# E·XFL



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                 |
|----------------------------|------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M0+                                                       |
| Core Size                  | 32-Bit Single-Core                                                     |
| Speed                      | 48MHz                                                                  |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                              |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, LVD, POR, PWM, WDT      |
| Number of I/O              | 54                                                                     |
| Program Memory Size        | 128KB (128K x 8)                                                       |
| Program Memory Type        | FLASH                                                                  |
| EEPROM Size                | -                                                                      |
| RAM Size                   | 32K x 8                                                                |
| Voltage - Supply (Vcc/Vdd) | 1.71V ~ 3.6V                                                           |
| Data Converters            | A/D 20x16b; D/A 1x12b                                                  |
| Oscillator Type            | Internal                                                               |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                     |
| Mounting Type              | Surface Mount                                                          |
| Package / Case             | 64-LQFP                                                                |
| Supplier Device Package    | 64-LQFP (10x10)                                                        |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl17z128vlh4r |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### **Operating Characteristics**

- Voltage range: 1.71 to 3.6 V
- Flash write voltage range: 1.71 to 3.6 V
- Temperature range: -40 to 85 °C for WLCSP package and -40 to 105 °C for other packages

#### Packages

- 64 LQFP 10mm x 10mm, 0.5mm pitch, 1.6mm thickness
- 64 MAPBGA 5mm x 5mm, 0.5mm pitch, 1.23mm thickness
- 48 QFN 7mm x 7mm, 0.5mm pitch, 0.65mm thickness
- 32 QFN 5mm x 5mm, 0.5mm pitch, 0.65mm thickness
- 36 WLCSP 2.8mm x 2.7mm, 0.4mm pitch, 0.6mm thickness

#### Security and Integrity

- 80-bit unique identification number per chip
- Advanced flash security

#### I/O

• Up to 54 general-purpose input/output pins (GPIO) and 6 high-drive pad

#### Low Power

- Down to 54uA/MHz in very low power run mode
- Down to 1.96uA in VLLS3 mode (RAM + RTC
- retained)
- Six flexible static modes

| Pro            | Men                       | nory          | Package      |              | IO and ADC channel |       |                                |                            |
|----------------|---------------------------|---------------|--------------|--------------|--------------------|-------|--------------------------------|----------------------------|
| Part number    | Marking (Line1/<br>Line2) | Flash<br>(KB) | SRAM<br>(KB) | Pin<br>count | Package            | GPIOs | GPIOs<br>(INT/HD) <sup>1</sup> | ADC<br>channels<br>(SE/DP) |
| MKL17Z128VFM4  | M17P7V                    | 128           | 32           | 32           | QFN                | 28    | 19/6                           | 11/2                       |
| MKL17Z256VFM4  | M17P8V                    | 256           | 32           | 32           | QFN                | 28    | 19/6                           | 11/2                       |
| MKL17Z128VFT4  | M17P7V                    | 128           | 32           | 48           | QFN                | 40    | 24/6                           | 18/3                       |
| MKL17Z256VFT4  | M17P8V                    | 256           | 32           | 48           | QFN                | 40    | 24/6                           | 18/3                       |
| MKL17Z128VLH4  | MKL17Z128V//LH4           | 128           | 32           | 64           | LQFP               | 54    | 31/6                           | 20/4                       |
| MKL17Z256VLH4  | MKL17Z256V//LH4           | 256           | 32           | 64           | LQFP               | 54    | 31/6                           | 20/4                       |
| MKL17Z128VMP4  | M17P7V                    | 128           | 32           | 64           | MAPBGA             | 54    | 31/6                           | 20/4                       |
| MKL17Z256VMP4  | M17P8V                    | 256           | 32           | 64           | MAPBGA             | 54    | 31/6                           | 20/4                       |
| MKL17Z256CAL4R | MKL17Z256CAL4             | 256           | 32           | 36           | WLCSP              | 26    | 23/6                           | 7/0                        |

