E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	68000
Number of Cores/Bus Width	1 Core, 16/32-Bit
Speed	10MHz
Co-Processors/DSP	-
RAM Controllers	-
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	5.0V
Operating Temperature	-40°C ~ 85°C (TC)
Security Features	-
Package / Case	64-CDIP (0.900", 22.86mm)
Supplier Device Package	64-DIL
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts68c000vc10a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. General Description

1.1 Introduction

This detail specification contains both a summary of the TS68C000 as well as detailed set of parametrics. The purpose is twofold to provide an instruction to the TS68C000 and support for the sophisticated user. For detail information on the TS68C000, refer to "68000 16-bit microprocessor user's manual".

1.2 Detailed Block Diagram

The functional block diagram is given in Figure 1-1 below.

Figure 1-1. Block Diagram

Figure 1-3. 68-terminal Pin Grid Array

Figure 1-4. 68-lead Quad Pack

TC68C000

4

Figure 1-5. 68-ceramic Quad Flat Pack

1.4 Terminal Designations

The function, category and relevant symbol of each terminal of the device are given in the following table.

Symbol	Function	Category		
V _{CC}	Power supply (2 terminals)	Supply		
V _{SS} ⁽¹⁾	Power supply (2 terminals)	Terminals		
FC0 to FC2	Processor status	Outputs		
IPL0 to IPL2	Interrupt control	Inputs		
A1 to A23	Address bus	Outputs		
AS				
R/W		Outputo		
UDS	Asynchronous bus control	Outputs		
LDS				
DTACK		Input		
BR		lasuta		
BGACK	Bus arbitration control	inputs		
BG		Output		

Table 1-1.Terminal Designations

1.5.0.1 Address Bus (A1 through A23)

This 24-bit, unidirectional, three-state bus is capable of addressing 16 megabytes of data. It provides the address for bus operation during all cycles except interrupt cycles. During interrupt cycles, address lines A1, A2 and A3 provide information about what level interrupt is being serviced while address lines A4 through A23 are set to a logic high.

1.5.0.2 Data Bus (D0 Through D15)

This 16-bit, bidirectional, three-state bus is the general-purpose data path. It can transfer and accept data in either word or byte length. During an interrupt acknowledge cycle, the external device supplies the vector number on data lines D0-07.

1.5.0.3 Asynchronous Bus Control

Asynchronous data transfers are handled using the following control signals: address strobe, read/write, upper and lower data strobes, and data transfer acknowledge. These signals are explained in the following paragraphs.

ADDRESS STROBE (AS)

This signal indicates that there is a valid address on the address bus.

READ/WRITE (R/W)

This signal defines the data bus transfer as a read or write cycle. The R/W signal also works in conjunction with the data strobes as explained in the following paragraph.

UPPER AND LOWER DATA STROBE (UDS, LDS)

These signals control the flow of data on the data bus, as shown in Table 1-2. When the R/\overline{W} line is high, the processor will read from the data bus as indicated. When the R/W line is low, the processor will write to the data bus as shown.

DATA TRANSFER ACKNOWLEDGE (DTACK)

This input indicates that the data transfer is completed. When the processor recognizes DTACK during a read cycle, data is latched and the bus cycle terminated. When DTACK is recognized during a write cycle, the bus cycle is terminated.

1.5.0.4 Bus Arbitration Control

The three signals, bus request, bus grant, and bus grant acknowledge, form a bus arbitration circuit to determine which device will be the bus master device.

BUS REQUEST (BR)

This input is wire ORed with all other devices that could be bus masters. This input indicates to the processor that some other device desires to become the bus master.

BUS GRANT (BG)

This output indicates to all other potential bus master devices that the processor will release bus control at the end of the current bus cycle.

BUS GRANT ACKNOWLEDGE (BGACK)

This input indicates that some other device has become the bus master.

