

Welcome to E-XFL.COM

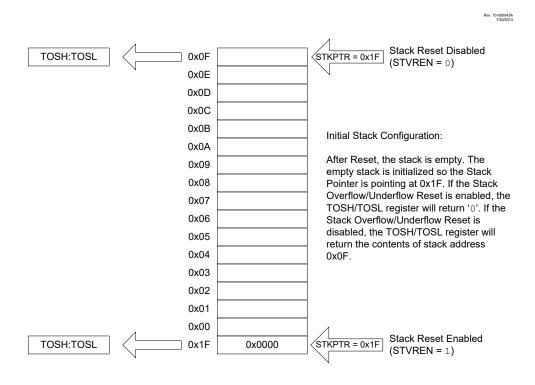
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2000	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	26
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18455-i-ss


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

memory left at any given time. The STKPTR always points at the currently used place on the stack. Therefore, a CALL or CALLW will increment the STKPTR and then write the PC, and a return will unload the PC value from the stack and then decrement the STKPTR.

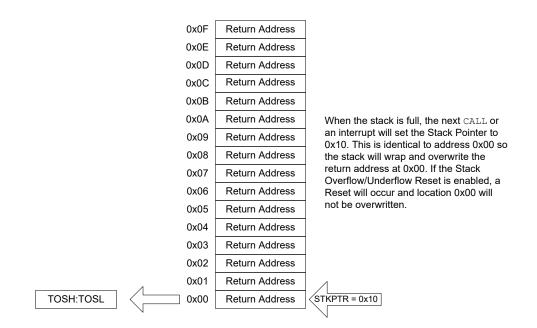

Reference the following figures for examples of accessing the stack.

Figure 7-4. Accessing the Stack Example 1

Figure 7-7. Accessing the Stack Example 4

Rev. 10-000043D 7/30/2013

Related Links

7.8.11 TOS

7.5.2 Overflow/Underflow Reset

If the STVREN bit in Configuration Word 2 is programmed to '1', the device will be Reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

Related Links

4.7.2 CONFIG2

7.6 Indirect Addressing

The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.

The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions:

- Traditional/Banked Data Memory
- Linear Data Memory
- Program Flash Memory

7.10.1 STATUS_SHAD

Name: STATUS_SHAD Address: 0x1FE4

Shadow of Status Register

Bit	7	6	5	4	3	2	1	0
				TO	PD	Z	DC	С
Access				RO	RO	R/W	R/W	R/W
Reset				х	х	х	х	x

Bit 4 – TO Time-Out bit

Reset States: POR/BOR = x

All Other Resets = u

Value	Description
1	Set at power-up or by execution of CLRWDT or SLEEP instruction
0	A WDT time-out occurred

Bit 3 – PD Power-Down bit

Reset States: POR/BOR = x

All Other Resets = u

Value	Description
1	Set at power-up or by execution of CLRWDT instruction
0	Cleared by execution of the SLEEP instruction

Bit 2 – Z Zero bit

Reset States: POR/BOR = x All Other Resets = u

Value	Description
1	The result of an arithmetic or logic operation is zero
0	The result of an arithmetic or logic operation is not zero

Bit 1 – DC Digit Carry/Borrow bit⁽¹⁾

ADDWF, ADDLW, SUBLW, SUBWF instructions

Reset States: POR/BOR = x

All Other Resets = u

Value	Description
1	A carry-out from the 4th low-order bit of the result occurred
0	No carry-out from the 4th low-order bit of the result

Bit 0 – C Carry/Borrow bit⁽¹⁾

ADDWF, ADDLW, SUBLW, SUBWF instructions

Reset States: POR/BOR = x

All Other Resets = u

10.7.17 PIR6

Name: PIR6 Address: 0x712

PIR6 Peripheral Interrupt Request (Flag) Register 6

Bit	7	6	5	4	3	2	1	0
				CCP5IF	CCP4IF	CCP3IF	CCP2IF	CCP1IF
Access				R/W/HS	R/W/HS	R/W/HS	R/W/HS	R/W/HS
Reset				0	0	0	0	0

