

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	26
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18455-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. Devices Not Included In This Data Sheet

Device	Program Flash Memory (Words)	Program Flash Memory (Kbytes)	Data Memory (EEPROM) (bytes)	Data SRAM (bytes)	I/O'S ⁽²⁾	12-bit ADC ² (ch)	5-bit DAC	Comparators	CWG	Clock Ref	Timers (8/16-bit)	ССР	PWM	NCO	EUSART	MSSP (I ² C/SPI)	CLC	DSM	Sdd	XLP	PMD	Windowed Watchdog Timer	Memory Access Partition	Device Information Area	Debug ⁽¹⁾
PIC16(L)F18424	4096	7	256	512	12	11	1	2	2	1	4/4	4	2	1	1	1	4	1	Y	Υ	Y	Y	Y	Y	I
PIC16(L)F18425	8192	14	256	1024	12	11	1	2	2	1	4/4	4	2	1	1	2	4	1	Y	Y	Y	Υ	Y	Y	I
PIC16(L)F18426	16384	28	256	2048	12	11	1	2	2	1	4/4	4	2	1	1	2	4	1	Y	Y	Y	Y	Y	Υ	I
PIC16(L)F18444	4096	7	256	512	18	17	1	2	2	1	4/4	4	2	1	1	1	4	1	Y	Y	Y	Y	Y	Y	I
PIC16(L)F18445	8192	14	256	1024	18	17	1	2	2	1	4/4	4	2	1	1	2	4	1	Y	Y	Y	Y	Υ	Υ	Ι
	•••				-																				

Data Sheet Index:

- 1. DS40002000A, PIC16(L)F18424/44 Data Sheet, 14/20-Pin Full-Featured, Low Pin Count Microcontrollers with XLP
- DS40002002A, PIC16(L)F18425/45 Data Sheet, 14/20-Pin Full-Featured, Low Pin Count Microcontrollers with XLP
- DS40001985A, PIC16(L)F18426/46 Data Sheet, 14/20-Pin Full-Featured, Low Pin Count Microcontrollers with XLP

Packages

Packages	SPDIP	SOIC	SSOP	VQFN (4x4)
PIC16(L)F18455	•	•	•	•
PIC16(L)F18456	•	•	•	•

Note: Pin details are subject to change.

Important: For other small form-factor package availability and marking information, visit www.microchip.com/ packaging or contact your local sales office.