Symbol	Parameter	Test Conditions	Min	Max	Unit
V _{CC}	Supply voltage		-0.3	+6.5	V
VI	Input voltage		-0.3	+6.5	V
Vo	Output voltage		NA	NA	V
V _{oz}	Off state voltage		-0.3	11.0	V
۱ _۵	Output currents		NA	NA	mA
l _i	Input currents		NA	NA	mA
Р	Max power dissinction	T _{CASE} = -55°C		0.27	W
Г _{DMAX}		$T_{CASE} = +125^{\circ}C$		0.27	W
T _{STG}	Storage temperature		-55	+150	°C
TJ	Junction temperature			+150	°C
T _{LEADS}	Lead temperature	Max 5 sec. Soldering		+270	°C

Table 2-1.Absolute Maximum Ratings

2.4.4.2 Recommended Condition of Use and Guaranteed Characteristics

• Guaranteed Characteristics (Table 2-5 and Table 2-8)

The characteristics associated to a specified measurement in the detail specification shall only be for inspection purposes.

Such characteristic defined in this specification is guaranteed only under the conditions and within the limits which are specified for the relevant measurement. Unless otherwise specified, this guarantee applies within all the recommended operating ranges specified below.

• Recommended conditions of use (Table 2-2)

To the correct operation of the device, the conditions of use shall be within the ranges specified below (see also above).

These conditions shall not be for inspection purposes.

Some recommended values may, however, be taken in other parts of this specification as detail conditions for an applicable test (Table 2-9).

 Additional Electrical Characteristics (Table 2-9), see "Additional Electrical Characteristics" on page 30.

Figure 2-1. Clock Input Timing Diagram

Note: Timing measurements are referenced to and from a low voltage of 0.8V and a high voltage of 2.0V, unless otherwise noted. The voltage swing through this range should start outside, and pass through, the range such that the rise of fall will be linear between 0.8V and 2.0V.

Unless otherwise stated, all voltages are referenced to the reference terminal (see Table 1-1).

- 2. CMOS Applications
- The TS68C000 completely satisfies the input/output drive requirements of CMOS logic devices.
- The HCMOS TS68C000 provides an order of magnitude power dissipation reduction when compared to the HMOS TS68000. However, the TS68C000 does not offer a "power down" or "halt" mode. The minimum operating frequency of the TS68C000 is 4 MHz.

2.4.5 Thermal Characteristics

Package	Symbol	Parameter	Value	Unit
	θ_{JA}	Thermal resistance junction to ambient	25	°C/W
DIL 64	θ_{JC}	Thermal resistance junction to case	6	°C/W
DOA 00	θ_{JA}	Thermal resistance junction to ambient	30	°C/W
PGA 68	θ_{JC}	Thermal resistance junction to case	6	°C/W
1000 00	θ_{JA}	Thermal resistance junction to ambient	40	°C/W
LUUU 68	θ_{JC}	Thermal resistance junction to case	8	°C/W
	θ_{JA}	Thermal resistance junction to ambient	40	°C/W
	θ_{JC}	Thermal resistance junction to case	10	°C/W

Table 2-3.Thermal Characteristics

2.4.5.1 Power Considerations

The average chip-junction temperature, T_J in °C can be obtained from:

$$T_J = T_A + (P_D \cdot \theta_{JA})$$

T_A = Ambient Temperature, °C

 θ_{JA} = Package Thermal Resistance, Junction-to-Ambient, °C/W

 $P_D = P_{INT} + P_{I/O}$

 $P_{INT} = I_{CC} \times V_{CC}$, Watts – Chip Internal Power

P_{I/O} = Power Dissipation on Input and Output Pins – User Determined

For most applications $P_{I/O} < P_{INT}$ and can be neglected.

An Approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K: (T_{J} + 273)$$

Solving equations (1) and (2) for K gives:

$$K = P_{D}. (T_{A} + 273) + \theta_{JA} \cdot P_{D}^{2}$$

where K is constant pertaining to the particular part K can be determined from the equation (3) by measuring PD (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations (1) and (2) iteratively for any value of T_A .

(1)

(2)

(3)

The total thermal resistance of a package (θ_{JA}) can be separated into two components, θ_{JC} and θ_{CA} , representing the barrier to heat flow from the semiconductor junction to the package (case), surface (θ_{JC}) and from the case to the outside ambient (θ_{CA}) .