Bit 4 – CCP5IF CCP5 Interrupt Flag bit

Value	Condition	Description
1	Capture mode	Capture occurred (must be cleared in software)
0	Capture mode	Capture did not occur
1	Compare mode	Compare match occurred (must be cleared in software)
0	Compare mode	Compare match did not occur
1	PWM mode	Output trailing edge occurred (must be cleared in software)
0	PWM mode	Output trailing edge did not occur

Bit 3 – CCP4IF CCP4 Interrupt Flag bit

Value	Condition	Description
1	Capture mode	Capture occurred (must be cleared in software)
0	Capture mode	Capture did not occur
1	Compare mode	Compare match occurred (must be cleared in software)
0	Compare mode	Compare match did not occur
1	PWM mode	Output trailing edge occurred (must be cleared in software)
0	PWM mode	Output trailing edge did not occur

Bit 2 – CCP3IF CCP3 Interrupt Flag bit

Value	Condition	Description
1	Capture mode	Capture occurred (must be cleared in software)
0	Capture mode	Capture did not occur
1	Compare mode	Compare match occurred (must be cleared in software)
0	Compare mode	Compare match did not occur
1	PWM mode	Output trailing edge occurred (must be cleared in software)
0	PWM mode	Output trailing edge did not occur

Bit 1 – CCP2IF CCP2 Interrupt Flag bit

Value	Condition	Description
1	Capture mode	Capture occurred (must be cleared in software)
0	Capture mode	Capture did not occur
1	Compare mode	Compare match occurred (must be cleared in software)
0	Compare mode	Compare match did not occur

12.8.3 WDTPSH

Name:WDTPSHAddress:0x80F

WWDT Prescale Select High Register (Read-Only)

Bit	7	6	5	4	3	2	1	0
	PSCNTH[7:0]							
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0

Bits 7:0 – PSCNTH[7:0] Prescale Select High Byte bits⁽¹⁾

Note:

1. The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

14.7.3 PORTC

Name:	PORTC
Address:	0x00E

PORTC Register

Bit	7	6	5	4	3	2	1	0
	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
Access	R/W							
Reset	x	x	x	x	x	x	x	x

Bits 0, 1, 2, 3, 4, 5, 6, 7 – RCn Port I/O Value bits Reset States: POR/BOR = xxxxxxx

All Other Resets = uuuuuuuu

Value	Description
1	Port pin is $\geq V_{IH}$
0	Port pin is $\leq V_{IL}$

Note: Writes to PORTC are actually written to the corresponding LATC register.

Reads from PORTC register return actual I/O pin values.

23.15.4 CMxPCH

Name:	CMxPCH
Address:	0x993,0x997

Comparator x Non-Inverting Channel Select Register

	РСН			Ро	sitive Input S	ource		
	111	CxV _P cc	CxV_P connects to V_{SS}					
	110	CxV _P cc	onnects to FVF	R Buffer 2				
	101	CxV _P cc	onnects to DA	C1 output				
	100	CxV _P no	ot connected					
	011	CxV _P no	ot connected					
	010	CxV _P no	CxV _P not connected					
	001	CxV _P co	CxV _P connects to CxIN1+ pin					
	000	CxV _P co	CxV _P connects to CxIN0+ pin					
Bit	7	6	6 5 4 3 2 1 0					
		-	PCH[2:0]					
Access			R/W R/W R/W					
Reset						0	0	0

Bits 2:0 - PCH[2:0] Comparator Non-Inverting Input Channel Select bits

26.11 CCP Special Event Trigger

When any of the CCPs are configured to trigger a special event, the trigger will clear the TMRxH:TMRxL register pair. This special event does not cause a Timer1 interrupt. The CCP module may still be configured to generate a CCP interrupt.

