    |                 | with TTL buffer                 | _    |       | 0.8                  | V     | 4.5V≤V <sub>DD</sub> ≤5.5V |
| D301                                                    |                 | -                               | _    |       | 0.15 V <sub>DD</sub> | V     | 1.8V≤V <sub>DD</sub> ≤4.5V |
| D302                                                    | _               | with Schmitt     Trigger buffer | _    |       | 0.2 V <sub>DD</sub>  | V     | 2.0V≤V <sub>DD</sub> ≤5.5V |
| D303                                                    |                 | • with I <sup>2</sup> C levels  |      |       | 0.3 V <sub>DD</sub>  | V     |                            |
| D304                                                    |                 | • with SMBus levels             |      |       | 0.8                  | V     | 2.7V≤V <sub>DD</sub> ≤5.5V |

### **Electrical Specifications**

| Standard Operating Conditions (unless otherwise stated) |      |                           |      |      |      |       |            |
|---------------------------------------------------------|------|---------------------------|------|------|------|-------|------------|
| Param<br>No.                                            | Sym. | Device<br>Characteristics | Min. | Тур† | Max. | Units | Conditions |

- 1. Flash Memory Cell Endurance for the Flash memory is defined as: One Row Erase operation and one Self-Timed Write.
- 2. Required only if CONFIG4, bit LVP is disabled.
- 3. The MPLAB<sup>®</sup> ICD2 does not support variable V<sub>PP</sub> output. Circuitry to limit the ICD2 V<sub>PP</sub> voltage must be placed between the ICD2 and target system when programming or debugging with the ICD2.
- 4. Refer to the "PIC16(L)F184XX Memory Programming Specification" document for description.

#### **Related Links**

4.7.4 CONFIG4

#### 42.3.6 Thermal Characteristics

#### Table 42-6.

Standard Operating Conditions (unless otherwise stated) Operating temperature  $-40^{\circ}C \le TA \le +125^{\circ}C$ 

| Param No. | Sym.              | Characteristic                            | Тур. | Units | Conditions                                                                                                          |  |  |  |
|-----------|-------------------|-------------------------------------------|------|-------|---------------------------------------------------------------------------------------------------------------------|--|--|--|
|           | $\theta_{JA}$     |                                           |      | °C/W  | 28-pin SPDIP package                                                                                                |  |  |  |
| TU04      |                   | Thermal Resistance Junction to<br>Ambient | 74   | °C/W  | 28-pin SOIC package                                                                                                 |  |  |  |
| TH01      |                   |                                           | 67.1 | °C/W  | 28-pin SSOP package                                                                                                 |  |  |  |
|           |                   |                                           | _    | °C/W  | 28-pin VQFN 4x4 mm package                                                                                          |  |  |  |
|           | $\theta_{JC}$     |                                           |      | °C/W  | 28-pin SPDIP package                                                                                                |  |  |  |
| TH02      |                   | Thermal Resistance Junction to Case       | 19   | °C/W  | 28-pin SOIC package                                                                                                 |  |  |  |
| THUZ      |                   |                                           | 23.9 | °C/W  | 28-pin SSOP package                                                                                                 |  |  |  |
|           |                   |                                           | _    | °C/W  | 28-pin VQFN 4x4 mm package                                                                                          |  |  |  |
| TH03      | T <sub>JMAX</sub> | Maximum Junction Temperature              | _    | °C    | $T_{\text{JMAX}} = T_{\text{AMAX}} + (\text{PD}_{\text{MAX}} \times \theta_{\text{JA}})$ (2)                        |  |  |  |
| TH04      | PD                | Power Dissipation                         | _    | W     | PD = P <sub>INTERNAL</sub> +P <sub>I/O</sub>                                                                        |  |  |  |
| TH05      | PINTERNAL         | Internal Power Dissipation                | _    | W     | $P_{INTERNAL} = I_{DD} X V_{DD}^{(1)}$                                                                              |  |  |  |
| TH06      | P <sub>I/O</sub>  | I/O Power Dissipation                     | _    | W     | $ \begin{array}{l} P_{I/O} = \Sigma(I_{OL} ^* V_{OL}) + \Sigma(I_{OH} ^* (V_{DD} \text{-} \\ V_{OH})) \end{array} $ |  |  |  |
| TH07      | P <sub>DER</sub>  | Derated Power                             | _    | W     | $P_{DER} = PD_{MAX} (T_{J} - T_{A}) / \theta_{JA}^{(2)}$                                                            |  |  |  |
| NI - 4    |                   |                                           |      |       |                                                                                                                     |  |  |  |

#### Note:

1. I<sub>DD</sub> is current to run the chip alone without driving any load on the output pins.

2.  $T_A$  = Ambient Temperature,  $T_J$  = Junction Temperature.