Table 2-4. Static Characteristics

$V_{CC} = 3.0V$ $V_{DC} \pm 10.0$, $U_{ND} = 0.0 V_{DC}$, $10 = -30.7 + 123$ O and $-40.07 + 03$	125°C and -40°C/+85°C	Tc = -55/+125°C	10%; GND = 0	$V_{CC} = 5.0V V_{DC} \pm$
--	-----------------------	-----------------	--------------	----------------------------

			Bef				Limits	
Test Number	Symbol	Parameter	Number (**)	Test Conditions	Test Temperature	Min (*)	Max (*)	Unit
1	I _{cc}	Supply current	41	$V_{CC} = 5.5V$ $F_{C} = 8 \text{ MHz}$ $F_{C} = 10 \text{ MHz}$ $F_{C} = 12 \text{ MHz}$	All		42 45 50	mA
		Low level output		$V_{CC} = 4.5V$	25°C			
2	V _{OL} ⁽¹⁾	voltage for: A1 to A23	37		max		0.5	V
		FC0 to FC2; BG		I _{OL} = 3.2 mA	min			
		Low level output		$V_{CC} = 4.5V$	25°C			
3	V _{OL} ⁽²⁾	voltage for:	37		max		0.5	V
		HALT		I _{OL} = 1.6 mA	min			
		Low level output		$V_{CC} = 4.5V$	25°C			
4	V (3)	voltage for:	27		max		0.5	V
4	VOL	D0 to D15 UDS; LDS; VMA and E	57	I _{OL} = 5.3 mA	min		0.5	v
		Low level output		$V_{\rm CC} = 4.5 V$	25°C			
5	V _{OL} ⁽⁴⁾	voltage for:	37		max		0.5	V
		RESET		I _{OL} = 5.0 mA	min			
				$V_{CC} = 4.5V$	25°C			
6	V _{OH}	High level output	37		max	2.4	$V_{CC} - 0.75$	V
		voltago lor all outputo		I _{OH} = -400 μA	min			
		High level input current		$V_{CC} = 5.5V$	25°C			
7	I _{IH} ⁽¹⁾	for all inputs excepted	38		max		2.5	μA
		HALT and RESET		$V_{I} = 5.5V$	min			
		Low level input current		$V_{CC} = 5.5V$	25°C			
8	I _{IL} ⁽¹⁾	for all inputs excepted	38		max	-2.5		μA
		HALT and RESET		$V_I = 0V$	min			
		High level input		$V_{CC} = 5.5V$	25°C			
9	I _{IH} (2)	current for:	38		max		20	μA
		HALT and RESET		$V_1 = 5.5V$	min			
		Low level input		$V_{\rm CC} = 5.5 V$	25°C			
10	ا _{ال} (2)	current for:	38		max	-20		μA
		HALT and RESET		$V_I = 0V$	min			

			Figure			Lin	nits	
Test Number	Symbol	Parameter	Number (**)	Test Conditions	Test Temperature	Min (*)	Max (*)	Unit
		Set-un time		ldem	25°C			
11	t _{SU} (AVSL)	Address valid to	10 – 11	test 27	max	30 ⁽⁴⁾		ns
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	AS, LDS, UDS low		Load: 4	min	•		
		Propagation time		ldem	25°C		3.5	CLKS
35	t _{PHL} (BBLGL)	BR low to	12	test 27	max	1.5		(2)
	(Briede)	BG low		Load: 3		•	+90	ns
		Propagation time		ldem	25°C		3.5	CLKS
37	t _{PLH} (GALEH)	BGACK low to	12	test 27	max	1.5		(2)
		BG high		Load: 3	min	•	+90	ns
		Set-un time			25°C			
48	t _{SU} (BELDAL)	BERR low to	11	Idem test 27	max	20 ⁽⁵⁾	_	ns
		DTACK low		1001 27	min	*		
		Set-un time			25°C			
48	t _{SU} (BELDAL)	BERR low to	10 – 11	Idem test 27	max	20 ⁽⁵⁾	_	ns
		DTACK low		1001 27	min	*		
		Hold time		ldem	25°C			
26	t _h (DOSL)	Data-out valid to	11	test 27	max	30 ⁽⁴⁾	_	ns
	(2002)	LDS, UDS low		Load: 4	min	Ī		

Table 2-5.Dynamic Characteristics – TS68C000-8 (Continued) $V_{CC} = 5.0 V_{DC} \pm 10\%$; GND = 0 V_{DC} ; Tc = -55/+125°C and Tc = -40°C/+85°C

Note: * Algebraic values

** Measurement method: see "General Requirements" on page 14 and "Test Conditions Specific to the Device" on page 26 Referred notes are given on page 25.