#### **Ordering Information**

1. INT: interrupt pin numbers; HD: high drive pin numbers

#### **Related Resources**

| Туре                | Description                                                                                                                      | Resource                     |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Selector<br>Guide   | The Freescale Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector. | Solution Advisor             |
| Product Brief       | The Product Brief contains concise overview/summary information to enable quick evaluation of a device for design suitability.   | KL1XPB <sup>1</sup>          |
| Reference<br>Manual | The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.                 | KL17P64M48SF6RM <sup>1</sup> |
| Data Sheet          | The Data Sheet includes electrical characteristics and signal connections.                                                       | This document.               |
| Chip Errata         | The chip mask set Errata provides additional or corrective information for a particular device mask set.                         | KINETIS_L_1N71K <sup>1</sup> |

## **1.4 Voltage and current operating ratings**

Table 4. Voltage and current operating ratings

| Symbol           | Description                                                               | Min.                  | Max.                  | Unit |
|------------------|---------------------------------------------------------------------------|-----------------------|-----------------------|------|
| V <sub>DD</sub>  | Digital supply voltage                                                    | -0.3                  | 3.8                   | V    |
| I <sub>DD</sub>  | Digital supply current                                                    | —                     | 120                   | mA   |
| V <sub>IO</sub>  | IO pin input voltage                                                      | -0.3                  | V <sub>DD</sub> + 0.3 | V    |
| ۱ <sub>D</sub>   | Instantaneous maximum current single pin limit (applies to all port pins) | -25                   | 25                    | mA   |
| V <sub>DDA</sub> | Analog supply voltage                                                     | V <sub>DD</sub> – 0.3 | V <sub>DD</sub> + 0.3 | V    |

# 2 General

## 2.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.



The midpoint is V\_{IL} + (V\_{IH} - V\_{IL}) / 2

#### Figure 1. Input signal measurement reference

All digital I/O switching characteristics, unless otherwise specified, assume that the output pins have the following characteristics.

- $C_L=30 \text{ pF loads}$
- Slew rate disabled
- Normal drive strength

# 2.2 Nonswitching electrical specifications

| Symbol | Description                    | Min. | Тур. | Max. | Unit | Notes |
|--------|--------------------------------|------|------|------|------|-------|
|        | <ul> <li>VLPS → RUN</li> </ul> |      |      |      |      |       |
|        |                                | _    | 7.5  | 8    | μs   |       |
|        | • STOP $\rightarrow$ RUN       |      |      |      |      |       |
|        |                                | —    | 7.5  | 8    | μs   |       |

 Table 8. Power mode transition operating behaviors (continued)

1. Normal boot (FTFA\_FOPT[LPBOOT]=11)

### 2.2.5 Power consumption operating behaviors

The maximum values stated in the following table represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

#### NOTE

The while (1) test is executed with flash cache enabled.

#### NOTE

The data at 105 °C are for QFN, LQFP and MAPBGA packages only.

 Table 9. Power consumption operating behaviors

| Symbol                | Description                                                                                                                              | Min. | Тур. | Max.     | Unit | Notes |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------|------|------|----------|------|-------|
| I <sub>DDA</sub>      | Analog supply current                                                                                                                    | —    |      | See note | mA   | 1     |
| I <sub>DD_RUNCO</sub> | Running CoreMark in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, $V_{DD}$ = 3.0 V                          |      |      |          |      | 2     |
|                       | • at 25 °C                                                                                                                               | —    | 5.76 | 6.40     | mA   |       |
|                       | • at 105 °C                                                                                                                              | —    | 6.04 | 6.68     |      |       |
| I <sub>DD_RUNCO</sub> | Running While(1) loop in flash in compute<br>operation mode—48M HIRC mode, 48 MHz<br>core / 24 MHz flash, V <sub>DD</sub> = 3.0 V        |      |      |          |      |       |
|                       | • at 25 °C                                                                                                                               | —    | 3.21 | 3.85     | mA   |       |
|                       | • at 105 °C                                                                                                                              | _    | 3.49 | 4.13     |      |       |
| I <sub>DD_RUN</sub>   | Run mode current—48M HIRC mode, running<br>CoreMark in Flash all peripheral clock disable 48<br>MHz core/24 MHz flash, $V_{DD} = 3.0 V$  |      |      |          |      | 2     |
|                       | • at 25 °C                                                                                                                               | —    | 6.45 | 7.09     | mA   |       |
|                       | • at 105 °C                                                                                                                              | —    | 6.75 | 7.39     |      |       |
| I <sub>DD_RUN</sub>   | Run mode current—48M HIRC mode, running<br>CoreMark in flash all peripheral clock disable, 24<br>MHz core/12 MHz flash, $V_{DD} = 3.0 V$ |      |      |          |      | 2     |

