

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	26
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18456t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	3.4.	Instruction Set	. 32
4.	Devi	ce Configuration	33
	4.1.	Configuration Words	33
	4.2.	Code Protection	33
	4.3.	Write Protection	33
	4.4.	User ID	. 33
	4.5.	Device ID and Revision ID	. 34
	4.6.	Register Summary - Configuration Words	34
	4.7.	Register Definitions: Configuration Words	. 34
	4.8.	Register Summary - Device and Revision	43
	4.9.	Register Definitions: Device and Revision	. 43
5.	Devi	ce Information Area	46
	5.1.	Microchip Unique Identifier (MUI).	47
	5.2.	External Unique Identifier (EUI).	47
	5.3.	Analog-to-Digital Conversion Data of the Temperature Sensor.	. 48
	5.4	Fixed Voltage Reference Data	. 48
~	5		
6.	Devi	ce Configuration Information	49
	6.1.	DIA and DCI Access	49
7.	Mem	ory Organization	50
	7.1.	Program Memory Organization	. 50
	7.2.	Memory Access Partition (MAP)	. 52
	7.3.	Data Memory Organization	. 54
	7.4.	PCL and PCLATH	. 57
	7.5.	Stack	. 59
	7.6.	Indirect Addressing	62
	7.7.	Register Summary - Memory and Status	. 65
	7.8.	Register Definitions: Memory and Status	66
	7.9.	Register Summary: Shadow Registers	. 80
	7.10.	Register Definitions: Shadow Registers	80
8.	Rese	ets	87
	8.1.	Power-on Reset (POR)	. 88
	8.2.	Brown-out Reset (BOR)	. 88
	8.3.	Low-Power Brown-out Reset (LPBOR)	. 89
	8.4.	MCLR Reset	90
	8.5.	Windowed Watchdog Timer (WWDT) Reset	. 91
	8.6.	RESET Instruction	91
	8.7.	Stack Overflow/Underflow Reset.	91
	8.8.	Programming Mode Exit	91
	8.9.	Power-up Timer (PWRT)	92
	8.10	Start-up Sequence	. 92
	8.11.	Memory Execution Violation	93
	8.12.	- Determining the Cause of a Reset	. 94
	8.13.	Power Control (PCONx) Register	95

38. Register Summary	643
39. In-Circuit Serial Programming [™] (ICSP [™])	675
39.1. High-Voltage Programming Entry Mode	675
39.2. Low-Voltage Programming Entry Mode	675
39.3. Common Programming Interfaces	675
40. Instruction Set Summary	678
40.1. Read-Modify-Write Operations	678
40.2. Standard Instruction Set	679
41. Development Support	701
41.1. MPLAB X Integrated Development Environment Software	701
41.2. MPLAB XC Compilers	702
41.3. MPASM Assembler	
41.4. MPLINK Object Linker/MPLIB Object Librarian	
41.5. MPLAB Assembler, Linker and Librarian for various Device Families	
41.7. MPLAB REAL ICE In-Circuit Emulator System.	
41.8. MPLAB ICD 3 In-Circuit Debugger System	
41.9. PICkit 3 In-Circuit Debugger/Programmer	704
41.10. MPLAB PM3 Device Programmer	704
41.11. Demonstration/Development Boards, Evaluation Kits, and Starter Kits	704
41.12. Third-Party Development Tools	705
42. Electrical Specifications	706
42.1. Absolute Maximum Ratings ^(†)	
42.2. Standard Operating Conditions	
42.3. DC Characteristics	708
42.4. AC Characteristics	719
43. DC and AC Characteristics Graphs and Tables	742
43.1. Graphs	743
44. Packaging Information	744
44.1 Package Details	745
45 Povicion History	755
The Microchip Web Site	756
Customer Change Notification Service	756
Customer Support	756
Product Identification System	757
Microchip Devices Code Protection Feature	757

8.9 **Power-up Timer (PWRT)**

The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow V_{DD} to stabilize before allowing the device to start running.

The Power-up Timer is controlled by the PWRTS bit field of the Configuration Words.

The Power-up Timer provides a nominal 64 ms timeout on POR or Brown-out Reset.