-0. 0 ar	oture/Compare/PWM Module	421
29.1	CCP Module Configuration	421
29.2	Capture Mode	422
29.3	Compare Mode	424
29.4	. PWM Overview	426
29.5	. Register Summary - CCP Control	431
29.6	Register Definitions: CCP Control	431
30. (PV	(M) Pulse-Width Modulation	. 436
30.1	Fundamental Operation	/37
30.2	PWM Output Polarity	437
30.2	PWM Period	437
30.4		/138
30.5	PWM Resolution	/38
30.6	Oneration in Sleen Mode	/30
30.7	Changes in System Clock Frequency	/30
30.7	Effects of Reset	/30
30.0	Sotup for DWM Operation using DW/My Output Dine	439
30.9	Setup for PWM Operation to Other Device Perinherals	439
20.1	Setup for PWW Operation to Other Device Peripherals	440
20.1	Register Summary - Registers Associated with P win Period	44 1
30.1		441
31. (CV	VG) Complementary Waveform Generator Module	444
31.1	Fundamental Operation	444
31.2		
01.2	. Operating Modes	444
31.3	. Operating Modes Start-up Considerations	444 456
31.3 31.4	Operating Modes Start-up Considerations Clock Source	444 456 456
31.3 31.4 31.5	 Operating Modes Start-up Considerations Clock Source Selectable Input Sources 	444 456 456 456
31.3 31.4 31.5 31.6	 Operating Modes Start-up Considerations Clock Source Selectable Input Sources Output Control 	444 456 456 456 457
31.3 31.4 31.5 31.6 31.7	 Operating Modes Start-up Considerations Clock Source Selectable Input Sources Output Control Dead-Band Control. 	444 456 456 456 457 457
31.3 31.4 31.5 31.6 31.7 31.8	 Operating Modes Start-up Considerations Clock Source Selectable Input Sources Output Control Dead-Band Control Rising Edge and Reverse Dead Band. 	444 456 456 456 457 457 457
31.2 31.3 31.4 31.5 31.6 31.7 31.8 31.9	 Operating Modes Start-up Considerations Clock Source Selectable Input Sources Output Control Dead-Band Control Rising Edge and Reverse Dead Band Falling Edge and Forward Dead Band. 	444 456 456 456 457 457 457 458
31.2 31.3 31.4 31.5 31.6 31.7 31.8 31.9 31.1	 Operating Modes Start-up Considerations Clock Source Selectable Input Sources Output Control Dead-Band Control Rising Edge and Reverse Dead Band Falling Edge and Forward Dead Band Dead-Band Jitter. 	444 456 456 456 457 457 457 458 459
31.2 31.3 31.4 31.5 31.6 31.7 31.8 31.9 31.1 31.1	 Operating Modes Start-up Considerations Clock Source Selectable Input Sources Output Control Dead-Band Control Rising Edge and Reverse Dead Band Falling Edge and Forward Dead Band Dead-Band Jitter Auto-Shutdown. 	444 456 456 457 457 457 457 458 459 459 459
31.3 31.4 31.5 31.6 31.7 31.8 31.9 31.1 31.1 31.1 31.1	 Operating Modes	444 456 456 457 457 457 457 459 459 459 459 459
31.2 31.3 31.4 31.5 31.6 31.7 31.8 31.9 31.1 31.1 31.1 31.1 31.1	 Operating Modes	444 456 456 457 457 457 457 459 459 459 452 462
31.2 31.3 31.4 31.5 31.6 31.7 31.8 31.9 31.1 31.1 31.1 31.1 31.1 31.1	 Operating Modes	444 456 456 457 457 457 457 458 459 459 462 462 464
31.2 31.3 31.4 31.5 31.6 31.7 31.8 31.9 31.1 31.1 31.1 31.1 31.1 31.1 31.1	 Operating Modes	444 456 456 457 457 457 457 459 459 462 462 464
31.2 31.3 31.4 31.5 31.6 31.7 31.8 31.9 31.1 31.1 31.1 31.1 31.1 31.1	 Operating Modes	444 456 456 457 457 457 457 457 459 459 462 462 464 464
31.3 31.4 31.5 31.6 31.7 31.8 31.9 31.1 31.1 31.1 31.1 31.1 31.1 31.1	 Operating Modes	444 456 456 457 457 457 457 459 459 462 462 464 464 475
31.2 31.3 31.4 31.5 31.6 31.7 31.8 31.9 31.1 31.1 31.1 31.1 31.1 31.1 31.1	 Operating Modes	444 456 457 457 457 457 457 459 459 462 462 464 464 475 476
31.2 31.3 31.4 31.5 31.6 31.7 31.8 31.9 31.1 31.1 31.1 31.1 31.1 31.1 31.1	 Operating Modes	444 456 456 457 457 457 457 458 459 462 462 462 464 464 475 476 476
31.2 31.3 31.4 31.5 31.6 31.7 31.8 31.9 31.1 31.1 31.1 31.1 31.1 31.1 31.1	 Operating Modes	444 456 456 457 457 457 457 458 459 459 462 462 464 464 475 476 476 477
31.3 31.4 31.5 31.6 31.7 31.8 31.9 31.1 31.1 31.1 31.1 31.1 31.1 31.1	 Operating Modes	444 456 456 457 457 457 457 459 459 462 462 464 464 464 475 476 477 479
31.2 31.3 31.4 31.5 31.6 31.7 31.8 31.9 31.1 31.1 31.1 31.1 31.1 31.1 31.1	Operating Modes. Start-up Considerations. Clock Source. Selectable Input Sources. Output Control. Dead-Band Control. Rising Edge and Reverse Dead Band. Falling Edge and Forward Dead Band. 0. Dead-Band Jitter. 1. Auto-Shutdown. 2. Operation During Sleep. 3. Configuring the CWG. 4. Register Summary - CWG Control. 5. Register Definitions: CWG Control. 5. Register Definitions: CWG Control. 6. DSM Operation. Modulator Signal Sources. Carrier Signal Sources. Carrier Synchronization. Carrier Source Polarity Select.	444 456 456 457 457 457 457 458 459 462 462 462 464 464 475 476 476 479 481
31.3 31.4 31.5 31.6 31.7 31.8 31.9 31.1 31.1 31.1 31.1 31.1 31.1 32. (DS 32.1 32.2 32.3 32.4 32.5 32.6	Operating Modes. Start-up Considerations. Clock Source. Selectable Input Sources. Output Control. Dead-Band Control. Rising Edge and Reverse Dead Band. Falling Edge and Forward Dead Band. 0 Dead-Band Jitter. 1. Auto-Shutdown. 2. Operation During Sleep. 3. Configuring the CWG. 4. Register Summary - CWG Control. 5. Register Definitions: CWG Control. M) Data Signal Modulator Module. Modulator Signal Sources. Carrier Signal Sources. Carrier Synchronization. Carrier Source Polarity Select. Programmable Modulator Data.	444 456 456 457 457 457 457 459 459 462 462 464 464 464 475 476 476 476 476 479 481 481