			Figure			Lin	nits	
Test Number	Symbol	Parameter	Number (**)	Test Conditions	Test Temperature	Min (*)	Max (*)	Unit
				See "Input and	25°C			
				Output Signals for Dynamic	max			
27	t _{SU} (DICL)	Set-up time Data-in to clock low ⁽¹⁾	10 – 11	Measurements" on page 29 (a) to (c) fc = 10 MHz	min	20 ⁽¹⁰⁾		ns
		Set-up time			25°C			
47	t _{SU} (SDTCL)	DTACK low to clock	10 – 11	Idem test 27	max	20 ⁽¹⁰⁾		ns
	()	low ⁽¹⁾			min			

Table 2-6.Dynamic Characteristics – TS68C000-10

Table 2-6.	Dynamic Characteris	tics – TS68C000-10	(Continued)
			\ · · · · /

			Figure			Lin	nits	
Test Number	Symbol	Parameter	Number (**)	Test Conditions	Test Temperature	Min (*)	Max (*)	Unit
				Idem	25°C			
18	t _{PLH} (CHRHX)	Propagation time	10 – 11	test 27	max		60 ⁽³⁾	ns
		o Littingii to Futti ingii		Load: 4	min			
				ldem	25°C			
20	t _{PHL} (CHRL)	Propagation time CLK high to R/W low	10 — 11	test 27	max		60 ⁽³⁾	ns
				Load: 4	min			
	t _{ezi}	Propagation time		ldem	25°C			
23	t _{PZH}	CLK low to Data-out	10 — 11	test 27	max	-	55 ⁽³⁾	ns
	(CLDO)	Valid		Load: 4	min			
	t _{ezi}	Propagation time		Idem	25°C	-		
6		CLK low to Address	10 — 11	test 27	max	+	60	ns
	(CLAV)	valiu		L0a0. 4	min			
	+	DECET/HALT input		Idom	25°C	+		
32	(CHGL)	transition time	10 – 11	test 27	max	+	200	ns
					min			
	+	Propagation time		Idem	25°C	+		
33	(CHGL)	CLK high to BG low	12	test 27	max	+	60	ns
				2000.0	min			
	+	Propagation time		Idem	25°C	+		
34	(CHGH)	CLK high to BG high	12	test 27	max	+	60	ns
				2000.0	min			
	t	Propagation time		Idem	25°C	+		
40	(CLVM)	CLK low to VMA low	13	test 27 Load: 4	max	+	70	ns
				2000. 1	min			
	tou	Propagation time		Idem	25°C	+		
41	(CLE)	CLK low to E low	13	test 27 Load: 4	max	+	55	ns
					min			
	tu	Hold time CLK high		Idem	25°C	-		
8	(SHAZ)	to Address	10 – 11	test 27 Load: 3	max	0		ns
					min			
	t _{su}	Set-up time	10 11	Idem	25°C	00(4)		
11	(AVSL)	Address valid to AS, LDS, UDS low	10 – 11	test 27 Load: 4	max	20(*)		ns
		., .,			min			

			Figure			Lin	nits	
Test Number	Symbol	Parameter	Number (**)	Test Conditions	Test Temperature	Min (*)	Max (*)	Unit
		Propagation time		ldem	25°C		3.5	CLKS
37	t _{PLH} (GALGH)	BGACK low to	12	test 27	max	1.5		(2)
		BG high		Load: 3	min	*	+70	ns
		Set-un time			25°C			
48	t _{SU} (BELDAL)	BERR low to	11	Idem test 27	max	20 ⁽⁵⁾		ns
		DTACK low		100127	min	•		
		Set-un time			25°C			
48	t _{SU} (BELDAL)	BERR low to	10 – 11	Idem test 27	max	20 ⁽⁵⁾		ns
		DTACK low		100127	min	•		
		Hold time		ldem	25°C			
26	t _H (DOSL)	Data-out valid to	11	test 27	max	15 ⁽⁴⁾		ns
	(2002)	LDS, UDS low		Load: 4	min	†		