The device is held in Reset as long as PWRT is active. The PWRT delay allows additional time for the V_{DD} to rise to an acceptable level. The Power-up Timer is enabled by setting a non-zero value in the PWRTS bit field, in Configuration Words.

The Power-up Timer starts after the release of the POR and BOR.

For additional information, refer to Application Note AN607, "Power-up Trouble Shooting" (DS0000607).

8.10 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. Oscillator start-up timer runs to completion (if required for selected oscillator source).
- 3. MCLR must be released (if enabled).

The total timeout will vary based on oscillator configuration and Power-up Timer configuration.

The Power-up Timer and oscillator start-up timer run independently of $\overline{\text{MCLR}}$ Reset. If $\overline{\text{MCLR}}$ is kept low long enough, the Power-up Timer and oscillator Start-up Timer will expire. Upon bringing $\overline{\text{MCLR}}$ high, the device will begin execution after ten F_{OSC} cycles (see figure below). This is useful for testing purposes or to synchronize more than one device operating in parallel.

10.7.13 PIR2

Name:PIR2Address:0x70E

Peripheral Interrupt Request (Flag) Register 2

Bit 6 – ZCDIF Zero-Cross Detect Interrupt Flag bit

Value	Description
1	An enabled rising and/or falling ZCD1 event has been detected (must be cleared in software)
0	No ZCD1 event has occurred

Bits 0, 1 – CnIF Comparator 'n' Interrupt Flag bit

Value	Description
1	Comparator Cn interrupt asserted (must be cleared in software)
0	Comparator Cn interrupt not asserted

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON appropriate interrupt flag bits are clear prior to enabling an interrupt.

PIC16(L)F18455/56 (PPS) Peripheral Pin Select Module

15.8 Register Summary - PPS

Address	Name	Bit Pos.						
0x1E8F	PPSLOCK	7:0						PPSLOCKED
0x1E90	INTPPS	7:0		PORT[1:0]			PIN[2:0]	
0x1E91	TOCKIPPS	7:0		POR	PORT[1:0]		PIN[2:0]	
0x1E92	T1CKIPPS	7:0		POR	Γ[1:0]		PIN[2:0]	
0x1E93	T1GPPS	7:0		POR	Γ[1:0]		PIN[2:0]	
0x1E94	T3CKIPPS	7:0		POR	Γ[1:0]		PIN[2:0]	
0x1E95	T3GPPS	7:0		POR	Г[1:0]		PIN[2:0]	
0x1E96	T5CKIPPS	7:0		POR	Г[1:0]		PIN[2:0]	
0x1E97	T5GPPS	7:0		POR	Г[1:0]		PIN[2:0]	
0x1E98								
	Reserved							
0x1E9B								
0x1E9C	T2INPPS	7:0		POR	Г[1:0]		PIN[2:0]	
0x1E9D	T4INPPS	7:0		POR	Г[1:0]		PIN[2:0]	
0x1E9E	T6INPPS	7:0		POR	T[1:0]		PIN[2:0]	
0x1E9F								
	Reserved							
0x1EA0								
0x1EA1	CCP1PPS	7:0		PORT[1:0]			PIN[2:0]	
0x1EA2	CCP2PPS	7:0		PORT[1:0]			PIN[2:0]	
0x1EA3	CCP3PPS	7:0		PORT[1:0]			PIN[2:0]	
0x1EA4	CCP4PPS	7:0		PORT[1:0]			PIN[2:0]	
0x1EA5	CCP5PPS	7:0		POR	T[1:0]		PIN[2:0]	
0x1EA6								
	Reserved							
0x1EA8								
0x1EA9	SMT1WINPPS	7:0		PORT[1:0]			PIN[2:0]	
0x1EAA	SMI1SIGPPS	7:0		PORT[1:0]			PIN[2:0]	
0x1EAB	SMT2WINPPS	7:0		PORT[1:0]			PIN[2:0]	
0x1EAC	SMT2SIGPPS	7:0		POR	1[1:0]		PIN[2:0]	
UXTEAD	Deserved							
 0v1EB0	Reserved							
0x1EB1	CWG1PPS	7:0		POR.	T[1·0]		PINI(2:01	
0x1EB1	CWG2PPS	7:0		POR.	Γ[1:0] Γ[1:0]		PIN[2:0]	
0x1EB2	CWG3PPS	7:0					PIN[2:0]	
0x1EB0		1.0		TON	.[]		1 11(2.0)	
OXILDI	Reserved							
0x1EB7								
0x1EB8	MDCARLPPS	7:0		POR	T[1:0]		PIN[2:0]	
0x1EB9	MDCARHPPS	7:0		POR	Γ[1:0]		PIN[2:0]	
0x1EBA	MDSRCPPS	7:0		POR	T[1:0]		PIN[2:0]	
0x1EBB	CLCINOPPS	7:0		POR	Γ[1:0]		PIN[2:0]	
0x1EBC	CLCIN1PPS	7:0		POR	Γ[1:0]		PIN[2:0]	