- 1. R1 ≤ 10 k Ω is recommended. A suggested starting value is 10 k Ω . Ensure that the MCLR pin V_{IH} and V_{IL} specifications are met.
- R2 ≤ 470Ω will limit any current flowing into MCLR from the extended capacitor, C1, in the event of MCLR pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the MCLR pin V_{IH} and V_{IL} specifications are met.

2.4 In-Circuit Serial Programming[™] ICSP[™] Pins

The ICSPCLK and ICSPDAT pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100 Ω .

Pull-up resistors, series diodes and capacitors on the ICSPCLK and ICSPDAT pins are not recommended as they can interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin input voltage high (V_{IH}) and input low (V_{IL}) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., ICSPCLK/ICSPDAT pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/ emulator tool.

For more information on available Microchip development tools connection requirements, refer to the *"Development Support"* section.

Related Links

41. Development Support

2.5 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator.

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in the following figure. In-line packages may be handled with a singlesided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

7.8.12 STKPTR

Name:STKPTRAddress:0x1FED

Stack Pointer Register

Bit	7	6	5	4	3	2	1	0
						STKPTR[4:0]		
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bits 4:0 - STKPTR[4:0] Stack Pointer Location bits

9.6.4 OSCSTAT

Name:	OSCSTAT
Address:	0x890

Oscillator Status Register 1

Bit	7	6	5	4	3	2	1	0
	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR		PLLR
Access	RO	RO	RO	RO	RO	RO		RO
Reset	q	q	q	q	q	q		q

Bit 7 - EXTOR EXTOSC (external) Oscillator Ready bit

Value	Description
1	The oscillator is ready to be used
0	The oscillator is not enabled, or is not yet ready to be used

Bit 6 - HFOR HFINTOSC Oscillator Ready bit

Value	Description
1	The oscillator is ready to be used
0	The oscillator is not enabled, or is not yet ready to be used

Bit 5 - MFOR MFINTOSC Oscillator Ready bit

Value	Description
1	The oscillator is ready to be used
0	The oscillator is not enabled, or is not yet ready to be used

Bit 4 - LFOR LFINTOSC Oscillator Ready bit

Value	Description
1	The oscillator is ready to be used
0	The oscillator is not enabled, or is not yet ready to be used

Bit 3 – SOR Secondary (Timer1) Oscillator Ready bit

Value	Description
1	The oscillator is ready to be used
0	The oscillator is not enabled, or is not yet ready to be used

Bit 2 - ADOR ADC Oscillator Ready bit

Value	Description
1	The oscillator is ready to be used
0	The oscillator is not enabled, or is not yet ready to be used

Bit 0 - PLLR PLL Ready bit

10.7.18 PIR7

Name:PIR7Address:0x713

Peripheral Interrupt Request (Flag) Register 7

Bit	7	6	5	4	3	2	1	0
			NVMIF	NCO1IF		CWG3IF	CWG2IF	CWG1IF
Access			R/W/HS	R/W/HS		R/W/HS	R/W/HS	R/W/HS
Reset			0	0		0	0	0

Bit 5 – NVMIF NVM Interrupt Flag bit

Value	Description
1	The requested NVM operation has completed
0	NVM interrupt not asserted

