

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                      |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                         |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 32MHz                                                                       |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                   |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                       |
| Number of I/O              | 26                                                                          |
| Program Memory Size        | 14KB (8K x 14)                                                              |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                | 256 x 8                                                                     |
| RAM Size                   | 1K x 8                                                                      |
| Voltage - Supply (Vcc/Vdd) | 2.5V ~ 5.5V                                                                 |
| Data Converters            | A/D 24x12b; D/A 1x5b                                                        |
| Oscillator Type            | Internal                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 28-SOIC (0.295", 7.50mm Width)                                              |
| Supplier Device Package    | 28-SOIC                                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16f18455t-i-so |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### Figure 7-3. Loading of PC in Different Situations



#### 7.4.1 Modifying PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<14:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the Program Counter to be changed by writing the desired upper seven bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 15 bits of the Program Counter will change to the values contained in the PCLATH register and those being written to the PCL register.

#### 7.4.2 Computed GOTO

A computed GOTO is accomplished by adding an offset to the Program Counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to Application Note AN556, *"Implementing a Table Read"* (DS00556).

#### 7.4.3 Computed Function Calls

A computed function CALL allows programs to maintain tables of functions and provide another way to execute state machines or look-up tables. When performing a table read using a computed function CALL, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block).

If using the CALL instruction, the PCH<2:0> and PCL registers are loaded with the operand of the CALL instruction. PCH<6:3> is loaded with PCLATH<6:3>.

### 8.14 Register Summary - BOR Control and Power Control

| Address | Name     | Bit Pos. |        |        |       |      |       |    |      |        |
|---------|----------|----------|--------|--------|-------|------|-------|----|------|--------|
| 0x0811  | BORCON   | 7:0      | SBOREN |        |       |      |       |    |      | BORRDY |
| 0x0812  | Reserved |          |        |        |       |      |       |    |      |        |
| 0x0813  | PCON0    | 7:0      | STKOVF | STKUNF | WDTWV | RWDT | RMCLR | RI | POR  | BOR    |
| 0x0814  | PCON1    | 7:0      |        |        |       |      |       |    | MEMV |        |

### 8.15 Register Definitions: Power Control

## PIC16(L)F18455/56 (NVM) Nonvolatile Memory Control

| BANKSEL | NVMADRL         |   |                                             |
|---------|-----------------|---|---------------------------------------------|
| MOVF    | ADDRL,W         |   |                                             |
| MOVWF   | NVMADRL         | ; | Load lower 8 bits of erase address boundary |
| MOVF    | ADDRH,W         |   |                                             |
| MOVWF   | NVMADRH         | ; | Load upper 6 bits of erase address boundary |
| BCF     | NVMCON1,NVMREGS | ; | Choose PFM memory area                      |
| BSF     | NVMCON1, FREE   | ; | Specify an erase operation                  |
| BSF     | NVMCON1,WREN    | ; | Enable writes                               |
| BCF     | INTCON, GIE     | ; | Disable interrupts during unlock sequence   |
|         |                 |   |                                             |
| ;       | REQUIRE         | D | UNLOCK SEQUENCE:                            |
|         |                 |   |                                             |
| MOVLW   | 55h             | ; | Load 55h to get ready for unlock sequence   |
| MOVWF   | NVMCON2         | ; | First step is to load 55h into NVMCON2      |
| MOVLW   | AAh             | ; | Second step is to load AAh into W           |
| MOVWF   | NVMCON2         | ; | Third step is to load AAh into NVMCON2      |
| BSF     | NVMCON1,WR      | ; | Final step is to set WR bit                 |
|         |                 |   |                                             |
| ;       |                 |   |                                             |
|         |                 |   |                                             |
| BSF     | INTCON, GIE     | ; | Re-enable interrupts, erase is complete     |
| BCF     | NVMCONI,WREN    | ; | Disable writes                              |
|         |                 |   |                                             |