Table 2-7. Dynamic Characteristics – TS68C000-12 (Continued)

Note: * Algebraic values

** Measurement method: see "General Requirements" on page 14 and "Test Conditions Specific to the Device" on page 26

2.6.1.1 Referred notes to Table 2-4, Table 2-5, Table 2-6, Table 2-7

The following notes shall apply where referred into Table 2-4, Table 2-5, Table 2-6 and Table 2-7.

- Notes: 1. If the asynchronous setup time (47) requirements are satisfied, the DTACK low-to-data setup time (31) requirement Gan be ignored. The data must only satisfy the data-in to clock-low setup time (27) for the following cycle.
 - 2. Where "CLKS" is stated as unit time limit, the relevant time in nanoseconds shall be calculated as the actual cycle time of clock signal input multiply by the given number of CLKS limits.
 - 3. For a loading capacitance of less than or equal to 50 picofarads, substrate 5 nanoseconds from the value given in the maximum columns.
 - 4. Actual value depends on period.
 - 5. If 47 is satisfied for bath DTACK and BERR, 48 may be 0 nanoseconds.
 - 6. The processor will negate BG and begin driving the bus again if external arbitration logic negates BR before asserting BGACK.
 - 7. The falling edge of 56 triggers bath the negation of the strobes (AS, and X DS) and the falling edge of E. either of these events can occur first depending upon the loading on each signal. Specification 49 indicates the absolute maximum skew that will occur between the rising edge of the strobes and the falling edge of the E clock.
 - 8. When \overline{AS} and R/\overline{W} are equally loaded (±20%), substrate 10 nanoseconds from the values in these columns.
 - 9. Each terminal of the device under test shall be tested separately against all existing VCC and VSS terminals of the device which shall be shorted together for the test. The other untested terminals shall be unconnected during the test. One cycle consists of the application of the bath limits as given in Table 2-5, Table 2-6 and Table 2-7.
 - 10. This value should be treated as a min for design purpose. For the conformance testing the value shall be regarded as the maximum time.

Load NBR	Figure	R1	Rn	C ₁ ⁽¹⁾	Output Application
1	5.1	-	910Ω	130 pF	RESET
2	5.1	_	2.9 kΩ	70 pF	HALT
3	5.2	6.0 k	1.22 kΩ	130 pF	A1 to A23, $\overline{\text{BG}}$ and FC0 to FC2
4	5.2	6.0 k	740Ω	130 pF	All other outputs

Note: 1. C₁ includes all parasitic capacitances of test machines

2.6.2.2 Time Definitions

The times specified in Table 2-5, Table 2-6 and Table 2-7 as dynamic characteristics are defined in Figure 2-4 to Figure 2-7 below by a reference number given in the column "Method" of the tables together with the relevant figure number.

Figure 2-5. Write Cycle Timing

2.6.2.3 Input and Output Signals for Dynamic Measurements

1. Input pulse characteristics

Where input pulse generator is loaded by only a 50Ω resistor, the input pulse characteristics shall be as shown in Figure 2-8.