Bit 4 – NCO1IF Numerically Controlled Oscillator (NCO) Interrupt Flag bit

Value	Description
1	The NCO has rolled over
0	No NCO interrupt event has occurred

Bit 2 – CWG3IF CWG3 Interrupt Flag bit

Value	Description
1	CWG3 has gone into shutdown
0	CWG3 is operating normally, or interrupt cleared

Bit 1 – CWG2IF CWG2 Interrupt Flag bit

Value	Description
1	CWG2 has gone into shutdown
0	CWG2 is operating normally, or interrupt cleared

Bit 0 – CWG1IF CWG1 Interrupt Flag bit

Value	Description
1	CWG1 has gone into shutdown
0	CWG1 is operating normally, or interrupt cleared

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON appropriate interrupt flag bits are clear prior to enabling an interrupt.

12.8.1 WDTCON0

Name: WDTCON0 Address: 0x80C

Watchdog Timer Control Register 0

Bit	7	6	5	4	3	2	1	0
					WDTPS[4:0]			SEN
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			q	q	q	q	q	0

Bits 5:1 – WDTPS[4:0] Watchdog Timer Prescale Select bits⁽¹⁾ Bit Value = Prescale Rate

Value	Description
11111	Reserved. Results in minimum interval (1 ms)
to	
10011	
10010	1:8388608 (2 ²³) (Interval 256s nominal)
10001	1:4194304 (2 ²²) (Interval 128s nominal)
10000	1:2097152 (2 ²¹) (Interval 64s nominal)
01111	1:1048576 (2 ²⁰) (Interval 32s nominal)
01110	1:524288 (2 ¹⁹) (Interval 16s nominal)
01101	1:262144 (2 ¹⁸) (Interval 8s nominal)
01100	1:131072 (2 ¹⁷) (Interval 4s nominal)
01011	1:65536 (Interval 2s nominal) (Reset value)
01010	1:32768 (Interval 1s nominal)
01001	1:16384 (Interval 512 ms nominal)
01000	1:8192 (Interval 256 ms nominal)
00111	1:4096 (Interval 128 ms nominal)
00110	1:2048 (Interval 64 ms nominal)
00101	1:1024 (Interval 32 ms nominal)
00100	1:512 (Interval 16 ms nominal)
00011	1:256 (Interval 8 ms nominal)
00010	1:128 (Interval 4 ms nominal)
00001	1:64 (Interval 2 ms nominal)
00000	1:32 (Interval 1 ms nominal)

Bit 0 - SEN Software Enable/Disable for Watchdog Timer bit

Value	Condition	Description
-	If WDTE = 1x	This bit is ignored
1	If WDTE = 01	WDT is turned on
0	If WDTE = 01	WDT is turned off
-	If WDTE = 00	This bit is ignored

Note:

1. Times are approximate. WDT time is based on 31 kHz LFINTOSC.

PIC16(L)F18455/56

I/O Ports

Address	Name	Bit Pos.					
0x1F67							
0x1F68	INLVLE	7:0			INLVLE3		

14.7 Register Definitions: Port Control

22.8 Register Summary - NCO

Address	Name	Bit Pos.									
0x058C		7:0		ACCL[7:0]							
	NCO1ACC	15:8				ACC	H[7:0]				
		23:16						ACC	U[3:0]		
	NCO1INC	7:0				INCL	_[7:0]				
0x058F		15:8				INC	H[7:0]				
		23:16						INCL	J[3:0]		
0x0592	NCO1CON	7:0	EN		OUT	POL				PFM	
0x0593	NCO1CLK	7:0	PWS[2:0] CKS[3:0]								

22.9 Register Definitions: NCO

Long bit name prefixes for the NCO peripherals are shown in the table below. Refer to the "Long Bit Names Section" for more information.

Table 22-2. NCO Long Bit Name Prefixes

Peripheral	Bit Name Prefix
NCO	NCO

Related Links

1.4.2.2 Long Bit Names

23.8 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in Comparator Specifications and Fixed Voltage Reference (FVR) Specifications for more details.

Related Links

42.4.9 Comparator Specifications42.4.11 Fixed Voltage Reference (FVR) Specifications

23.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 23-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to V_{DD} and V_{SS} . The analog input, therefore, must be between V_{SS} and V_{DD} . If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

Note:

- 1. When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
- 2. Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

Figure 23-3. Analog Input Model

Note: See *Electrical Specifications* chapter.