#### Table 13-1. NVM Organization and Access Information

| Master Values      |                 |                            | I                    | NVMREG Access               | FSR Access           |                       |                |                              |  |  |
|--------------------|-----------------|----------------------------|----------------------|-----------------------------|----------------------|-----------------------|----------------|------------------------------|--|--|
| Memory<br>Function | Memory<br>Type  | Program<br>Counter<br>(PC) | ICSP<br>Address      | NVMREGS<br>bit<br>(NVMCON1) | NVMADR<14:0>         | Allowed<br>Operations | FSR<br>Address | FSR<br>Programming<br>Access |  |  |
| RESET<br>VECTOR    |                 | 0000h                      | 0000h                | 0                           | 0000h                |                       | 8000h          |                              |  |  |
| USER               | _               | 0001h                      | 0001h                | 0                           | 0001h                |                       | 8001h          |                              |  |  |
| MEMORY             | Program         | 0003h                      | 0003h                | 0                           | 0003h                | READ/                 | 8003h          |                              |  |  |
| INT<br>VECTOR      | Memory          | 0004h                      | 0004h                | 0                           | 0004h                | WRITE                 | 8004h          | READ ONET                    |  |  |
| USER               |                 | 0005h                      | 0005h                | 0                           | 0005h                |                       | 8005h          |                              |  |  |
| MEMORY             |                 | 7FFFh <sup>(1)</sup>       | 7FFFh <sup>(1)</sup> | U                           | 7FFFh <sup>(1)</sup> |                       | FFFFh          |                              |  |  |
|                    | Program         |                            | 8000h                |                             | 0000h                |                       |                |                              |  |  |
| USER ID            | Flash<br>Memory |                            | 8003h                | 1                           | 0003h                | READ                  |                |                              |  |  |
| Reserved           | —               |                            |                      | —                           | 0004h                | —                     |                |                              |  |  |
| REV ID             |                 |                            | 8005h                | 1                           | 0005h                |                       |                |                              |  |  |
| DEVICE<br>ID       | HC              |                            | 8006h                | 1                           | 0006h                | READ                  |                |                              |  |  |
| CONFIG1            |                 | NO PC                      | 8007h                | 1                           | 0007h                |                       | NO             | ACCESS                       |  |  |
| CONFIG2            |                 | ACCESS                     | 8008h                | 1                           | 0008h                |                       |                |                              |  |  |
| CONFIG3            | FUSE            |                            | 8009h                | 1                           | 0009h                | WRITE                 |                |                              |  |  |
| CONFIG4            |                 |                            | 800Ah                | 1                           | 000Ah                |                       |                |                              |  |  |
| CONFIG5            |                 |                            | 800Bh                | 1                           | 000Bh                |                       |                |                              |  |  |
| DIA and            | DEM             |                            |                      | 1                           | 0100h                |                       |                |                              |  |  |
| DCI                | FFINI           |                            | 82FFh                | 1                           | 02FFh                | READ                  |                |                              |  |  |
| USER               |                 |                            | F000h                | 1                           | 7000h                | READ/                 | 7000h          |                              |  |  |
| MEMORY             | EEFRUM          |                            | F0FFh                | T                           | 70FFh                | WRITE                 | 70FFh          |                              |  |  |

#### 14.7.7 TRISC

Name:TRISCAddress:0x014

Tri-State Control Register

| Bit    | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|        | TRISC7 | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 |
| Access | R/W    |
| Reset  | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      |

#### Bits 0, 1, 2, 3, 4, 5, 6, 7 - TRISCn TRISC Port I/O Tri-state Control bits

| Value | Description                    |
|-------|--------------------------------|
| 1     | Port output driver is disabled |
| 0     | Port output driver is enabled  |

#### 20.8.12 ADRPT

Name:ADRPTAddress:0x09A

ADC Repeat Setting Register

| Bit    | 7   | 6   | 5   | 4   | 3     | 2   | 1   | 0   |
|--------|-----|-----|-----|-----|-------|-----|-----|-----|
|        |     |     |     | RPT | [7:0] |     |     |     |
| Access | R/W | R/W | R/W | R/W | R/W   | R/W | R/W | R/W |
| Reset  | 0   | 0   | 0   | 0   | 0     | 0   | 0   | 0   |

Bits 7:0 - RPT[7:0] ADC Repeat Threshold bits

Determines the number of times that the ADC is triggered for a threshold check. When ADCNT reaches this value the error threshold is checked. Used when the computation mode is Low-pass Filter, Burst Average, or Average. See Computation Modes for more details.

# Figure 27-6. Level-Triggered Hardware Limit Mode Timing Diagram (MODE = 00111)

|                            | 5302014                                                 |
|----------------------------|---------------------------------------------------------|
| MODE                       | 0b00111                                                 |
| TMRx_clk                   |                                                         |
| PRx                        | 5                                                       |
| Instruction <sup>(1)</sup> | (BSF) (BCF)                                             |
| ON                         |                                                         |
| TMRx_ers                   |                                                         |
| TMRx                       | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ |
| TMRx_postscaled            |                                                         |
|                            |                                                         |
| Cycle                      | 3                                                       |
| PWM Output                 |                                                         |

#### Note:

1. BSF and BCF represent Bit-Set File and Bit-Clear File instructions executed by the CPU to set or clear the ON bit of TxCON. CPU execution is asynchronous to the timer clock input.