Table continues on the next page...

10

| Symbol              | Description                                                                                                                                                        | Min. | Тур. | Max. | Unit | Notes |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|-------|
|                     | • at 25 °C                                                                                                                                                         | _    | 3.95 | 4.59 |      |       |
|                     | • at 105 °C                                                                                                                                                        | —    | 4.23 | 4.87 | mA   |       |
| I <sub>DD_RUN</sub> | Run mode current—48M HIRC mode, running<br>CoreMark in Flash all peripheral clock disable 12<br>MHz core/6 MHz flash, V <sub>DD</sub> = 3.0 V                      |      | 2.68 | 3 33 | m۸   | 2     |
|                     |                                                                                                                                                                    | _    | 2.00 | 0.02 |      |       |
|                     | • at 105 C                                                                                                                                                         |      | 2.90 | 3.60 |      |       |
| I <sub>DD_RUN</sub> | Run mode current—48M HIRC mode, running<br>CoreMark in Flash all peripheral clock enable 48<br>MHz core/24 MHz flash, $V_{DD} = 3.0 V$                             |      |      |      |      | 2     |
|                     | • at 25 °C                                                                                                                                                         | —    | 8.08 | 8.72 | mA   |       |
|                     | • at 105 °C                                                                                                                                                        | —    | 8.39 | 9.03 |      |       |
| I <sub>DD_RUN</sub> | Run mode current—48M HIRC mode, running<br>While(1) loop in flash all peripheral clock disable,<br>48 MHz core/24 MHz flash, V <sub>DD</sub> = 3.0 V<br>• at 25 °C |      | 3 90 | 4 54 | mA   |       |
|                     | • at 105 °C                                                                                                                                                        | _    | 1 21 | 4.85 |      |       |
|                     |                                                                                                                                                                    |      | 4.21 | 4.00 |      |       |
| I <sub>DD_RUN</sub> | Run mode current—48M HIRC mode, running<br>While(1) loop in Flash all peripheral clock disable,<br>24 MHz core/12 MHz flash, $V_{DD} = 3.0 V$                      |      | 0.00 | 0.00 |      |       |
|                     | • at 25 °C                                                                                                                                                         |      | 2.00 | 3.30 | mA   |       |
|                     | • at 105 °C                                                                                                                                                        | —    | 2.94 | 3.58 |      |       |
| I <sub>DD_RUN</sub> | Run mode current—48M HIRC mode, Running<br>While(1) loop in Flash all peripheral clock disable,<br>12 MHz core/6 MHz flash, V <sub>DD</sub> = 3.0 V<br>• at 25 °C  |      | 2.03 | 2.67 | mA   |       |
|                     | • at 105 °C                                                                                                                                                        |      | 2.00 | 2.05 |      |       |
|                     |                                                                                                                                                                    |      | 2.01 | 2.35 |      |       |
| I <sub>DD_RUN</sub> | Run mode current—48M HIRC mode, Running<br>While(1) loop in Flash all peripheral clock enable,<br>48 MHz core/24 MHz flash, V <sub>DD</sub> = 3.0 V                |      |      |      |      |       |
|                     | • at 25 °C                                                                                                                                                         | —    | 5.52 | 6.16 | mA   |       |
|                     | • at 105 °C                                                                                                                                                        | —    | 5.83 | 6.47 |      |       |
| I <sub>DD_RUN</sub> | Run mode current—48M HIRC mode, running<br>While(1) loop in SRAM all peripheral clock<br>disable, 48 MHz core/24 MHz flash, V <sub>DD</sub> = 3.0 V<br>• at 25 °C  |      | 5.29 | 5.93 | mA   |       |
|                     | • at 105 °C                                                                                                                                                        | _    | 5.56 | 6.20 |      |       |
|                     |                                                                                                                                                                    |      | -    |      |      |       |
| IDD_RUN             | While(1) loop in SRAM all peripheral clock<br>enable, 48 MHz core/24 MHz flash, V <sub>DD</sub> = 3.0 V                                                            |      |      |      |      |       |
|                     |                                                                                                                                                                    |      | 6.91 | 7.55 | mA   |       |
|                     |                                                                                                                                                                    | —    | 7.19 | 7.91 |      |       |