17.6.1 IOCAF

Name:IOCAFAddress:0x1F3F

PORTA Interrupt-on-Change Flag Register Example

Bit	7	6	5	4	3	2	1	0
	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0
Access	R/W/HS							
Reset	0	0	0	0	0	0	0	0

Bits 0, 1, 2, 3, 4, 5, 6, 7 - IOCAFn Interrupt-on-Change Flag bits

Value	Condition	Description
1	IOCAP[n]=1	A positive edge was detected on the RA[n] pin
1	IOCAN[n]=1	A negative edge was detected on the RA[n] pin
0	IOCAP[n]=x and	No change was detected, or the user cleared the detected change
	IOCAN[n]=x	

(ADC2) Analog-to-Digital Converter with Comp...

Figure 20-8. Differential CVD with Guard Ring Output Waveform

Related Links

20.8.2 ADCON115. (PPS) Peripheral Pin Select Module

20.5.5 Additional Sample and Hold Capacitance

Additional capacitance can be added in parallel with the internal sample and hold capacitor (C_{HOLD}) by using the ADCAP register. This register selects a digitally programmable capacitance, which is added to the ADC conversion bus, increasing the effective internal capacitance of the sample and hold capacitor in the ADC module. This is used to improve the match between internal and external capacitance for a better sensing performance. The additional capacitance does not affect analog performance of the ADC because it is not connected during conversion.

Related Links

20.6 Computation Operation 20.8.11 ADCAP

20.6.1 Digital Filter/Average

The digital filter/average module consists of an accumulator with data feedback options, and control logic to determine when threshold tests need to be applied. The accumulator is a 16-bit wide register that can be accessed through the ADACCH:ADACCL register pair.

Upon each trigger event (the GO bit set or external event trigger), the ADC conversion result is added to the accumulator. If the accumulated result exceeds 2^(accumulator_width)-1, the OV Accumulator Overflow bit is set.

The number of samples to be accumulated is determined by the ADRPT (A/D Repeat Setting) register. Each time a sample is added to the accumulator, the ADCNT register is incremented. Once ADRPT samples are accumulated (ADCNT = ADRPT), an accumulator clear command can be issued by the software by setting the ACLR bit. Setting the ACLR bit will also clear the OV bit, as well as the ADCNT register. The ACLR bit is cleared by the hardware when accumulator clearing action is complete.

Important: When ADC is operating from FRC, five FRC clock cycles are required to execute the ADACC clearing operation.

The CRS bits control the data shift on the accumulator result, which effectively divides the value in accumulator (ADACCU:ADACCH:ADACCL) register pair. For the Accumulate mode of the digital filter, the shift provides a simple scaling operation. For the Average/Burst Average mode, the Shift bits are used to determine the number of logical right shifts to be performed on the accumulated result. For the Low-pass Filter mode, the shift is an integral part of the filter, and determines the cut-off frequency of the filter. The table below shows the -3 dB cut-off frequency in ω T (radians) and the highest signal attenuation obtained by this filter at nyquist frequency (ω T = π).