				,	TS6	TS68C000-8 Limits		C000-10	TS68C000-12		
			Ref		L			Limits		Limits	
NO.	Symbol	Parameter	Number	Number	Min	Max	Min	Max	Min	Мах	Unit
54	t _{PHZ} t _{PLZ} (GLZ)	Propagation time BG low to Data and Address 3-state	Fig. 12 Ref. 36	BG, address 3 Data 4		80		70		60	ns
55	tw (GH)	BG width high	Fig. 12 Ref. 39		1.5		1.5		1.5		CLKS ns
56	t _{PLH} (VMLEH)	Propagation time VMA low to E high	Fig. 13 Ref. 43	4	200		150		90		ns
57	t _H (SHVPH)	Hold time AS, LDS, UDS high to VPA high	Fig. 20 Ref. 44 (see "Although UDS and LDS are asserted, no data is read from the bus during the autovector cycle. The vector number is generated internally)." on page 45)	4	0	120	0	90	0	70	ns
58	t _H (ELAI)	Hold time E low to address	Fig. 13 Ref. 45	3	30		10		10		ns
59	t _w (BGL)	BGACK width low	Fig. 12 Ref. 46		1.5		1.5		1.5		CLKS
61	t _w (EH)	E width high	Fig. 13 Ref. 50		450		350		280		ns
62	t _w (EL)	E width low	Fig. 13 Ref. 51		700		550		440		ns
63	t _{PHL} (FCVSL)	Propagation time FC valid to AS, DS low	Fig. 10 Ref. 1A or 11A	4	60 (4)		50 (4)		40 (4)		ns
64	t _{PHL} (SHDAH)	Propagation time AS, DS high to DTACK high	Fig. 10 Ref. 28	4	0	245 ⁽⁴⁾	0	190 ⁽⁴⁾	0	150 ⁽⁴⁾	ns
65	t _{PLH} (SHBEH)	Propagation time AS, DS high to BERR high	Fig. 12 Ref. 30	4	0		0		0		ns
66	t _{SU} (DALDI)	Set-up time DTACK low to Data-in ⁽¹⁾	Fig. 10 Ref. 31			90 ⁽⁴⁾		65 ⁽⁴⁾		50 ⁽⁴⁾	ns

Table 2-9. Additional Electrical Characteristics (Continu	ed)
---	-----

32 TC68C000 I

TS68C000

The status register (Figure 2-12) contains the interrupt mask (eight levels available) as well as the conditions codes: extend (X), negative (N), zero (Z), overflow (V), and carry (C). Additional status bits indicate that the processor is in a trace (T) mode and in a supervisor (S) or user state.

2.7.2 Data Types and Addressing Modes

Five basic data types are supported. These data types are:

- Bits
- BCD Digits (4 bits)
- Bytes (8 bits)
- Words (16 bits)
- Long Words (32 bits)

In addition, operations on other data types such as memory addresses, status ward data, etc. are provided in the instruction set.

The 14 addressing modes, shown in Table 2-10, include six basic types:

- Register Direct
- Register Indirect
- Absolute
- program Counter Relative
- Immediate
- Implied

Mnemonic	Description
ABCD	Add Decimal with Extend
ADD	Add
AND	Logical AND
ASL	Arithmetic Shift Left
ASR	Arithmetic Shift Right
Bcc	Branch Conditionally
BCHG	Bit Test and Change
BCLR	Bit Test and Clear
BRA	Branch Always
BSET	Bit Test and Set
BSR	Branch to Subroutine
BTST	Bit Test
CHK	Check Register Against Bounds
CLR	Clear Operand
CMP	Compare
DBcc	Test Condition, Decrement and Branch
DIVS	Signed Divide
DIVU	Unsigned Divide
EOR	Exclusive OR
EXG	Exchange Registers
EXT	Sign Extend
JMP	Jump
JSR	Jump to Subroutine
LEA	Lead Effective Address
LINK	Link Stack
LSL	Logical Shift Left
LSR	Logical Shift Right
MOVE	Move
MULS	Signed Multiply
MULU	Unsigned Multiply
NBCD	Negate Decimal with Extend
NEG	Negate
NOP	No Operation
NOT	One's Complement
OR	Logical OR
PEA	Push Effective Address

Table 2-11.	Instruction Set Summary
-------------	-------------------------

Table 2-12.	Variations of Instruction Types

Instruction Type	Variation	Description					
ADD	ADD ADDA ADDQ ADDI ADDX	Add Add Address Add Quick Add Immediate Add with Extend					
AND	AND ANDI ANDI to CCR ANDI to SR	Logical AND And Immediate And Immediate to Condition codes And Immediate to Status Register					
СМР	CMP CMPA CMPM CMPI	Compare Compare Address Compare Memory Compare Immediate					
EOR	EOR EORI EORI to CCR EORI to SR	Exclusive OR Exclusive OR Immediate Exclusive OR Immediate to condition Codes Exclusive OR Immediate to Status Register					
MOVE	MOVE MOVEA MOVEM MOVEP MOVEQ MOVE from SR MOVE to SR MOVE to SR MOVE to CCR MOVE USP	Move Move Address Move Multiple Registers Move Peripheral Data Move Quick Move from Status Register Move to Status Register Move to Condition Codes Move User Stack Pointer					
NEG	NEG NEGX	Negate Negate with Extend					
OR	OR ORI ORI to CCR ORI to SR	Logical OR OR Immediate OR Immediate to Condition Codes OR Immediate to Status Register					
SUB	SUB SUBA SUBI SUBQ SUBX	Subtract Subtract Address Subtract Immediate Subtract Quick Subtract Extend					

