

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	26
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18455-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2 16-Level Stack with Overflow and Underflow

These devices have a hardware stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON0 register, and if enabled, will cause a software Reset.

Related Links

7.5 Stack 8.15.2 PCON0

3.3 File Select Registers

There are two 16-bit File Select Registers (FSR). FSRs can access all file registers and program memory, which allows one Data Pointer for all memory. When an FSR points to program memory, there is one additional instruction cycle in instructions using INDF to allow the data to be fetched. General purpose memory can also be addressed linearly, providing the ability to access contiguous data larger than 80 bytes.

Related Links

7.6 Indirect Addressing

3.4 Instruction Set

There are 50 instructions for the enhanced mid-range CPU to support the features of the CPU.

Related Links

40. Instruction Set Summary

4.7.4 CONFIG4

Name: CONFIG4 Address: 0x800A

Configuration Word 4

Memory Write Protection

Bit	15	14	13	12	11	10	9	8
			LVP		WRTSAF	WRTD	WRTC	WRTB
Access			R/P	U	R/P	R/P	R/P	R/P
Reset			1	1	1	1	1	1
Bit	7	6	5	4	3	2	1	0
	WRTAPP			SAFEN	BBEN		BBSIZE[2:0]	
Access	R/P	U	U	R/P	R/P	R/P	R/P	R/P
Reset	1	1	1	1	1	1	1	1

Bit 13 – LVP Low-Voltage Programming Enable bit

The LVP bit cannot be written (to zero) while operating from the LVP programming interface. The purpose of this rule is to prevent the user from dropping out of LVP mode while programming from LVP mode, or accidentally eliminating LVP mode from the Configuration state.

The preconditioned (erased) state for this bit is critical.

Value	Description
1	Low-voltage programming enabled. MCLR/V _{PP} pin function is MCLR. MCLRE Configuration
	bit is ignored.
0	HV on MCLR/V _{PP} must be used for programming

Bit 11 – WRTSAF Storage Area Flash Write Protection bit⁽¹⁾

Value	Description
1	SAF NOT write-protected
0	SAF write-protected

Bit 10 – WRTD Data EEPROM Write Protection bit⁽¹⁾

Value	Description
1	Data EEPROM NOT write-protected
0	Data EEPROM write-protected

Bit 9 – WRTC Configuration Register Write Protection bit⁽¹⁾

Value	Description
1	Configuration Registers NOT write-protected
0	Configuration Registers write-protected

Bit 8 – WRTB Boot Block Write Protection bit⁽¹⁾

Figure 9-8. Clock Switch Abandoned

Note:

- 1. CSWIF may be cleared before or after rewriting OSCCON1; CSWIF is not automatically cleared.
- 2. ORDY = 0 if OSCCON1 does not match OSCCON2; a new switch will begin.

9.4 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM is enabled by setting the FCMEN bit in the Configuration Words. The FSCM is applicable to all external Oscillator modes (LP, XT, HS, ECL/M/H and Secondary Oscillator).

Figure 9-9. FSCM Block Diagram

9.4.1 Fail-Safe Detection

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64. See Figure 9-9. Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the external clock goes low.

10.7.3 PIE1

Name:PIE1Address:0x717

Peripheral Interrupt Enable Register 1

Bit	7	6	5	4	3	2	1	0
	OSFIE	CSWIE					ADTIE	ADIE
Access	R/W	R/W					R/W	R/W
Reset	0	0					0	0

Bit 7 – OSFIE Oscillator Fail Interrupt Enable bit

Value	Description
1	Enabled
0	Disabled

Bit 6 - CSWIE Clock-Switch Interrupt Enable bit

Value	Description
1	Enabled
0	Disabled

Bit 1 – ADTIE ADC Threshold Interrupt Enable bit

Value	Description
1	Enabled
0	Disabled

Bit 0 – ADIE ADC Interrupt Enable bit

Value	Description
1	Enabled
0	Disabled

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt controlled by registers PIE1-PIE8.

PIC16(L)F18455/56

Interrupts

Value	Condition	Description
1	PWM mode	Output trailing edge occurred (must be cleared in software)
0	PWM mode	Output trailing edge did not occur

Bit 0 – CCP1IF CCP1 Interrupt Flag bit

Value	Condition	Description
1	Capture mode	Capture occurred (must be cleared in software)
0	Capture mode	Capture did not occur
1	Compare mode	Compare match occurred (must be cleared in software)
0	Compare mode	Compare match did not occur
1	PWM mode	Output trailing edge occurred (must be cleared in software)
0	PWM mode	Output trailing edge did not occur

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON appropriate interrupt flag bits are clear prior to enabling an interrupt.