#### **Related Links**

29.4 PWM Overview30. (PWM) Pulse-Width Modulation

#### 27.6.5 Software Start One-Shot Mode

In One-Shot mode the timer resets and the ON bit is cleared when the timer value matches the PRx period value. The ON bit must be set by software to start another timer cycle. Setting MODE<4:0> = 01000 selects One-Shot mode which is illustrated in Figure 27-7. In the example, ON is controlled by BSF and BCF instructions. In the first case, a BSF instruction sets ON and the counter runs to completion and clears ON. In the second case, a BSF instruction starts the cycle, BCF/BSF instructions turn the counter off and on during the cycle, and then it runs to completion.

When One-Shot mode is used in conjunction with the CCP PWM operation the PWM pulse drive starts concurrent with setting the ON bit. Clearing the ON bit while the PWM drive is active will extend the PWM drive. The PWM drive will terminate when the timer value matches the CCPRx pulse width value. The PWM drive will remain off until software sets the ON bit to start another cycle. If software clears the ON bit after the CCPRx match but before the PRx match then the PWM drive will be extended by the length of time the ON bit remains cleared. Another timing cycle can only be initiated by setting the ON bit after it has been cleared by a PRx period count match.

#### 31.10 Dead-Band Jitter

When the rising and falling edges of the input source are asynchronous to the CWG clock, it creates jitter in the dead-band time delay. The maximum jitter is equal to one CWG clock period. Refer to the equations below for more details.

Equation 31-1. Dead-Band Delay Time Calculation

$$T_{DEAD - BAND\_MIN} = \frac{1}{F_{CWG\_CLOCK}} \cdot DBx < 5:0 >$$

$$T_{DEAD - BAND\_MAX} = \frac{1}{F_{CWG\_CLOCK}} \cdot DBx < 5:0 > +1$$

$$T_{JITTER} = T_{DEAD - BAND\_MAX} - T_{DEAD - BAND\_MIN}$$

$$T_{JITTER} = \frac{1}{F_{CWG\_CLOCK}}$$

$$T_{DEAD - BAND\_MAX} = T_{DEAD - BAND\_MIN} + T_{JITTER}$$
Equation 31-2. Dead-Band Delay Example Calculation
$$DBx < 5:0 > = 0x0A = 10$$

$$F_{CWG\_CLOCK} = 8 MHz$$

$$T_{JITTER} = \frac{1}{8 MHz} = 125ns$$

$$T_{DITTER} = -125ns$$

 $T_{DEAD - BAND_{MIN}} = 125ns \bullet 10 = 125\mu s$ 

 $T_{DEAD - BAND_MAX} = 1.25\mu s + 0.125 \mu s = 1.37\mu s$ 

#### 31.11 Auto-Shutdown

Auto-shutdown is a method to immediately override the CWG output levels with specific overrides that allow for safe shutdown of the circuit. The shutdown state can be either cleared automatically or held until cleared by software. The auto-shutdown circuit is illustrated in the following figure.





#### 31.11.1 Shutdown

The shutdown state can be entered by either of the following two methods:

Software Generated

#### 34.6.2 CLKRCLK

Name:CLKRCLKAddress:0x896

Clock Reference Clock Selection MUX



**Bits 3:0 – CLK[3:0]** CLKR Clock Selection bits See the Clock Sources table.

## PIC16(L)F18455/56 (MSSP) Master Synchronous Serial Port Module

Rev. 30-000011A 3/31/2017

#### Figure 35-1. MSSP Block Diagram (SPI mode)



**Note 1:** Output selection for master mode

**2:** Input selection for slave and master mode

The SPI bus operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

The figure below shows a typical connection between a master device and multiple slave devices.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

(MSSP) Master Synchronous Serial Port Module



Figure 35-36. Bus Collision During a Repeated Start Condition (Case 1)

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 35-37.

If, at the end of the BRG time out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

Figure 35-37. Bus Collision During Repeated Start Condition (Case 2)



#### 35.6.13.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:

- 1. After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out (Case 1).
- 2. After the SCL pin is deasserted, SCL is sampled low before SDA goes high (Case 2).

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPxADD

and counts down to zero. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 35-38). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 35-39).





Figure 35-39. Bus Collision During a Stop Condition (Case 2)



#### 35.7 Baud Rate Generator

The MSSP module has a Baud Rate Generator available for clock generation in both I<sup>2</sup>C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPxADD register. When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" shown in Figure 35-40 triggers the value from SSPxADD to be loaded into the BRG counter. This occurs twice for each oscillation of the module clock line. The logic dictating when the reload signal is asserted depends on the mode in which the MSSP is being operated.

© 2018 Microchip Technology Inc.