CRS	ωT (radians) @ -3 dB Frequency	dB @ F _{nyquist} =1/(2T)
1	0.72	-9.5
2	0.284	-16.9
3	0.134	-23.5
4	0.065	-29.8
5	0.032	-36.0
6	0.016	-42.0
7	0.0078	-48.1

Table 20-5. Low-pass Filter -3 dB Cut-off Frequency

20.6.2 Basic Mode

Basic mode (MD = 000) disables all additional computation features. In this mode, no accumulation occurs but threshold error comparison is performed. Double sampling, Continuous mode, and all CVD features are still available, but no features involving the digital filter/average features are used.

20.6.3 Accumulate Mode

In Accumulate mode (MD = 001), after every conversion, the ADC result is added to the ADACC register. The ADACC register is right-shifted by the value of the CRS bits. This right-shifted value is copied into the ADFLT register. The Formatting mode does not affect the right-justification of the ADFLT value. Upon

27.5 Operating Modes

The mode of the timer is controlled by the MODE bits of the T2HLT register. Edge-Triggered modes require six Timer clock periods between external triggers. Level-Triggered modes require the triggering level to be at least three Timer clock periods long. External triggers are ignored while in Debug mode.

Mada	MODE<4:0>		Output	t Operation	Timer Control			
wode	<4:3>	<2:0>	Operation	Operation	Start	Reset	Stop	
		000		Software gate (Figure 27-3)	ON = 1	—	ON = 0	
		001	Period Pulse Period Pulse with Hardware Reset	Hardware gate, active- high (Figure 27-4)	ON = 1 and TMRx_ers = 1	_	ON = 0 or TMRx_ers = 0	
		010		Hardware gate, active- low	ON = 1 and TMRx_ers = 0		ON = 0 or TMRx_ers = 1	
Free Running Period	00	011		Rising or falling edge Reset		TMRx_ers ↓		
		100		Rising edge Reset (Figure 27-5)	ON = 1	TMRx_ers ↑	ON = 0 ON = 0 or TMRx_ers = 0	
		101		Falling edge Reset		TMRx_ers ↓		
		110		Low level Reset		TMRx_ers = 0		
		111		High level Reset (Figure 27-6)		TMRx_ers = 1	ON = 0 or TMRx_ers = 1	
		000	One-shot	Software start (Figure 27-7)	ON = 1	—		
One-shot	01	001	Edge	Rising edge start (Figure 27-8)	ON = 1 and TMRx_ers ↑	_	ON = 0 or Next clock after	
		010	Start	Falling edge start	ON = 1 and TMRx_ers ↓	_	TMRx = PRx (Note 2)	
		011	(Any edge start	ON = 1 and TMRx_ers			

Table 27-3. Operating Modes Table

27.9.5 TxCLKCON

Name:	TxCLKCON
Address:	0x290,0x296,0x29C

Timer Clock Source Selection Register

Bits 3:0 - CS[3:0] Timer Clock Source Selection bits

Value	Description
n	See Clock Source Selection table

29. Capture/Compare/PWM Module

The Capture/Compare/PWM module is a peripheral that allows the user to time and control different events, and to generate Pulse-Width Modulation (PWM) signals. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate Pulse-Width Modulated signals of varying frequency and duty cycle.

This family of devices contains five standard Capture/Compare/PWM modules (CCP1, CCP2, CCP3, CCP4 and CCP5). It should be noted that the Capture/Compare mode operation is described with respect to TMR1 and the PWM mode operation is described with respect to T2TMR in the following sections.

The Capture and Compare functions are identical for all CCP modules.

Important:

- 1. In devices with more than one CCP module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the CCP1CON and CCP2CON control the same operational aspects of two completely different CCP modules.
- 2. Throughout this section, generic references to a CCP module in any of its operating modes may be interpreted as being equally applicable to CCPx module. Register names, module signals, I/O pins, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

29.1 CCP Module Configuration

Each Capture/Compare/PWM module is associated with a control register (CCPxCON), a capture input selection register (CCPxCAP) and a data register (CCPRx). The data register, in turn, is comprised of two 8-bit registers: CCPRxL (low byte) and CCPRxH (high byte).