13. (NVM) Nonvolatile Memory Control

Nonvolatile Memory (NVM) is separated into two types: Program Flash Memory (PFM) and Data EEPROM Memory.

NVM is accessible by using both the FSR and INDF registers, or through the NVMREG register interface.

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump rated to operate over the operating voltage range of the device.

NVM can be protected in two ways, by either code protection or write protection.

Code protection (CP and CPD bits in the Configuration Words) disables access, reading and writing to both PFM and Data EEPROM Memory via external device programmers. Code protection does not affect the self-write and erase functionality. Code protection can only be reset by a device programmer performing a Bulk Erase to the device, clearing all nonvolatile memory, Configuration bits and User IDs.

Write protection prohibits self-write and erase to a portion or all of the NVM, as defined by the WRTSAF, WRTD, WRTC, WRTB, and WRTAPP bits of Configuration Word 4. Write protection does not affect a device programmer's ability to read, write, or erase the device.

Related Links

4.7.4 CONFIG4

4.7.5 CONFIG5

13.1 Program Flash Memory

Program Flash memory consists of an array of 14-bit words as user memory, with additional words for user ID information, Configuration words, and interrupt vectors. Program memory provides storage locations for:

- User program instructions
- User defined data

Program memory data can be read and/or written to through:

- CPU instruction fetch (read-only)
- FSR/INDF indirect access (read-only)
- NVMREG access
- In-Circuit Serial Programming[™] (ICSP[™])

Read operations return a single word of memory. When write and erase operations are done on a row basis, the row size is defined. Program memory will erase to a logic '1' and program to a logic '0'.

It is important to understand the program memory structure for erase and programming operations. Program memory is arranged in rows. A row consists of 32 14-bit program memory words. A row is the minimum size that can be erased by user software.

All or a portion of a row can be programmed. Data to be written into the program memory row is written to 14-bit wide data write latches. These latches are not directly accessible, but may be loaded via sequential writes to the NVMDATH:NVMDATL register pair.

13.5 Register Summary: NVM Control

Address	Name	Bit Pos.									
0x081A	NVMADR	7:0		NVMADRL[7:0]							
		15:8	NVMADRH[6:0]								
0x081C	NVMDAT	7:0			NVMDA	ATL[7:0]					
		15:8				NVMDA	ATH[5:0]				
0x081E	NVMCON1	7:0	NVMREGS	LWLO	FREE	WRERR	WREN	WR	RD		
0x081F	NVMCON2	7:0	NVMCON2[7:0]								

13.6 Register Definitions: Nonvolatile Memory

16.5.4 PMD3

Name:PMD3Address:0x799

PMD Control Register 3

Bit	7	6	5	4	3	2	1	0
		DAC1MD	ADCMD			C2MD	C1MD	ZCDMD
Access		R/W	R/W			R/W	R/W	R/W
Reset		0	0			0	0	0

Bit 6 – DAC1MD Disable DAC1 bit

Value	Description
1	DAC module disabled
0	DAC module enabled

Bit 5 - ADCMD Disable ADC bit

Value	Description
1	ADC module disabled
0	ADC module enabled

Bit 2 – C2MD Disable Comparator C2 bit

Value	Description
1	C2 module disabled
0	C2 module enabled

Bit 1 – C1MD Disable Comparator C1 bit

Value	Description
1	C1 module disabled
0	C1 module enabled

Bit 0 – ZCDMD Disable Zero-Cross Detect module bit

Value	Description
1	ZCD module disabled
0	ZCD module enabled

Value	Description
01	ADC FVR Buffer Gain is 1x, (1.024V)
00	ADC FVR Buffer is off

Note:

- 1. Fixed Voltage Reference output cannot exceed V_{DD}.
- 2. See *Temperature Indicator Module* section for additional information.

Related Links

19. Temperature Indicator Module

20.4 ADC Charge Pump

The ADC module has a dedicated charge pump that can be controlled through the ADCPCON0 register. The primary purpose of the charge pump is to supply a constant voltage to the gates of transistor devices in the A/D converter, signal and reference input pass-gates, to prevent degradation of transistor performance at low operating voltage.