#### 35.9.3 SSPxCON2

| Name:    | SSPxCON2    |
|----------|-------------|
| Address: | 0x191,0x19B |

Control Register for I<sup>2</sup>C Operation Only

MSSP Control Register 2

| Bit    | 7    | 6       | 5     | 4     | 3    | 2   | 1    | 0   |
|--------|------|---------|-------|-------|------|-----|------|-----|
|        | GCEN | ACKSTAT | ACKDT | ACKEN | RCEN | PEN | RSEN | SEN |
| Access | R/W  | R/W/HC  | R/W   | R/W   | R/W  | R/W | R/W  | R/W |
| Reset  | 0    | 0       | 0     | 0     | 0    | 0   | 0    | 0   |

#### Bit 7 – GCEN

General Call Enable bit (Slave mode only)

| Value | Mode        | Description                 |
|-------|-------------|-----------------------------|
| х     | Master mode | Don't care                  |
| 1     | Slave mode  | General call is enabled     |
| 0     | Slave mode  | General call is not enabled |

#### Bit 6 – ACKSTAT Acknowledge Status bit (Master Transmit mode only)

| Value | Description                             |
|-------|-----------------------------------------|
| 1     | Acknowledge was not received from slave |
| 0     | Acknowledge was received from slave     |

#### Bit 5 – ACKDT

Acknowledge Data bit (Master Receive mode only)<sup>(1)</sup>

| Value | Description     |
|-------|-----------------|
| 1     | Not Acknowledge |
| 0     | Acknowledge     |

#### Bit 4 – ACKEN

Acknowledge Sequence Enable bit<sup>(2)</sup>

| Value | Description                                                                        |
|-------|------------------------------------------------------------------------------------|
| 1     | Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit; |
|       | automatically cleared by hardware                                                  |
| 0     | Acknowledge sequence is Idle                                                       |

#### Bit 3 – RCEN

Receive Enable bit (Master Receive mode only)<sup>(2)</sup>

| Value | Description                               |
|-------|-------------------------------------------|
| 1     | Enables Receive mode for I <sup>2</sup> C |
| 0     | Receive is Idle                           |

#### Bit 2 – PEN

Stop Condition Enable bit (Master mode only)<sup>(2)</sup>

### (MSSP) Master Synchronous Serial Port Module

| Value | Description                                                                       |
|-------|-----------------------------------------------------------------------------------|
| 1     | Initiates Stop condition on SDAx and SCLx pins; automatically cleared by hardware |
| 0     | Stop condition is Idle                                                            |

#### Bit 1 – RSEN

Repeated Start Condition Enable bit (Master mode only)<sup>(2)</sup>

| Value | Description                                                                        |
|-------|------------------------------------------------------------------------------------|
| 1     | Initiates Repeated Start condition on SDAx and SCLx pins; automatically cleared by |
|       | hardware                                                                           |
| 0     | Repeated Start condition is Idle                                                   |

#### Bit 0 – SEN

Start Condition Enable bit (Master mode only)<sup>(2)</sup>

| Value | Description                                                                        |
|-------|------------------------------------------------------------------------------------|
| 1     | Initiates Start condition on SDAx and SCLx pins; automatically cleared by hardware |
| 0     | Start condition is Idle                                                            |

#### Note:

- 1. The value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.
- 2. If the I<sup>2</sup>C module is active, these bits may not be set (no spooling) and the SSPxBUF may not be written (or writes to the SSPxBUF are disabled).