Related Links

42. Electrical Specifications

27.5 Operating Modes

The mode of the timer is controlled by the MODE bits of the T2HLT register. Edge-Triggered modes require six Timer clock periods between external triggers. Level-Triggered modes require the triggering level to be at least three Timer clock periods long. External triggers are ignored while in Debug mode.

Mada	MODE<4:0>		Output	Oneration	Timer Control			
wode	<4:3>	<2:0>	Operation	Operation	Start	Reset	Stop	
		000		Software gate (Figure 27-3)		—	ON = 0	
		001	Period Pulse	Hardware gate, active- high (Figure 27-4)	ON = 1 and TMRx_ers = 1	_	ON = 0 or TMRx_ers = 0	
		010		Hardware gate, active- low	ON = 1 and TMRx_ers = 0		ON = 0 or TMRx_ers = 1	
Free Running Period	00	011		Rising or falling edge Reset		TMRx_ers ↓		
		100	Period Pulse with Hardware Reset	Rising edge Reset (Figure 27-5)		TMRx_ers ↑	ON = 0	
		101		Falling edge Reset	ON = 1	TMRx_ers ↓		
		110		Low level Reset		TMRx_ers = 0	ON = 0 or TMRx_ers = 0	
		111		High level Reset (Figure 27-6)		TMRx_ers = 1	ON = 0 or TMRx_ers = 1	
		000	One-shot	Software start (Figure 27-7)	ON = 1	—		
One-shot	01	001	Edge	Rising edge start (Figure 27-8)	ON = 1 and TMRx_ers ↑	_	ON = 0 or Next clock after	
		010	Start	Falling edge start	ON = 1 and TMRx_ers ↓	_	TMRx = PRx (Note 2)	
		011	(Any edge start	ON = 1 and TMRx_ers			

Table 27-3. Operating Modes Table

PIC16(L)F18455/56 Timer2 Module

Figure 27-9. Edge-Triggered Hardware Limit One-Shot Mode Timing Diagram (MODE = 01100)

Note:

1. BSF and BCF represent Bit-Set File and Bit-Clear File instructions executed by the CPU to set or clear the ON bit of TxCON. CPU execution is asynchronous to the timer clock input.

Related Links

29.4 PWM Overview30. (PWM) Pulse-Width Modulation

27.6.8 Level Reset, Edge-Triggered Hardware Limit One-Shot Modes

In Level -Triggered One-Shot mode the timer count is reset on the external signal level and starts counting on the rising/falling edge of the transition from Reset level to the active level while the ON bit is set. Reset levels are selected as follows:

- Low Reset level (MODE<4:0> = 01110)
- High Reset level (MODE<4:0> = 01111)

When the timer count matches the PRx period count, the timer is reset and the ON bit is cleared. When the ON bit is cleared by either a PRx match or by software control, a new external signal edge is required after the ON bit is set to start the counter.

When Level-Triggered Reset One-Shot mode is used in conjunction with the CCP PWM operation, the PWM drive goes active with the external signal edge that starts the timer. The PWM drive goes inactive when the timer count equals the CCPRx pulse width count. The PWM drive does not go active when the timer count clears at the PRx period count match.

35.4.2 Arbitration

Each master device must monitor the bus for Start and Stop bits. If the device detects that the bus is busy, it cannot begin a new message until the bus returns to an Idle state.

However, two master devices may try to initiate a transmission on or about the same time. When this occurs, the process of arbitration begins. Each transmitter checks the level of the SDA data line and compares it to the level that it expects to find. The first transmitter to observe that the two levels do not match, loses arbitration, and must stop transmitting on the SDA line.

For example, if one transmitter holds the SDA line to a logical one (lets it float) and a second transmitter holds it to a logical zero (pulls it low), the result is that the SDA line will be low. The first transmitter then observes that the level of the line is different than expected and concludes that another transmitter is communicating.

The first transmitter to notice this difference is the one that loses arbitration and must stop driving the SDA line. If this transmitter is also a master device, it also must stop driving the SCL line. It then can monitor the lines for a Stop condition before trying to reissue its transmission. In the meantime, the other device that has not noticed any difference between the expected and actual levels on the SDA line continues with its original transmission. It can do so without any complications, because so far, the transmission appears exactly as expected with no other transmitter disturbing the message.