29.1.1 CCP Modules and Timer Resources

The CCP modules utilize Timers 1 through 6 that vary with the selected mode. Various timers are available to the CCP modules in Capture, Compare or PWM modes, as shown in the table below.

Table 29-1.	ССР	Mode -	Timer	Resources
-------------	-----	--------	-------	-----------

CCP Mode	Timer Resource
Capture	Timor1 Timor2 or Timor5
Compare	
PWM	Timer2, Timer4 or Timer6

The assignment of a particular timer to a module is determined by the timer to CCP enable bits in the CCPTMRS0 and/or CCPTMRS1 registers. All of the modules may be active at once and may share the same timer resource if they are configured to operate in the same mode (Capture/Compare or PWM) at the same time.

Related Links

20.2.6 Auto-Conversion Trigger

29.3.4 Compare During Sleep

Since F_{OSC} is shut down during Sleep mode, the Compare mode will not function properly during Sleep, unless the timer is running. The device will wake on interrupt (if enabled).

29.4 PWM Overview

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully ON and fully OFF states. The PWM signal resembles a square wave where the high portion of the signal is considered the ON state and the low portion of the signal is considered the OFF state. The high portion, also known as the pulse width, can vary in time and is defined in steps. A larger number of steps applied, which lengthens the pulse width, also supplies more power to the load. Lowering the number of steps applied, which shortens the pulse width, supplies less power. The PWM period is defined as the duration of one complete cycle or the total amount of ON and OFF time combined.

PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse-width time and in turn the power that is applied to the load.

The term duty cycle describes the proportion of the ON time to the OFF time and is expressed in percentages, where 0% is fully OFF and 100% is fully ON. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied.

The shows a typical waveform of the PWM signal.

Figure 29-3. CCP PWM Output Signal

29.4.1 Standard PWM Operation

The standard PWM function described in this section is available and identical for all CCP modules.

The standard PWM mode generates a Pulse-Width Modulation (PWM) signal on the CCPx pin with up to ten bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

- Even numbered TxPR registers (T2PR, T4PR, etc)
- Even numbered TxCON registers (T2CON, T4CON, etc)
- 16-bit CCPRx registers
- CCPxCON registers

It is required to have $F_{OSC}/4$ as the clock input to TxTMR for correct PWM operation. The following figure shows a simplified block diagram of PWM operation.

31. (CWG) Complementary Waveform Generator Module

The Complementary Waveform Generator (CWG) produces half-bridge, full-bridge, and steering of PWM waveforms. It is backwards compatible with previous CCP functions. The PIC16(L)F18455/56 family has 3 instance(s) of the CWG module.

The CWG has the following features:

- Six Operating modes:
 - Synchronous Steering mode
 - Asynchronous Steering mode
 - Full-Bridge mode, Forward
 - Full-Bridge mode, Reverse
 - Half-Bridge mode
 - Push-Pull mode
- Output Polarity Control
- Output Steering
- Independent 6-Bit Rising and Falling Event Dead-Band Timers:
 - Clocked dead band
 - Independent rising and falling dead-band enables
 - Auto-Shutdown Control With:
 - Selectable shutdown sources
 - Auto-restart option
 - Auto-shutdown pin override control

31.1 Fundamental Operation

The CWG generates two output waveforms from the selected input source.

The off-to-on transition of each output can be delayed from the on-to-off transition of the other output, thereby, creating a time delay immediately where neither output is driven. This is referred to as dead time and is covered in 31.7 Dead-Band Control.

It may be necessary to guard against the possibility of circuit faults or a feedback event arriving too late or not at all. In this case, the active drive must be terminated before the Fault condition causes damage. This is referred to as auto-shutdown and is covered in 31.11 Auto-Shutdown.

31.2 Operating Modes

The CWG module can operate in six different modes, as specified by the MODE bits:

- Half-Bridge mode
- Push-Pull mode
- Asynchronous Steering mode
- Synchronous Steering mode
- Full-Bridge mode, Forward
- Full-Bridge mode, Reverse

PIC16(L)F18455/56 (CWG) Complementary Waveform Generator Modul...

Figure 31-2. Simplified CWG Block Diagram (Half-Bridge Mode, MODE<2:0> = 100)

and counts down to zero. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 35-38). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 35-39).