## Register Summary

| Address | Name     | Bit Pos. |        |        |            |           |               |           |           |         |
|---------|----------|----------|--------|--------|------------|-----------|---------------|-----------|-----------|---------|
| 0x071D  | PIE7     | 7:0      |        |        | NVMIE      | NCO1IE    |               | CWG3IE    | CWG2IE    | CWG1IE  |
| 0x071E  | PIE8     | 7:0      |        |        | SMT2PWAIE  | SMT2PRAIE | SMT2IE        | SMT1PWAIE | SMT1PRAIE | SMT1IE  |
| 0x071F  |          |          |        |        |            |           |               |           |           |         |
|         | Reserved |          |        |        |            |           |               |           |           |         |
| 0x077F  |          |          |        |        |            |           |               |           |           |         |
| 0x0780  | INDF0    | 7:0      |        |        |            | INDF      | 0[7:0]        |           |           |         |
| 0x0781  | INDF1    | 7:0      |        |        |            | INDF      | 1[7:0]        |           |           |         |
| 0x0782  | PCL      | 7:0      |        |        |            | PCL       | [7:0]         |           |           |         |
| 0x0783  | STATUS   | 7:0      |        |        |            | TO        | PD            | Z         | DC        | С       |
| 0x0784  | ESR0     | 7:0      |        |        |            | FSRI      | _[7:0]        |           |           |         |
| 0,0104  | 1 Orto   | 15:8     |        |        |            | FSR       | H[7:0]        |           |           |         |
| 0x0786  | FSR1     | 7:0      |        |        |            | FSRI      | _[7:0]        |           |           |         |
|         | 1 OKT    | 15:8     |        | 1      |            | FSR       | H[7:0]        |           |           |         |
| 0x0788  | BSR      | 7:0      |        |        |            |           | BSR           | R[5:0]    |           |         |
| 0x0789  | WREG     | 7:0      |        |        |            | WRE       | G[7:0]        |           |           |         |
| 0x078A  | PCLATH   | 7:0      |        |        |            |           | PCLATH[6:0]   |           |           |         |
| 0x078B  | INTCON   | 7:0      | GIE    | PEIE   |            |           |               |           |           | INTEDG  |
| 0x078C  |          |          |        |        |            |           |               |           |           |         |
|         | Reserved |          |        |        |            |           |               |           |           |         |
| 0x0795  |          |          |        |        |            |           |               |           |           |         |
| 0x0796  | PMD0     | 7:0      | SYSCMD | FVRMD  |            |           |               | NVMMD     | CLKRMD    | IOCMD   |
| 0x0797  | PMD1     | 7:0      |        | TMR6MD | TMR5MD     | TMR4MD    | TMR3MD        | TMR2MD    | TMR1MD    | TMR0MD  |
| 0x0798  | PMD2     | 7:0      | NCO1MD |        |            |           |               |           |           |         |
| 0x0799  | PMD3     | 7:0      |        | DAC1MD | ADCMD      |           |               | C2MD      | C1MD      | ZCDMD   |
| 0x079A  | PMD4     | 7:0      |        | PWM7MD | PWM6MD     | CCP5MD    | CCP4MD        | CCP3MD    | CCP2MD    | CCP1MD  |
| 0x079B  | PMD5     | 7:0      | CWG3MD | CWG2MD | CWG1MD     |           |               |           |           |         |
| 0x079C  | PMD6     | 7:0      |        |        | UART2MD    | UART1MD   |               |           | MSSP2MD   | MSSP1MD |
| 0x079D  | PMD7     | 7:0      |        | SMT2MD | SMT1MD     | CLC4MD    | CLC3MD        | CLC2MD    | CLC1MD    | DSM1MD  |
| 0x079E  |          |          |        |        |            |           |               |           |           |         |
|         | Reserved |          |        |        |            |           |               |           |           |         |
| 0x07FF  |          |          |        |        |            |           |               |           |           |         |
| 0x0800  | INDF0    | 7:0      |        |        |            | INDF      | 0[7:0]        |           |           |         |
| 0x0801  | INDF1    | 7:0      |        |        |            | INDF      | 1[7:0]        |           |           |         |
| 0.0000  | PUL      | 7:0      |        |        |            |           | [/:0]         | 7         | 50        | 0       |
| 0x0803  | STATUS   | 7:0      |        |        |            |           | PD            | Z         | DC        | U       |
| 0x0804  | FSR0     | 7:0      |        |        |            | FSRI      | _[7:0]        |           |           |         |
|         |          | 15:8     |        |        |            | FSR       | ۲[/:U]        |           |           |         |
| 0x0806  | FSR1     | 7:0      |        |        |            | FSRI      | _[7:0]        |           |           |         |
| 00000   | DOD      | 15:8     |        |        |            | FSR       |               | 0[5-0]    |           |         |
|         | DOK      | 7:0      |        |        |            |           | BSR<br>CIZ:01 | .[J.U]    |           |         |
| 020009  |          | 7.0      |        |        |            | WKE       |               |           |           |         |
|         |          | 7:0      | CIE    | DEIE   |            |           |               |           |           | INTEDO  |
|         |          | 7:0      | GIE    | PEIE   |            |           | WDTPSIA       |           |           | IN LEDG |
|         |          | 7:0      |        |        | WDTCSI2-01 |           | WD1P3[4:0]    |           |           | JEIN    |
|         |          | 7:0      |        |        | VUICS[2:0] | DOON      | TI [7:0]      |           |           |         |
| UXU8UE  | WDIP5L   | 1:0      |        |        |            | PSCN      |               |           |           |         |