In this mode of operation, the CCPRxH:CCPRxL register pair becomes the period register for Timer1.

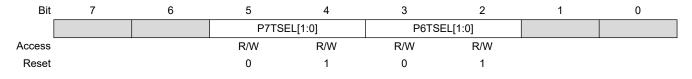
Timer1 should be synchronized and F_{OSC}/4 should be selected as the clock source in order to utilize the special event trigger. Asynchronous operation of Timer1 can cause a special event trigger to be missed.

In the event that a write to TMRxH or TMRxL coincides with a special event trigger from the CCP, the write will take precedence.

26.12 Peripheral Module Disable

When a peripheral is not used or inactive, the module can be disabled by setting the Module Disable bit in the PMD registers. This will reduce power consumption to an absolute minimum. Setting the PMD bits holds the module in Reset and disconnects the module's clock source. The Module Disable bits for Timer1 (TMR1MD) are in the PMD1 register. See Peripheral Module Disable (PMD) chapter for more information.

Related Links


16.4 Register Summary - PMD

7. When TxTMR = TxPR, the next clock clears TxTMR, regardless of the operating mode.

28.2.2 CCPTMRS1

Name:	CCPTMRS1
Address:	0x21F

CCP Timers Control Register

Bits 2:3, 4:5 - PxTSEL PWMx Timer Selection bits

Value	Description
11	PWMx based on TMR6
10	PWMx based on TMR4
01	PWMx based on TMR2
00	Reserved

31.15.6 CWGxAS0

Name:	CWGxAS0
Address:	0x612,0x61C,0x692

CWG Auto-Shutdown Control Register 0

Bit	7	6	5	4	3	2	1	0
	SHUTDOWN	REN	LSBE	D[1:0]	LSAC	C[1:0]		
Access	R/W/HS/HC	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	1	0	1		

Bit 7 – SHUTDOWN Auto-Shutdown Event Status bit^(1,2)

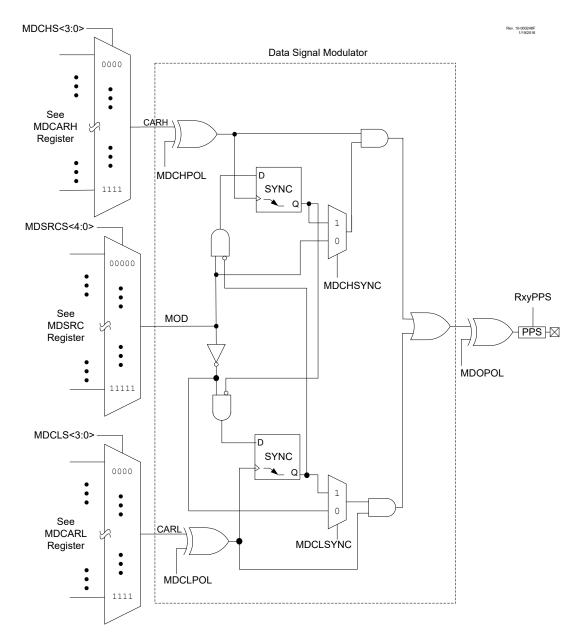
Value	Description
1	An auto-shutdown state is in effect
0	No auto-shutdown event has occurred

Bit 6 – REN Auto-Restart Enable bit

Value	Description
1	Auto-restart is enabled
0	Auto-restart is disabled

Bits 5:4 – LSBD[1:0] CWGxB and CWGxD Auto-Shutdown State Control bits

Value	Description
11	A logic '1' is placed on CWGxB/D when an auto-shutdown event occurs.
10	A logic '0' is placed on CWGxB/D when an auto-shutdown event occurs.
01	Pin is tri-stated on CWGxB/D when an auto-shutdown event occurs.
00	The inactive state of the pin, including polarity, is placed on CWGxB/D after the required
	dead-band interval when an auto-shutdown event occurs.