Figure 35-39. Bus Collision During a Stop Condition (Case 2)

35.7 Baud Rate Generator

The MSSP module has a Baud Rate Generator available for clock generation in both I²C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPxADD register. When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" shown in Figure 35-40 triggers the value from SSPxADD to be loaded into the BRG counter. This occurs twice for each oscillation of the module clock line. The logic dictating when the reload signal is asserted depends on the mode in which the MSSP is being operated.

© 2018 Microchip Technology Inc.

35.9.2 SSPxCON1

Name:	SSPxCON1
Address:	0x190,0x19A

MSSP Control Register 1

Bit	7	6	5	4	3	2	1	0
	WCOL	SSPOV	SSPEN	CKP	SSPM[3:0]			
Access	R/W/HS	R/W/HS	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 7 – WCOL

Write Collision Detect bit

Value	Mode	Description
1	SPI	A write to the SSPxBUF register was attempted while the previous
		byte was still transmitting (must be cleared by software)
1	I ² C Master transmit	A write to the SSPxBUF register was attempted while the I ² C
		conditions were not valid for a transmission to be started (must be
		cleared by software)
1	I ² C Slave transmit	The SSPxBUF register is written while it is still transmitting the
		previous word (must be cleared in software)
0	SPI or I ² C Master or	No collision
	Slave transmit	
X	Master or Slave	Don't care
	receive	

Bit 6 – SSPOV

Receive Overflow Indicator bit⁽¹⁾

Value	Mode	Description
1	SPI Slave	A byte is received while the SSPxBUF register is still holding the previous byte. The user must read SSPxBUF, even if only transmitting data, to avoid setting overflow. (must be cleared in software)
1	I ² C Receive	A byte is received while the SSPxBUF register is still holding the previous byte (must be cleared in software)
0	SPI Slave or I ² C Receive	No overflow
Х	SPI Master or I ² C Master transmit	Don't care

Bit 5 – SSPEN

Master Synchronous Serial Port Enable bit.⁽²⁾

Register Summary

Address	Name	Bit Pos.									
0x028E	T2CON	7:0	ON		CKPS[2:0]			OUTF	'S[3:0]		
0x028F	T2HLT	7:0	PSYNC	CPOL	CSYNC		MODE[4:0]				
0x0290	T2CLKCON	7:0					CS[3:0]				
0x0291	T2RST	7:0						RSE	L[3:0]		
0x0292	T4TMR	7:0		:	1	TxTM	R[7:0]				
0x0293	T4PR	7:0				TxPF	R[7:0]				
0x0294	T4CON	7:0	ON		CKPS[2:0]			OUTF	PS[3:0]		
0x0295	T4HLT	7:0	PSYNC	CPOL	CSYNC			MODE[4:0]			
0x0296	T4CLKCON	7:0						CS	[3:0]		
0x0297	T4RST	7:0						RSE	L[3:0]		
0x0298	T6TMR	7:0				TxTM	R[7:0]				
0x0299	T6PR	7:0				TxPF	R[7:0]				
0x029A	T6CON	7:0	ON		CKPS[2:0]			OUTF	PS[3:0]		
0x029B	T6HLT	7:0	PSYNC	CPOL	CPOL CSYNC MODE[4:0]						
0x029C	T6CLKCON	7:0						CS	[3:0]		
0x029D	T6RST	7:0					RSEL[3:0]				
0x029E	Reserved										
0x029F	ADCPCON0	7:0	CPON							CPRDY	
0x02A0											
	Reserved										
0x02FF											
0x0300	INDF0	7:0	INDF0[7:0]								
0x0301	INDF1	7:0				INDF	1[7:0]				
0x0302	PCL	7:0				PCL	[7:0]	_	50		
0x0303	STATUS	7:0				10	PD	Z	DC	С	
0x0304	FSR0	7:0				FSRI	_[7:0]				
		15:8				FSRF	1[7:0]				
0x0306	FSR1	7:0				FSRI	_[7:0]				
0,0200	DOD	15:8				FSRF	1[/:U]	[5.0]			
0x0300	WREC	7.0				\//DE/		[5.0]			
0x0309		7.0				WRE					
0x030R		7.0	GIE	DEIE			POLATI[0.0]			INTEDG	
070308	INTCON	7.0	GIL			CCPR	9 [7 ·0]			INTEDG	
0x030C	CCPR1	15.8				CCPR	H[7:0]				
0x030E	CCP1CON	7.0	EN		OUT	EMT		MOD	E[3·0]		
0x030E	CCP1CAP	7:0	LIN		001	I IVII		WOD	CTS[2:0]		
0,0001		7:0				CCPR	9 [7·0]		010[2.0]		
0x0310	CCPR2	15.8				CCPR	H[7:0]				
0x0312	CCP2CON	7.0									
0x0313	CCP2CAP	7:0									
	00.207.	7:0	CCPRL[7:0]								
0x0314	CCPR3	15:8	CCPRH[7:0]								
0x0316	CCP3CON	7:0	EN		OUT	FMT	r 1	MOD	E[3:0]		
0x0317	CCP3CAP	7:0							CTSI2:01		
0x0318	CCPR4	7:0				CCPR	L[7:0]		[]		
			CONTERT.								