## Register Summary

| Address    | Name     | Bit Pos. |          |           |  |      |             |       |    |        |
|------------|----------|----------|----------|-----------|--|------|-------------|-------|----|--------|
| 0.4500     | 505 /    | 7:0      |          | FSRL[7:0] |  |      |             |       |    |        |
| 0x1586     | FSR1     | 15:8     |          |           |  | FSR  | H[7:0]      |       |    |        |
| 0x1588     | BSR      | 7:0      | BSR[5:0] |           |  |      |             |       |    |        |
| 0x1589     | WREG     | 7:0      |          |           |  | WRE  | G[7:0]      |       |    |        |
| 0x158A     | PCLATH   | 7:0      |          |           |  |      | PCLATH[6:0] |       |    |        |
| 0x158B     | INTCON   | 7:0      | GIE      | PEIE      |  |      |             |       |    | INTEDG |
| 0x158C     |          |          |          |           |  |      |             |       |    |        |
|            | Reserved |          |          |           |  |      |             |       |    |        |
| 0x15FF     |          |          |          |           |  |      |             |       |    |        |
| 0x1600     | INDF0    | 7:0      |          |           |  | INDF | 0[7:0]      |       |    |        |
| 0x1601     | INDF1    | 7:0      |          |           |  | INDF | 1[7:0]      |       |    |        |
| 0x1602     | PCL      | 7:0      |          | 1         |  | PCL  | [7:0]       |       |    |        |
| 0x1603     | STATUS   | 7:0      |          |           |  | TO   | PD          | Z     | DC | С      |
| 0x1604     | ESR0     | 7:0      |          |           |  | FSRI | _[7:0]      |       |    |        |
|            |          | 15:8     |          |           |  | FSR  | H[7:0]      |       |    |        |
| 0x1606     | ESR1     | 7:0      |          |           |  | FSRI | _[7:0]      |       |    |        |
|            |          | 15:8     |          |           |  | FSR  | H[7:0]      |       |    |        |
| 0x1608     | BSR      | 7:0      |          |           |  |      | BSR         | [5:0] |    |        |
| 0x1609     | WREG     | 7:0      |          | WREG[7:0] |  |      |             |       |    |        |
| 0x160A     | PCLATH   | 7:0      |          |           |  |      | PCLATH[6:0] |       |    |        |
| 0x160B     | INTCON   | 7:0      | GIE      | PEIE      |  |      |             |       |    | INTEDG |
| 0x160C     |          |          |          |           |  |      |             |       |    |        |
|            | Reserved |          |          |           |  |      |             |       |    |        |
| 0x167F     |          |          |          |           |  |      |             |       |    |        |
| 0x1680     | INDF0    | 7:0      |          |           |  | INDF | 0[7:0]      |       |    |        |
| 0x1681     | INDF1    | 7:0      |          |           |  | INDF | 1[7:0]      |       |    |        |
| 0x1682     | PCL      | 7:0      |          |           |  | PCL  | [7:0]       |       |    |        |
| 0x1683     | STATUS   | 7:0      |          |           |  | ТО   | PD          | Z     | DC | C      |
| 0x1684     | FSR0     | 7:0      |          |           |  | FSRI | _[7:0]      |       |    |        |
|            |          | 15:8     |          |           |  | FSR  | H[7:0]      |       |    |        |
| 0x1686     | FSR1     | 7:0      |          |           |  | FSRI | _[7:0]      |       |    |        |
|            |          | 15:8     |          |           |  | FSR  | H[7:0]      |       |    |        |
| 0x1688     | BSR      | 7:0      |          |           |  |      | BSR         | [5:0] |    |        |
| 0x1689     | WREG     | 7:0      |          |           |  | WRE  |             |       |    |        |
| 0x168A     | PCLATH   | 7:0      | 015      | DEIE      |  |      | PCLATH[6:0] |       |    |        |
| 0x1686     | INTCON   | 7:0      | GIE      | PEIE      |  |      |             |       |    | INTEDG |
| UX 100C    | Posonvod |          |          |           |  |      |             |       |    |        |
| <br>0x16EE | Reserved |          |          |           |  |      |             |       |    |        |
| 0x1011     |          | 7:0      |          |           |  | INDE | 0[7:0]      |       |    |        |
| 0x1701     | INDF1    | 7:0      |          |           |  | INDE | 1[7·0]      |       |    |        |
| 0x1702     | PCI      | 7:0      |          |           |  | PCI  | [7·0]       |       |    |        |
| 0x1703     | STATUS   | 7:0      |          |           |  |      |             | 7     | DC | С      |
|            | 0        | 7:0      |          |           |  | FSRI | _[7:0]      | _     | 20 |        |
| 0x1704     | FSR0     | 15:8     |          |           |  | FSR  |             |       |    |        |
| 0x1706     | FSR1     | 7:0      |          |           |  | FSRI | _[7:0]      |       |    |        |
|            |          |          |          |           |  |      |             |       |    |        |