Bits 3:2 - LSAC[1:0] CWGxA and CWGxC Auto-Shutdown State Control bits

Value	Description
11	A logic '1' is placed on CWGxA/C when an auto-shutdown event occurs.
10	A logic '0' is placed on CWGxA/C when an auto-shutdown event occurs.
01	Pin is tri-stated on CWGxA/C when an auto-shutdown event occurs.
00	The inactive state of the pin, including polarity, is placed on CWGxA/C after the required
	dead-band interval when an auto-shutdown event occurs.

Note:

- 1. This bit may be written while EN = 0 (31.15.1 CWGxCON0), to place the outputs into the shutdown configuration.
- 2. The outputs will remain in auto-shutdown state until the next rising edge of the CWG data input after this bit is cleared.

PIC16(L)F18455/56 (DSM) Data Signal Modulator Module

Figure 32-1. Simplified Block Diagram of the Data Signal Modulator

32.1 DSM Operation

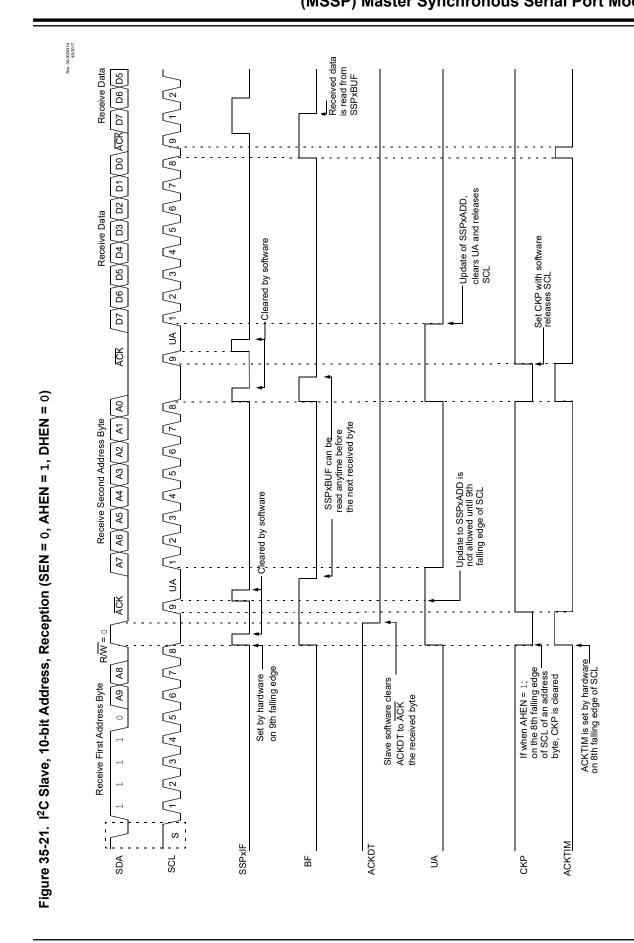
The DSM module can be enabled by setting the EN bit in the MDCON0 register. Clearing the EN bit, disables the output of the module but retain the carrier and source signal selections. The module will resume operation when the EN bit is set again. The output of the DSM module can be rerouted to several pins using the RxyPPS register. When the EN bit is cleared the output pin is held low.

32.2 Modulator Signal Sources

The modulator signal can be supplied from the following sources selected with the SRCS bits:

• Gate 4: CLCxSEL3

Register number suffixes are different than the gate numbers because other variations of this module have multiple gate selections in the same register.


Data gating is indicated in the right side of Figure 33-2. Only one gate is shown in detail. The remaining three gates are configured identically with the exception that the data enables correspond to the enables for that gate.

33.1.3 Logic Function

There are eight available logic functions including:

- AND-OR
- OR-XOR
- AND
- S-R Latch
- D Flip-Flop with Set and Reset
- D Flip-Flop with Reset
- J-K Flip-Flop with Reset
- Transparent Latch with Set and Reset

Logic functions are shown in the following diagram. Each logic function has four inputs and one output. The four inputs are the four data gate outputs of the previous stage. The output is fed to the inversion stage and from there to other peripherals, an output pin, and back to the CLC itself.