Slave Transmit mode can also be arbitrated, when a master addresses multiple slaves, but this is less common.

If two master devices are sending a message to two different slave devices at the address stage, the master sending the lower slave address always wins arbitration. When two master devices send messages to the same slave address, and addresses can sometimes refer to multiple slaves, the arbitration process must continue into the data stage.

Arbitration usually occurs very rarely, but it is a necessary process for proper multi-master support.

35.4.3 Byte Format

All communication in I²C is done in 9-bit segments. A byte is sent from a master to a slave or vice-versa, followed by an Acknowledge bit sent back. After the eighth falling edge of the SCL line, the device outputting data on the SDA changes that pin to an input and reads in an acknowledge value on the next clock pulse.

The clock signal, SCL, is provided by the master. Data is valid to change while the SCL signal is low, and sampled on the rising edge of the clock. Changes on the SDA line while the SCL line is high define special conditions on the bus, explained below.

35.4.4 Definition of I²C Terminology

There is language and terminology in the description of I^2C communication that have definitions specific to I^2C . That word usage is defined below and may be used in the rest of this document without explanation. This table was adapted from the Philips I^2C specification.

TERM	Description
Transmitter	The device which shifts data out onto the bus.
Receiver	The device which shifts data in from the bus.
Master	The device that initiates a transfer, generates clock signals and terminates a transfer.

PIC16(L)F18455/56

(MSSP) Master Synchronous Serial Port Module

© 2018 Microchip Technology Inc.

36. (EUSART) Enhanced Universal Synchronous Asynchronous Receiver Transmitter

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The EUSART module includes the following capabilities:

- Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- Programmable 8-bit or 9-bit character length
- Address detection in 9-bit mode
- Input buffer overrun error detection
- Received character framing error detection
- Half-duplex synchronous master
- Half-duplex synchronous slave
- Programmable clock polarity in Synchronous modes
- Sleep operation

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:

- Automatic detection and calibration of the baud rate
- Wake-up on Break reception
- 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 36-1 and Figure 36-2.

The operation of the EUSART module consists of six registers:

- Transmit Status and Control (36.6.2 TXxSTA)
- Receive Status and Control (36.6.1 RCxSTA)
- Baud Rate Control (36.6.3 BAUDxCON)
- Baud Rate Value (36.6.4 SPxBRG)
- Receive Data Register (36.6.5 RCxREG)
- Transmit Data Register (36.6.6 TXxREG)

The RXx/DTx and TXx/CKx input pins are selected with the RXxPPS and TXxPPS registers, respectively. TXx, CKx, and DTx output pins are selected with each pin's RxyPPS register. Since the RX input is coupled with the DT output in Synchronous mode, it is the user's responsibility to select the same pin for both of these functions when operating in Synchronous mode. The EUSART control logic will control the data direction drivers automatically.

36.5 Register Summary - EUSART

Address	Name	Bit Pos.								
0x0119	RC1REG	7:0				RCRE	G[7:0]			
0x011A	TX1REG	7:0				TXRE	G[7:0]			
0.0110	SD4000	7:0				SPBR	GL[7:0]			
UXUTID	SPIDKG	15:8				SPBR	GH[7:0]			
0x011D	RC1STA	7:0	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
0x011E	TX1STA	7:0	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
0x011F	BAUD1CON	7:0	ABDOVF	RCIDL		SCKP	BRG16		WUE	ABDEN
0x0120										
	Reserved									
0x0A18										
0x0A19	RC2REG	7:0		RCREG[7:0]						
0x0A1A	TX2REG	7:0		TXREG[7:0]						
0.0410	SDODDO	7:0		SPBRGL[7:0]						
UXUAID	SPZDRG	15:8				SPBR	GH[7:0]			
0x0A1D	RC2STA	7:0	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
0x0A1E	TX2STA	7:0	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
0x0A1F	BAUD2CON	7:0	ABDOVF	RCIDL		SCKP	BRG16		WUE	ABDEN