Figure 2. Run mode supply current vs. core frequency

of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

- 2.  $V_{DD} = 3.3 \text{ V}$ ,  $T_A = 25 \text{ °C}$ ,  $f_{OSC} = IRC48M$ ,  $f_{SYS} = 48 \text{ MHz}$ ,  $f_{BUS} = 24 \text{ MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

## 2.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

### 2.2.8 Capacitance attributes

#### Table 12. Capacitance attributes

| Symbol          | Description       | Min. | Max. | Unit |
|-----------------|-------------------|------|------|------|
| C <sub>IN</sub> | Input capacitance | —    | 7    | pF   |

## 2.3 Switching specifications

### 2.3.1 Device clock specifications

#### Table 13. Device clock specifications

| Symbol             | Description                        | Min. | Max. | Unit |  |  |  |
|--------------------|------------------------------------|------|------|------|--|--|--|
|                    | Normal run mode                    |      |      |      |  |  |  |
| f <sub>SYS</sub>   | System and core clock <sup>1</sup> | —    | 48   | MHz  |  |  |  |
| f <sub>BUS</sub>   | Bus clock <sup>1</sup>             | —    | 24   | MHz  |  |  |  |
| f <sub>FLASH</sub> | Flash clock <sup>1</sup>           | —    | 24   | MHz  |  |  |  |
| f <sub>LPTMR</sub> | LPTMR clock                        | _    | 24   | MHz  |  |  |  |
|                    | VLPR and VLPS modes <sup>2</sup>   |      | •    |      |  |  |  |
| f <sub>SYS</sub>   | System and core clock              | —    | 4    | MHz  |  |  |  |
| f <sub>BUS</sub>   | Bus clock                          | _    | 1    | MHz  |  |  |  |
| f <sub>FLASH</sub> | Flash clock                        | —    | 1    | MHz  |  |  |  |
| f <sub>LPTMR</sub> | LPTMR clock <sup>3</sup>           | —    | 24   | MHz  |  |  |  |

1. Maximum  $T_A$  can be exceeded only if the user ensures that  $T_J$  does not exceed the maximum. The simplest method to determine  $T_J$  is:  $T_J = T_A + R_{\theta JA} \times chip$  power dissipation.

Table 16. Thermal operating requirements for other packages

| Symbol         | Description              | Min. | Max. | Unit | Notes |
|----------------|--------------------------|------|------|------|-------|
| TJ             | Die junction temperature | -40  | 125  | °C   |       |
| T <sub>A</sub> | Ambient temperature      | -40  | 105  | °C   | 1     |

1. Maximum  $T_A$  can be exceeded only if the user ensures that  $T_J$  does not exceed the maximum. The simplest method to determine  $T_J$  is:  $T_J = T_A + R_{\theta JA} \times$  chip power dissipation.