PIC16(L)F18455/56 (MSSP) Master Synchronous Serial Port Module

© 2018 Microchip Technology Inc.

and counts down to zero. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 35-38). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 35-39).

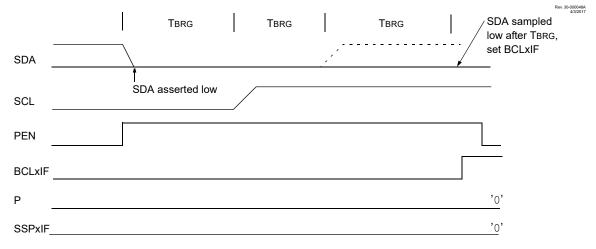
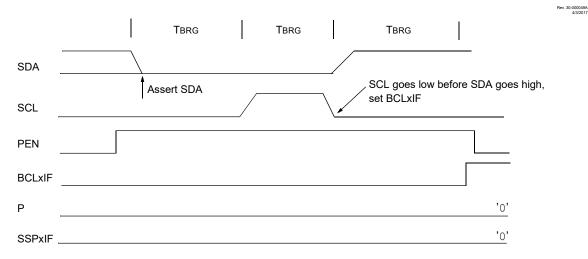



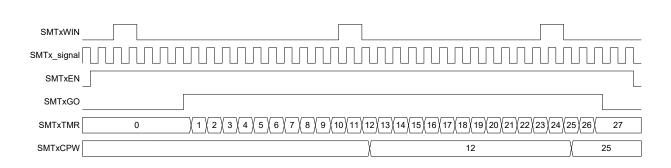
Figure 35-39. Bus Collision During a Stop Condition (Case 2)

35.7 Baud Rate Generator

The MSSP module has a Baud Rate Generator available for clock generation in both I²C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPxADD register. When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" shown in Figure 35-40 triggers the value from SSPxADD to be loaded into the BRG counter. This occurs twice for each oscillation of the module clock line. The logic dictating when the reload signal is asserted depends on the mode in which the MSSP is being operated.


© 2018 Microchip Technology Inc.

PIC16(L)F18455/56 (SMT) Signal Measurement Timer

Rev. 10-000189A

Rev. 10-0001904

Figure 37-17. Counter Mode Timing Diagram

37.1.6.10 Gated Counter Mode

This mode counts pulses on the signal input, gated by the window input. It begins incrementing the timer upon seeing a rising edge of the window input and updates the SMTxCPW register upon a falling edge on the window input. See figures below.

Figure 37-18. Gated Counter Mode, Repeat Acquisition Timing Diagram

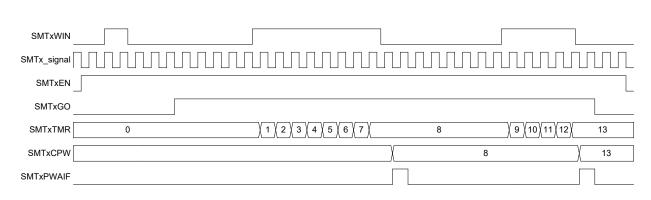
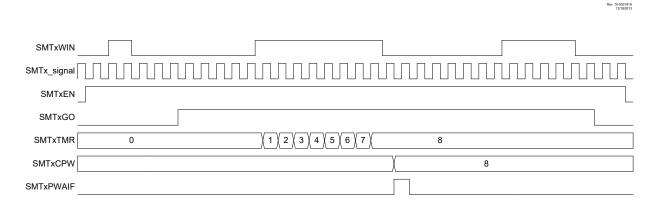