Figure 2-15. TS68C000 to EF6800 Peripheral Timing – Worst Case

2.7.6.2 Interrupt Interface Operation

During an interrupt acknowledge cycle while the processor is fetching the vector, the \overline{VPA} is asserted, the TS68C000 will assert \overline{VMA} and complete a normal EF 6800 read cycle as shown in Figure 2-16. The processor will then use an internally generated vector that is a function of the interrupt being serviced. This process is know as autovectorIng. The seven autovectors are vector number 25 through 31 (decimal).

Autovectoring operates in the same fashion (but is not restricted to) the EF 6800 interrupt sequence. The basic difference is that there are six normal interrupt vectors and one NMI type vector. As with bath the EF 6800 and the TS68C(XX)'s normal vectored interrupt, the Interrupt service routine can be located any-where in the address space. This is due to the tact that while the vector numbers are fixed the contents of the vector table entries are assigned by the user.

Since VMA is asserted during autovectoring. The EF 6800 peripheral address decoding should prevent unintended accesses.

TS68C000

Figure 2-16. Autovector Operation Timing Diagram

Although UDS and LDS are asserted, no data is read from the bus during the autovector cycle. The vector number is generated internally).

Table 2-13.	Dynamic Electrical Characteristics	TS68C000 to EF 6800 Periphera
-------------	---	-------------------------------

			8 MHz		10 MHz		12.5 MHz		
			Limits		Limits		Limits		
Number	Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
12	CLSH	Clock low to \overline{AS} , \overline{DS} high ⁽¹⁾		70		55		50	ns
18	CHRH	Clock high to R/\overline{W} high ⁽¹⁾	0	70	0	60	0	60	ns
20	CHRL	Clock high to R/\overline{W} low (write) ⁽¹⁾		70		60		60	ns
23	CLDO	Clock low to data out valid (write)		70		55		55	ns
27	CLDO	Data in to clock low (set up time on read) ⁽²⁾	15		10		10		ns
29	SHDII	$\overline{\text{AS}}$, $\overline{\text{DS}}$ high to Data in invalid (hold time on read)	0		0		0		ns
40	CLVML	\overline{AS} , \overline{DS} high to \overline{VPA} high		70		70		70	ns
41	CLET	Clock low to E transition		70		55		45	ns
42	Erf	E output rise and fall time		25		25		25	ns
43	VMLEH	VMA low to E high	200		150		90		ns
44	SHVPH	AS, DS high to VPA high	0	120	0	90	0	70	ns

TS68C000

Figure 2-18. TS68C000 to EF6800 Peripheral Timing Diagram – Worse Case

Note: This timing diagram is included for those who wish to design their own circuit to generate VMA. It shows the worst case possibly attainable.

2.8 Preparation For Delivery

2.8.1 Packaging

Microcircuit are prepared for delivery in accordance with MIL-PRF-38535.

2.8.2 Certificate of Compliance

Atmel offers a certificate of compliance with each shipment of parts, affirming the products are in compliance with MIL-STD-883 and guarantying the parameters not tested at extreme temperatures for the entire temperature range.

2.9 Handling

MOS devices must be handled with certain precautions to avoid damage due to accumulation of static charge. Input protection devices have been designed in the chip to minimize the effect of this static buildup. However, the following handling practices are recommended:

- a) Device should be handled on benches with conductive and grounded surface.
- b) Ground test equipment, tools and operator.
- c) Do not handle devices by the leads.
- d) Store devices in conductive foam or carriers.
- e) Avoid use of plastic, rubber, or silk in MOS areas.
- f) Maintain relative humidity above 50%, if practical.