The charge pump can be enabled by setting the CPON bit. Once enabled, the pump will undergo a startup time to stabilize the charge pump output. Once the output stabilizes and is ready for use, the CPRDY bit will be set.

Related Links 20.8.23 ADCPCON0

20.5 Capacitive Voltage Divider (CVD) Features

The ADC module contains several features that allow the user to perform a relative capacitance measurement on any ADC channel using the internal ADC sample and hold capacitance as a reference. This relative capacitance measurement can be used to implement capacitive touch or proximity sensing applications. The following figure shows the basic block diagram of the CVD portion of the ADC module.

Figure 20-6. Hardware Capacitive Voltage Divider Block Diagram

20.5.1 CVD Operation

A CVD operation begins with the ADC's internal sample and hold capacitor (C_{HOLD}) being disconnected from the path which connects it to the external capacitive sensor node. While disconnected, C_{HOLD} is precharged to V_{DD} or V_{SS} the sensor node is also charged to V_{SS} or V_{DD} , respectively to the level opposite that of C_{HOLD} . When the precharge phase is complete, the V_{DD}/V_{SS} bias paths for the two nodes are shut off and the paths between C_{HOLD} and the external sensor node is reconnected, at which time the acquisition phase of the CVD operation begins. During acquisition, a capacitive voltage divider is formed between the precharged C_{HOLD} and sensor nodes, which results in a final voltage level setting on C_{HOLD}

24.4 ZCD Interrupts

An interrupt will be generated upon a change in the ZCD logic output when the appropriate interrupt enables are set. A rising edge detector and a falling edge detector are present in the ZCD for this purpose.

The ZCDIF bit of the PIRx register will be set when either edge detector is triggered and its associated enable bit is set. The INTP enables rising edge interrupts and the INTN bit enables falling edge interrupts. Priority of the interrupt can be changed if the IPEN bit of the INTCON register is set. The ZCD interrupt can be made high or low priority by setting or clearing the ZCDIP bit of the IPRx register.

To fully enable the interrupt, the following bits must be set:

- ZCDIE bit of the PIEx register
- INTP bit for rising edge detection
- INTN bit for falling edge detection
- PEIE and GIE bits of the INTCON register

Changing the POL bit will cause an interrupt, regardless of the level of the SEN bit.

The ZCDIF bit of the PIRx register must be cleared in software as part of the interrupt service. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

Related Links 7.8.10 INTCON 10.7.13 PIR2

24.5 Correction for Z_{CPINV} Offset

The actual voltage at which the ZCD switches is the reference voltage at the non-inverting input of the ZCD op amp. For external voltage source waveforms other than square waves, this voltage offset from zero causes the zero-cross event to occur either too early or too late.

24.5.1 Correction by AC Coupling

When the external voltage source is sinusoidal, the effects of the Z_{CPINV} offset can be eliminated by isolating the external voltage source from the ZCD pin with a capacitor, in addition to the voltage reducing resistor. The capacitor will cause a phase shift resulting in the ZCD output switch in advance of the actual zero crossing event. The phase shift will be the same for both rising and falling zero crossings, which can be compensated for by either delaying the CPU response to the ZCD switch by a timer or other means, or selecting a capacitor value large enough that the phase shift is negligible.

To determine the series resistor and capacitor values for this configuration, start by computing the impedance, Z, to obtain a peak current of 300 μ A. Next, arbitrarily select a suitably large non-polar capacitor and compute its reactance, Xc, at the external voltage source frequency. Finally, compute the series resistor, capacitor peak voltage, and phase shift by the formulas shown below.

When this technique is used and the input signal is not present, the ZCD will tend to oscillate. To avoid this oscillation, connect the ZCD pin to V_{DD} or GND with a high-impedance resistor such as 200K.

Equation 24-2. R-C Equations

 V_{PEAK} = external voltage source peak voltage

f = external voltage source frequency

PIC16(L)F18455/56 (CWG) Complementary Waveform Generator Modul...