Figure 37-19. Gated Counter Mode, Single Acquisition Timing Diagram

37.1.6.11 Windowed Counter Mode

This mode counts pulses on the signal input, within a window dictated by the window input. It begins counting upon seeing a rising edge of the window input, updates the SMTxCPW register on a falling edge

PIC16(L)F18455/56

Register Summary

-											
Address	Name	Bit Pos.									
0x1E1B	CLC2POL	7:0	POL				G4POL	G3POL	G2POL	G1POL	
0x1E1C	CLC2SEL0	7:0			D1S[5:0]						
0x1E1D	CLC2SEL1	7:0			D2S[5:0]						
0x1E1E	CLC2SEL2	7:0			D3S[5:0]						
0x1E1F	CLC2SEL3	7:0			D4S[5:0]						
0x1E20	CLC2GLS0	7:0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	
0x1E21	CLC2GLS1	7:0	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	
0x1E22	CLC2GLS2	7:0	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	
0x1E23	CLC2GLS3	7:0	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	
0x1E24	CLC3CON	7:0	EN		OUT	INTP	INTN		MODE[2:0]		
0x1E25	CLC3POL	7:0	POL				G4POL	G3POL	G2POL	G1POL	
0x1E26	CLC3SEL0	7:0					D1S	[5:0]			
0x1E27	CLC3SEL1	7:0			D2S[5:0]						
0x1E28	CLC3SEL2	7:0					D3S	5[5:0]			
0x1E29	CLC3SEL3	7:0			D4S[5:0]						
0x1E2A	CLC3GLS0	7:0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	
0x1E2B	CLC3GLS1	7:0	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	
0x1E2C	CLC3GLS2	7:0	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	
0x1E2D	CLC3GLS3	7:0	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	
0x1E2E	CLC4CON	7:0	EN		OUT	INTP	INTN		MODE[2:0]		
0x1E2F	CLC4POL	7:0	POL				G4POL	G3POL	G2POL	G1POL	
0x1E30	CLC4SEL0	7:0						5[5:0]			
0x1E31	CLC4SEL1	7:0			D2S[5:0]						
0x1E32	CLC4SEL2	7:0			D3S[5:0]						
0x1E33	CLC4SEL3	7:0				1	D4S	[5:0]			
0x1E34	CLC4GLS0	7:0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	
0x1E35	CLC4GLS1	7:0	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	
0x1E36	CLC4GLS2	7:0	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	
0x1E37	CLC4GLS3	7:0	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	
0x1E38											
	Reserved										
0x1E7F		0									
0x1E80	INDF0	7:0					0[7:0]				
0x1E81	INDF1	7:0					[1[7:0]				
0x1E82	PCL	7:0					.[7:0] PD	7	D 2	0	
0x1E83	STATUS	7:0				TO		Z	DC	С	
0x1E84	FSR0	7:0					L[7:0]				
	FSR1	15:8	FSRH[7:0]								
0x1E86		7:0					L[7:0]				
0v1E00	DCD	15:8				FSRI	H[7:0]	0[5:0]			
0x1E88	BSR	7:0						R[5:0]			
0x1E89	WREG	7:0				WRE					
0x1E8A	PCLATH	7:0	CIE	PEIE			PCLATH[6:0]				
0x1E8B	INTCON	7:0	GIE	PEIE						INTEDG	
0x1E8C	Reserved										

42.4.18 SPI Mode Requirements

Table 42-24.