## **Register Summary**

| Address  | Name        | Bit Pos. |     |           |   |      |             |             |    |        |  |
|----------|-------------|----------|-----|-----------|---|------|-------------|-------------|----|--------|--|
|          |             |          |     |           |   |      |             |             |    |        |  |
| 0x1F64   |             |          |     |           |   |      |             |             |    |        |  |
| 0x1F65   | WPUE        | 7:0      |     |           |   |      | WPUE3       |             |    |        |  |
| 0x1F66   |             |          |     |           |   |      |             |             |    |        |  |
|          | Reserved    |          |     |           |   |      |             |             |    |        |  |
| 0x1F67   |             |          |     |           |   |      |             |             |    |        |  |
| 0x1F68   | INLVLE      | 7:0      |     |           |   |      | INLVLE3     |             |    |        |  |
| 0x1F69   | IOCEP       | 7:0      |     |           |   |      | IOCEP3      |             |    |        |  |
| 0x1F6A   | IOCEN       | 7:0      |     |           |   |      | IOCEN3      |             |    |        |  |
| 0x1F6B   | IOCEF       | 7:0      |     |           |   |      | IOCEF3      |             |    |        |  |
| 0x1F6C   |             |          |     |           |   |      |             |             |    |        |  |
|          | Reserved    |          |     |           |   |      |             |             |    |        |  |
| 0x1F7F   |             |          |     |           |   |      |             |             |    |        |  |
| 0x1F80   | INDF0       | 7:0      |     |           |   | INDF | 0[7:0]      |             | 1  |        |  |
| 0x1F81   | INDF1       | 7:0      |     |           |   | INDF | 1[7:0]      |             |    |        |  |
| 0x1F82   | PCL         | 7:0      |     |           |   | PCL  | .[7:0]      |             |    |        |  |
| 0x1F83   | STATUS      | 7:0      |     |           |   | TO   | PD          | Z           | DC | С      |  |
| 0.1594   | FSR0        | 7:0      |     | FSRL[7:0] |   |      |             |             |    |        |  |
| UX IF 04 |             | 15:8     |     |           |   | FSRI | H[7:0]      |             |    |        |  |
| 0v1E86   | ESD1        | 7:0      |     | FSRL[7:0] |   |      |             |             |    |        |  |
| 0.11 00  |             | 15:8     |     |           |   | FSRI | H[7:0]      |             |    |        |  |
| 0x1F88   | BSR         | 7:0      |     |           |   |      | BSR         | [5:0]       |    |        |  |
| 0x1F89   | WREG        | 7:0      |     |           |   | WRE  | G[7:0]      |             |    |        |  |
| 0x1F8A   | PCLATH      | 7:0      |     |           |   |      | PCLATH[6:0] |             |    |        |  |
| 0x1F8B   | INTCON      | 7:0      | GIE | PEIE      |   |      |             |             |    | INTEDG |  |
| 0x1F8C   |             |          |     |           |   |      |             |             |    |        |  |
|          | Reserved    |          |     |           |   |      |             |             |    |        |  |
| 0x1FE3   |             |          |     |           |   |      |             |             |    |        |  |
| 0x1FE4   | STATUS_SHAD | 7:0      |     |           |   | TO   | PD          | Z           | DC | С      |  |
| 0x1FE5   | WREG_SHAD   | 7:0      |     |           | _ | WRE  | G[7:0]      |             |    |        |  |
| 0x1FE6   | BSR_SHAD    | 7:0      |     |           |   |      | BSR         | [5:0]       |    |        |  |
| 0x1FE7   | PCLATH_SHAD | 7:0      |     |           |   |      | PCLATH[6:0] |             |    |        |  |
|          |             | 7:0      |     |           |   | FSR  | L[7:0]      |             |    |        |  |
| UXII LU  |             | 15:8     |     |           |   | FSRI | H[7:0]      |             |    |        |  |
|          | ESR1 SHAD   | 7:0      |     |           |   | FSR  | L[7:0]      |             |    |        |  |
|          |             | 15:8     |     |           |   | FSRI | H[7:0]      |             |    |        |  |
| 0x1FEC   | Reserved    |          |     |           |   |      |             |             |    |        |  |
| 0x1FED   | STKPTR      | 7:0      |     |           |   |      |             | STKPTR[4:0] |    |        |  |
|          | TOS         | 7:0      |     |           |   | TOS  | L[7:0]      |             |    |        |  |
| UXIFEE   | IUS         | 15:8     |     |           |   | TOS  | H[7:0]      |             |    |        |  |