Rev. 10-000211D 5/30/2017 MODE<2:0> = 000: Asynchronous LSAC<1:0> MODE<2:0> = 001: Synchronous '1' 00 '0' 01 10 High-Z 11 CWG Data A 1 1 CWGxA POLA 0 0 OVRA STRA LSBD<1:0> '1' 00 '0' 01 CWG CWG Data 10 Data High-Z Input 11 CWG Data B D Q 1 1 Е POLB CWGxB 0 0 OVRB ΕN STRB LSAC<1:0> 00 '1' 'O' 01 High-Z 10 11 CWG Data C 1 Auto-shutdown source : 1 s Q POLC CWGxC (CWGxAS1 register) 0 0 R OVRC STRC LSBD<1:0> REN SHUTDOWN = 0 00 '1' '0' 01 High-Z 10 11 CWG Data D 1 1 CWGxD POLD 0 0 OVRD SHUTDOWN STRD FREEZE D Q CWG Data 4

Figure 31-9. Simplified CWG Block Diagram (Output Steering Modes)

32.12.1 MDxCON0

Name:	MDxCON0
Address:	0x0897

Modulation Control Register 0

Bit	7	6	5	4	3	2	1	0
	EN		OUT	OPOL				BIT
Access	R/W		R/W	R/W				R/W
Reset	0		0	0				0

Bit 7 – EN Modulator Module Enable bit

Value	Description
1	Modulator module is enabled and mixing input signals
0	Modulator module is disabled and has no output

Bit 5 – OUT Modulator Output bit

Displays the current output value of the modulator module.

Bit 4 – OPOL Modulator Output Polarity Select bit

Value	Description
1	Modulator output signal is inverted; idle high output
0	Modulator output signal is not inverted; idle low output

Bit 0 - BIT Modulation Source Select Input bit

Allows software to manually set modulation source input to module

Note:

- 1. The modulated output frequency can be greater and asynchronous from the clock that updates this register bit, the bit value may not be valid for higher speed modulator or carrier signals.
- 2. MDBIT must be selected as the modulation source in the MDxSRC register for this operation.

33.8.5 CLCxSEL2

Name:	CLCxSEL2
Address:	0x1E14,0x1E1E,0x1E28,0x1E32

Generic CLCx Data 1 Select Register

Bit	7	6	5	4	3	2	1	0	
			D3S[5:0]						
Access			R/W	R/W	R/W	R/W	R/W	R/W	
Reset			х	х	х	х	х	х	

Bits 5:0 - D3S[5:0]

CLCx Data3 Input Selection bits Reset States: POR/BOR = xxxxx All Other Resets = uuuuu

Value	Description
n	Refer to CLC Input Sources for input selections

34. Reference Clock Output Module

The reference clock output module provides the ability to send a clock signal to the clock reference output pin (CLKR). The reference clock output can also be routed internally as a signal for other peripherals, such as the Data Signal Modulator (DSM), Memory Scanner, and Timer module.

The reference clock output module has the following features:

- Selectable Clock Source Using the CLKRCLK Register
- Programmable Clock Divider
- Selectable Duty Cycle

Figure 34-1. Clock Reference Block Diagram

PIC16(L)F18455/56 (MSSP) Master Synchronous Serial Port Module

© 2018 Microchip Technology Inc.

PIC16(L)F18455/56 (MSSP) Master Synchronous Serial Port Module

Rev. 30-000050A 4/3/2017

Table 35-1 illustrates clock rates based on instruction cycles and the BRG value loaded into SSPxADD.

Example 35-1. MSSP Baud Rate Generator Frequency Equation $F_{CLOCK} = \frac{F_{OSC}}{4 \times (SSPxADD + 1)}$

Figure 35-40. Baud Rate Generator Block Diagram

Important: Values of 0x00, 0x01 and 0x02 are not valid for SSPxADD when used as a Baud Rate Generator for I^2C . This is an implementation limitation.

Table 35-1. MSSP Clock Rate w/BRG

F _{osc}	F _{CY}	BRG Value	Fclock (2 Rollovers of BRG)
32 MHz	8 MHz	13h	400 kHz
32 MHz	8 MHz	19h	308 kHz
32 MHz	8 MHz	4Fh	100 kHz
16 MHz	4 MHz	09h	400 kHz
16 MHz	4 MHz	0Ch	308 kHz
16 MHz	4 MHz	27h	100 kHz
4 MHz	1 MHz	09h	100 kHz

Note: Refer to the I/O port electrical specifications in the "*Electrical Specifications*" section, Internal Oscillator Parameters, to ensure the system is designed to support lol requirements.