### 2.4.2 Thermal attributes

Table 17. Thermal attributes

| Board type        | Symbo<br>I        | Description                                                                                              | 48<br>QFN | 32<br>QFN | 64<br>LQFP | 64<br>MAPB<br>GA | 36<br>WLCS<br>P | Unit | Notes |
|-------------------|-------------------|----------------------------------------------------------------------------------------------------------|-----------|-----------|------------|------------------|-----------------|------|-------|
| Single-layer (1S) | R <sub>θJA</sub>  | Thermal resistance,<br>junction to ambient<br>(natural convection)                                       | 86        | 101       | 70         | 50.3             | 77.6            | °C/W | 1     |
| Four-layer (2s2p) | R <sub>θJA</sub>  | Thermal resistance,<br>junction to ambient<br>(natural convection)                                       | 29        | 33        | 51         | 42.9             | 38.9            | °C/W |       |
| Single-layer (1S) | R <sub>θJMA</sub> | Thermal resistance,<br>junction to ambient (200<br>ft./min. air speed)                                   | 71        | 84        | 58         | 41.4             | 69.6            | °C/W |       |
| Four-layer (2s2p) | R <sub>θJMA</sub> | Thermal resistance,<br>junction to ambient (200<br>ft./min. air speed)                                   | 24        | 28        | 45         | 38.0             | 35.6            | °C/W |       |
| _                 | R <sub>θJB</sub>  | Thermal resistance, junction to board                                                                    | 12        | 13        | 33         | 39.6             | 34.8            | °C/W | 2     |
| _                 | R <sub>θJC</sub>  | Thermal resistance, junction to case                                                                     | 1.7       | 1.7       | 20         | 27.3             | 0.37            | °C/W | 3     |
| _                 | $\Psi_{JT}$       | Thermal characterization<br>parameter, junction to<br>package top outside<br>center (natural convection) | 2         | 3         | 4          | 0.4              | 0.2             | °C/W | 4     |
| _                 | $\Psi_{JB}$       | Thermal characterization<br>parameter, junction to<br>package bottom (natural<br>convection)             | -         | -         | -          | 12.6             | -               | °C/W | 5     |

1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).

2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.



Figure 5. Serial wire data timing

# 3.2 System modules

There are no specifications necessary for the device's system modules.

## 3.3 Clock modules

## **3.3.1 MCG-Lite specifications**

| Table 19. | IRC48M | specification |
|-----------|--------|---------------|
|-----------|--------|---------------|

| Symbol                     | Description                                                                                           | Min. | Тур.  | Max.  | Unit                 | Notes |
|----------------------------|-------------------------------------------------------------------------------------------------------|------|-------|-------|----------------------|-------|
| I <sub>DD</sub>            | Supply current                                                                                        | —    | 400   | 500   | μA                   | —     |
| f <sub>IRC</sub>           | Output frequency                                                                                      |      | 48    | —     | MHz                  |       |
| Δf <sub>irc48m_ol_lv</sub> | Open loop total deviation of IRC48M<br>frequency at low voltage<br>(VDD=1.71V-1.89V) over temperature |      | ± 0.5 | ± 1.5 | %f <sub>irc48m</sub> | 1     |
| $\Delta f_{irc48m_ol_hv}$  | Open loop total deviation of IRC48M<br>frequency at high voltage<br>(VDD=1.89V-3.6V) over temperature | _    | ± 0.5 | ± 1.0 | %f <sub>irc48m</sub> | 1     |



Figure 6. IRC8M Frequency Drift vs Temperature curve

# 3.3.2 Oscillator electrical specifications

#### 3.3.2.1 Oscillator DC electrical specifications Table 21. Oscillator DC electrical specifications

| Symbol             | Description                             | Min. | Тур. | Max. | Unit | Notes |
|--------------------|-----------------------------------------|------|------|------|------|-------|
| V <sub>DD</sub>    | Supply voltage                          | 1.71 | —    | 3.6  | V    |       |
| I <sub>DDOSC</sub> | Supply current — low-power mode (HGO=0) |      |      |      |      | 1     |
|                    | • 32 kHz                                | —    | 500  | —    | nA   |       |
|                    | • 4 MHz                                 | _    | 200  | —    | μA   |       |
|                    | • 8 MHz (RANGE=01)                      | _    | 300  | _    | μA   |       |
|                    | • 16 MHz                                | _    | 950  | _    | μA   |       |
|                    |                                         | _    | 1.2  | _    | mA   |       |