### Instruction Set Summary

| BRW                 | Relative Branch with W                                                                                                                                                                                  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Status<br>Affected: | None                                                                                                                                                                                                    |
| Description:        | Add the contents of W (unsigned) to the PC.<br>Since the PC will have incremented to fetch the next instruction, the new address will<br>be PC + 1 + (W).<br>This instruction is a 2-cycle instruction. |

| BSF              | Bit Set f                         |
|------------------|-----------------------------------|
| Syntax:          | [ <i>label</i> ]BSF f, b          |
| Operands:        | $0 \le f \le 127$ $0 \le b \le 7$ |
| Operation:       | $1 \rightarrow (f \le b >)$       |
| Status Affected: | None                              |
| Description:     | Bit 'b' in register 'f' is set.   |

| BTFSC            | Bit Test File, Skip if Clear                                                                                                                                                                                         |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] BTFSC f, b                                                                                                                                                                                          |
| Operands:        | $0 \le f \le 127$ $0 \le b \le 7$                                                                                                                                                                                    |
| Operation:       | skip if (f <b>) = 0</b>                                                                                                                                                                                              |
| Status Affected: | None                                                                                                                                                                                                                 |
| Description:     | If bit 'b' in register 'f' is '1', the next instruction is executed.<br>If bit 'b', in register 'f', is '0', the next instruction is discarded,<br>and a NOP is executed instead, making this a 2-cycle instruction. |

| BTFSS            | Bit Test File, Skip if Set                                                                                                                                                                              |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] BTFSS f, b                                                                                                                                                                             |
| Operands:        | $0 \le f \le 127$<br>$0 \le b < 7$                                                                                                                                                                      |
| Operation:       | skip if (f <b>) = 1</b>                                                                                                                                                                                 |
| Status Affected: | None                                                                                                                                                                                                    |
| Description:     | If bit 'b' in register 'f' is '0', the next instruction is executed.<br>If bit 'b' is '1', then the next instruction is discarded,<br>and a NOP is executed instead, making this a 2-cycle instruction. |

#### 42.4 AC Characteristics

Figure 42-4. Load Conditions



Legend: CL=50 pF for all pins

#### 42.4.1 External Clock/Oscillator Timing Requirements Figure 42-5. Clock Timing



**Note:** See table below.

#### Table 42-7.

| Standard Operating Conditions (unless otherwise stated) |                     |                  |      |        |      |       |            |  |  |  |
|---------------------------------------------------------|---------------------|------------------|------|--------|------|-------|------------|--|--|--|
| Param<br>No.                                            | Sym.                | Characteristic   | Min. | Тур. † | Max. | Units | Conditions |  |  |  |
| ECL Oscillator                                          |                     |                  |      |        |      |       |            |  |  |  |
| OS1                                                     | F <sub>ECL</sub>    | Clock Frequency  |      | —      | 500  | kHz   |            |  |  |  |
| OS2                                                     | T <sub>ECL_DC</sub> | Clock Duty Cycle | 40   |        | 60   | %     |            |  |  |  |
| ECM Oscillator                                          |                     |                  |      |        |      |       |            |  |  |  |
| OS3                                                     | F <sub>ECM</sub>    | Clock Frequency  |      |        | 4    | MHz   |            |  |  |  |
| OS4                                                     | T <sub>ECM_DC</sub> | Clock Duty Cycle | 40   |        | 60   | %     |            |  |  |  |
| ECH Oscillator                                          |                     |                  |      |        |      |       |            |  |  |  |
| OS5                                                     | F <sub>ECH</sub>    | Clock Frequency  |      |        | 32   | MHz   |            |  |  |  |
| OS6                                                     | T <sub>ECH_DC</sub> | Clock Duty Cycle | 40   |        | 60   | %     |            |  |  |  |
| LP Oscillator                                           |                     |                  |      |        |      |       |            |  |  |  |
| OS7                                                     | F <sub>LP</sub>     | Clock Frequency  |      |        | 100  | kHz   | Note 4     |  |  |  |

### **Electrical Specifications**

| Standard Operating Conditions (unless otherwise stated)                                                                            |      |                |      |        |      |       |            |  |
|------------------------------------------------------------------------------------------------------------------------------------|------|----------------|------|--------|------|-------|------------|--|
| Param<br>No.                                                                                                                       | Sym. | Characteristic | Min. | Тур. † | Max. | Units | Conditions |  |
| † Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. |      |                |      |        |      |       |            |  |





Note: Refer to Figure 42-4 for load conditions.

ISBN: 978-1-5224-3260-9

### Quality Management System Certified by DNV

#### ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC<sup>®</sup> MCUs and dsPIC<sup>®</sup> DSCs, KEELOQ<sup>®</sup> code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.