Note: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

36.3.1.6 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RCxREG is read to access the FIFO. When this happens the OERR bit of the RCxSTA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RCxREG. If the overrun occurred when the CREN bit is set then the error condition is cleared by either clearing the CREN bit of the RCxSTA register or by clearing the SPEN bit which resets the EUSART.

36.3.1.7 Receiving 9-Bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCxSTA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCxSTA register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCxREG.

36.3.1.8 Synchronous Master Reception Setup

- 1. Initialize the SPxBRGH:SPxBRGL register pair and set or clear the BRG16 bit, as required, to achieve the desired baud rate.
- 2. Select the receive input pin by writing the appropriate values to the RxyPPS register and RXxPPS register. Both selections should enable the same pin.
- 3. Select the clock output pin by writing the appropriate values to the RxyPPS register and CKxPPS register. Both selections should enable the same pin.
- 4. Clear the ANSEL bit for the RXx pin (if applicable).
- 5. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 6. Ensure bits CREN and SREN are clear.
- 7. If interrupts are desired, set the RCxIE bit of the PIEx register and the GIE and PEIE bits of the INTCON register.
- 8. If 9-bit reception is desired, set bit RX9.
- 9. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
- 10. Interrupt flag bit RCxIF will be set when reception of a character is complete. An interrupt will be generated if the enable bit RCxIE was set.
- 11. Read the RCxSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 12. Read the 8-bit received data by reading the RCxREG register.
- 13. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCxSTA register or by clearing the SPEN bit which resets the EUSART.

PIC16(L)F18455/56

Electrical Specifications

PIC16LF18455/56 only									
Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym. Characteristic Min. Typ.† Max. Units Conditions								
D003	V _{DR}		1.5	_	_	V	Device in Sleep mode		
Power-on F	Reset Relea	se Voltage ⁽²⁾							
D004	V _{POR}			1.6	_	V	BOR or LPBOR disabled ⁽³⁾		
Power-on F	Reset Rearm	n Voltage ⁽²⁾							
D005	V _{PORR}			0.8	_	V	BOR or LPBOR disabled ⁽³⁾		
V _{DD} Rise Rate to ensure internal Power-on Reset signal ⁽²⁾									
D006	S _{VDD}		0.05			V/ms	BOR or LPBOR disabled ⁽³⁾		
† - Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.									

Note:

- 1. This is the limit to which V_{DD} can be lowered in Sleep mode without losing RAM data.
- 2. See the following figure, POR and POR REARM with Slow Rising V_{DD} .
- 3. Please see 42.4.5 Reset, WDT, Oscillator Start-up Timer, Power-up Timer, Brown-Out Reset and Low-Power Brown-Out Reset Specifications for BOR and LPBOR trip point information.

PIC16F18455/56 only									
Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic	Min.	Typ.†	Max.	Units	Conditions		
Supply Volt	age								
Daga	V		2.3	—	5.5	V	F _{OSC} ≤ 16 MHz		
D002	VDD		2.5	—	5.5	V	F _{OSC} > 16 MHz		
RAM Data F	Retention ⁽¹⁾								
D003	V _{DR}		1.7	—	_	V	Device in Sleep mode		
Power-on Reset Release Voltage ⁽²⁾									
D004	V _{POR}			1.6		V	BOR or LPBOR disabled ⁽³⁾		
Power-on Reset Rearm Voltage ⁽²⁾									

PIC16(L)F18455/56 Electrical Specifications

Note: Refer to Figure 42-4 for load conditions.

42.4.19 I²C Bus Start/Stop Bits Requirements Table 42-25.

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic			Typ. †	Max.	Units	Conditions	
SP90*	T _{SU:STA}	Start condition Setup time	100 kHz mode	4700			ns	Only relevant for Repeated Start Setup time 400 kHz mode 600 condition	
			400 kHz mode	600					
SP91*	T _{HD:STA}	D:STA Start condition Hold time	100 kHz mode	4000			ns	After this period, the first clock Hold time 400 kHz mode 600 — — pulse is generated	
			400 kHz mode	600					
SP92*	T _{SU:STO}	Stop condition Setup time	100 kHz mode	4700			ns		
			400 kHz mode	600					
SP93*	T _{HD:STO}	Stop condition Hold time	100 kHz mode	4000			ns		