Param Sym. No.		Characteristic	Min.	Тур. †	Max.	Units	Conditions
SP70*	T _{SS} L2 _{SC} H,	$\overline{SS}\downarrow$ to SCK \downarrow or	2.25*T _{CY}	_	—	ns	
	T _{SS} L2 _{SC} L	SCK↑ input					
SP71*	T _{SC} H	SCK input high time (Slave mode)	T _{CY} + 20	_		ns	
SP72*	T _{SC} L	SCK input low time (Slave mode)	T _{CY} + 20			ns	
SP73*	T _{DI} V2 _{SC} H, T _{DI} V2 _{SC} L	Setup time of SDI data input to SCK edge	100	_		ns	
SP74*	T _{SC} H2 _{DI} L, T _{SC} L2 _{DI} L	Hold time of SDI data input to SCK edge	100			ns	
SP75*	T _{DO} R	SDO data output rise		10	25	ns	3.0V≤V _{DD} ≤5.5V
		time		25	50	ns	1.8V≤V _{DD} ≤5.5V
SP76*	T _{DO} F	SDO data output fall time	_	10	25	ns	
SP77*	T _{SS} H2 _{DO} Z	SS↑ to SDO output high-impedance	10		50	ns	
SP78*	T _{SC} R	SCK output rise time (Master mode)	_	10	25	ns	3.0V≤V _{DD} ≤5.5V
			_	25	50	ns	1.8V≤V _{DD} ≤5.5V
SP79*	T _{SC} F	SCK output fall time (Master mode)		10	25	ns	
SP80*	T _{SC} H2 _{DO} V,	SDO data output			50	ns	3.0V≤V _{DD} ≤5.5V
	$T_{SC}L2_{DO}V$	valid after SCK edge	—	_	145	ns	1.8V≤V _{DD} ≤5.5V
SP81*	T _{DO} V2 _{SC} H, T _{DO} V2 _{SC} L	SDO data output setup to SCK edge	1 T _{CY}		—	ns	
SP82*	T _{SS} L2 _{DO} V	SDO data output valid after $\overline{SS}\downarrow$ edge	_	_	50	ns	
SP83*	T _{SC} H2 _{SS} H, T _{SC} L2 _{SS} H	SS	1.5 T _{CY} + 40	_		ns	

* - These parameters are characterized but not tested.

PIC16(L)F18455/56

Electrical Specifications

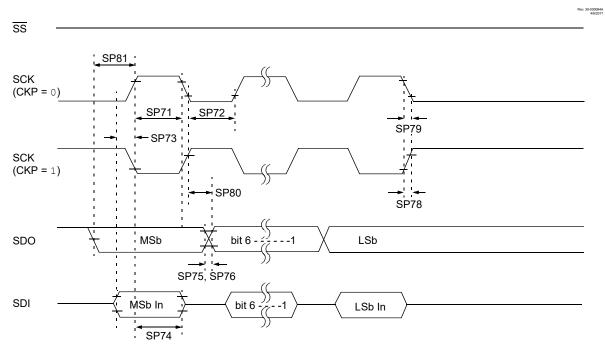
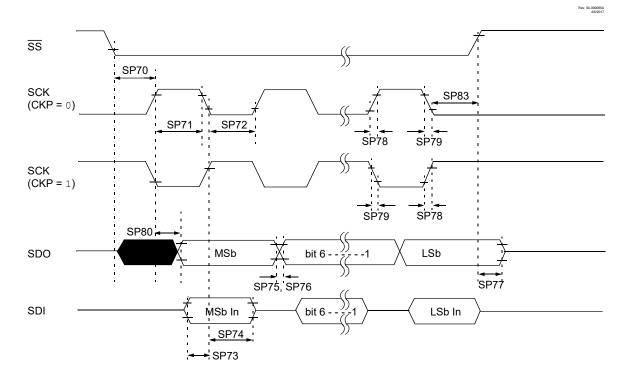



Figure 42-18. SPI Master Mode Timing (CKE = 1, SMP = 1)

Note: Refer to Figure 42-4 for load conditions.

43. DC and AC Characteristics Graphs and Tables

The graphs and tables provided in this section are for design guidance and are not tested. In some graphs or tables, the data presented are outside specified operating range (i.e., outside specified V_{DD} range). This is for information only and devices are ensured to operate properly only within the specified range. Unless otherwise noted, all graphs apply to both the L and LF devices.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

Note:

"Typical" represents the mean of the distribution at 25°C. "Maximum", "Max.", "Minimum" or "Min." represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.