36.6 Register Definitions: EUSART Control

37.3.3 SMTxSTAT

Name:	SMTxSTAT
Address:	0x49A,0x51A

SMT Status Register

Bit	7	6	5	4	3	2	1	0
	CPRUP	CPWUP		RST		TS	WS	AS
Access	R/W/HC	R/W/HC		R/W		RO	RO	RO
Reset	0	0		0		0	0	0

Bit 7 – CPRUP SMT Manual Period Buffer Update bit

Value	Description
1	Request update to SMTxCPR registers
0	SMTxCPR registers update is complete

Bit 6 – CPWUP SMT Manual Pulse Width Buffer Update bit

Value	Description
1	Request update to SMTxCPW registers
0	SMTxCPW registers update is complete

Bit 4 - RST SMT Manual Timer Reset bit

Value	Description
1	Request Reset to SMTxTMR registers
0	SMTxTMR registers update is complete

Bit 2 – TS SMT GO Value Status bit

Value	Description
1	SMTxTMR is incrementing
0	SMTxTMR is not incrementing

Bit 1 – WS SMT Window Status bit

Value	Description
1	SMT window is open
0	SMT window is closed

Bit 0 – AS SMT Signal Value Status bit

Value	Description
1	SMT acquisition is in progress
0	SMT acquisition is not in progress

37.3.5 SMTxWIN

Name:SMTxWINAddress:0x49D,0x51D

SMT Window Input Select Register

Bit	7	6	5	4	3	2	1	0
				WSEL[4:0]				
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bits 4:0 – WSEL[4:0] SMT Window Selection bits

Table 37-6. SMT Window Selection

WSEL<4:0>	SMT1 Window Source	SMT2 Window Source		
11111-11001	Reserved	Reserved		
11000	CCP5OUT	CCP5OUT		
10111	NCO10UT	NCO10UT		
10110	SMT2_overflow	SMT1_overflow		
10101	CLKREFOUT	CLKREFOUT		
10100	CLC4OUT	CLC4OUT		
10011	CLC3OUT	CLC3OUT		
10010	CLC2OUT	CLC2OUT		
10001	CLC10UT	CLC10UT		
10000	ZCDOUT	ZCDOUT		
01111	C2OUT	C2OUT		
01110	C1OUT	C1OUT		
01101	PWM7OUT	PWM7OUT		
01100	PWM6OUT	PWM6OUT		
01011	CCP4OUT	CCP4OUT		
01010	CCP3OUT	CCP3OUT		
01001	CCP2OUT	CCP2OUT		
01000	CCP1OUT	CCP1OUT		
00111	TMR6_postscaled_out	TMR6_postscaled_out		
00110	TMR4_postscaled_out	TMR4_postscaled_out		
00101	TMR2_postscaled_out	TMR2_postscaled_out		
00100	TMR0_overflow	TMR0_overflow		

PIC16(L)F18455/56

(SMT) Signal Measurement Timer

WSEL<4:0>	SMT1 Window Source	SMT2 Window Source
00011	SOSC	SOSC
00010	MFINTOSC (31.25kHz)	MFINTOSC (31.25kHz)
00001	LFINTOSC (31.25kHz)	LFINTOSC (31.25kHz)
00000	Pin Selected by SMT1WINPPS	Pin Selected by SMT1WINPPS

42.4 AC Characteristics

Figure 42-4. Load Conditions

Legend: CL=50 pF for all pins

42.4.1 External Clock/Oscillator Timing Requirements Figure 42-5. Clock Timing

Note: See table below.

Table 42-7.

Standard Operating Conditions (unless otherwise stated)							
Param No.	Sym.	Characteristic	Min.	Тур. †	Max.	Units	Conditions
ECL Oscillator							
OS1	F _{ECL}	Clock Frequency		—	500	kHz	
OS2	T _{ECL_DC}	Clock Duty Cycle	40		60	%	
ECM Oscillator							
OS3	F _{ECM}	Clock Frequency			4	MHz	
OS4	T _{ECM_DC}	Clock Duty Cycle	40		60	%	
ECH Oscillator							
OS5	F _{ECH}	Clock Frequency			32	MHz	
OS6	T _{ECH_DC}	Clock Duty Cycle	40		60	%	
LP Oscillator							
OS7	F _{LP}	Clock Frequency			100	kHz	Note 4