Instruction Set Summary

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \mbox{ prescaler}, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The Power-down Status bit (PD) is cleared. The Time-out Status bit (TO) is set. Watchdog Timer and its prescaler are cleared.

SUBLW	Subtract W from literal
Syntax:	[<i>label</i>] SUBLW k
Operands:	0 ≤ k ≤ 255
Operation:	$k-(W)\to(W)$
Status Affected:	C, DC, Z
	The W register is subtracted (2's complement method) from the 8-bit literal 'k'. The result is placed in the W register.
_	C =0, W > k
Description	$C = 1, W \le k$
	DC = 0, W[3:0] > k[3:0]
	$DC = 1, W[3:0] \le k[3:0]$

SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBWF f, d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) - (W) \rightarrow (dest)
Status Affected:	C, DC, Z
Description	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f. C =0, W > f

Electrical Specifications

PIC16LF18455/56 only										
Standard Operating Conditions (unless otherwise stated)										
Param.	Param. No. Sym.	Device	Min	Tour	Max.	Max.	Unite	Cor	nditions	
No.		Characteristics		ויקעי	+85°C	+125°C	Units	V _{DD}	Note	
D202	I _{PD_SOSC}	Secondary Oscillator (S _{OSC})		0.6	5	11	μΑ	3.0V		
D203	I _{PD_FVR}	FVR		33	74	76	μA	3.0V		
D204	I _{PD_BOR}	Brown-out Reset (BOR)		10	17	19	μA	3.0V		
D205	I _{PD_LPBOR}	Low-Power Brown-out Reset (LPBOR)		0.5	3.0	10	μA	3.0V		
D207	I _{PD_ADCA}	ADC - Non- converting		0.06	2	9	μA	3.0V	ADC not converting (4)	
D208	I _{PD_CMP}	Comparator		30	48	56	μA	3.0V		

† - Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note:

- 1. The peripheral current is the sum of the base I_{DD} and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base I_{DD} or I_{PD} current from this limit. Max. values should be used when calculating total current consumption.
- The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode with all I/O pins in high-impedance state and tied to V_{SS}.
- 3. All peripheral currents listed are on a per-peripheral basis if more than one instance of a peripheral is available.
- 4. ADC clock source is FRC.

PIC16F18455/56 only									
Standard Operating Conditions (unless otherwise stated), VREGPM = 1									
Param.	Sym.	Device Characteristics	Min.	Typ.†	Max. +85°C	Max. +125°C	Units	Conditions	
No.								V _{DD}	Note
D200		I _{PD} Base	—	0.4	3	12	μA	3.0V	
D200A	I _{PD}			18	25	30	μA	3.0V	VREGPM =
D201	I _{PD_WDT}	Low-Frequency Internal Oscillator/WDT		0.9	4	14	μΑ	3.0V	

PIC16(L)F18455/56 Packaging Information

44.1 Package Details

The following sections give the technical details of the packages.