| Symbol                       | Description                                                                                            | Min. | Тур.            | Max. | Unit | Notes |
|------------------------------|--------------------------------------------------------------------------------------------------------|------|-----------------|------|------|-------|
|                              | • 24 MHz                                                                                               | —    | 1.5             | —    | mA   |       |
|                              | • 32 MHz                                                                                               |      |                 |      |      |       |
| IDDOSC                       | Supply current — high gain mode (HGO=1)                                                                |      |                 |      |      | 1     |
|                              | • 32 kHz                                                                                               | _    | 25              | _    | μA   |       |
|                              | • 4 MHz                                                                                                | _    | 400             | _    | μA   |       |
|                              | • 8 MHz (RANGE=01)                                                                                     | _    | 500             | _    | μA   |       |
|                              | • 16 MHz                                                                                               | _    | 2.5             | _    | mA   |       |
|                              | • 24 MHz                                                                                               | _    | 3               | _    | mA   |       |
|                              | • 32 MHz                                                                                               | _    | 4               | _    | mA   |       |
| C <sub>x</sub>               | EXTAL load capacitance                                                                                 | _    | _               | _    |      | 2, 3  |
| Cy                           | XTAL load capacitance                                                                                  | _    | —               | —    |      | 2, 3  |
| R <sub>F</sub>               | Feedback resistor — low-frequency, low-power mode (HGO=0)                                              | —    | —               | —    | MΩ   | 2, 4  |
|                              | Feedback resistor — low-frequency, high-gain mode (HGO=1)                                              | —    | 10              | _    | MΩ   |       |
|                              | Feedback resistor — high-frequency, low-<br>power mode (HGO=0)                                         | _    |                 |      | MΩ   |       |
|                              | Feedback resistor — high-frequency, high-gain mode (HGO=1)                                             | _    | 1               |      | MΩ   |       |
| R <sub>S</sub>               | Series resistor — low-frequency, low-power<br>mode (HGO=0)                                             |      |                 |      | kΩ   |       |
|                              | Series resistor — low-frequency, high-gain mode (HGO=1)                                                | _    | 200             |      | kΩ   |       |
|                              | Series resistor — high-frequency, low-power mode (HGO=0)                                               | _    |                 |      | kΩ   |       |
|                              | Series resistor — high-frequency, high-gain<br>mode (HGO=1)                                            |      |                 |      |      |       |
|                              |                                                                                                        | _    | 0               | _    | kΩ   |       |
| V <sub>pp</sub> <sup>5</sup> | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — low-frequency, low-power mode<br>(HGO=0)  | _    | 0.6             | _    | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — low-frequency, high-gain mode<br>(HGO=1)  | _    | V <sub>DD</sub> | _    | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — high-frequency, low-power mode<br>(HGO=0) | _    | 0.6             | _    | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — high-frequency, high-gain mode<br>(HGO=1) | _    | V <sub>DD</sub> | _    | V    |       |

Table 21. Oscillator DC electrical specifications (continued)

V<sub>DD</sub>=3.3 V, Temperature =25 °C
 See crystal or resonator manufacturer's recommendation

28

- 3. C<sub>x</sub>,C<sub>y</sub> can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.
- 4. When low power mode is selected,  $R_F$  is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

#### 3.3.2.2 Oscillator frequency specifications Table 22. Oscillator frequency specifications

| Symbol                | Description                                                                                           | Min. | Тур. | Max. | Unit | Notes |
|-----------------------|-------------------------------------------------------------------------------------------------------|------|------|------|------|-------|
| f <sub>osc_lo</sub>   | Oscillator crystal or resonator frequency — low-<br>frequency mode (MCG_C2[RANGE]=00)                 | 32   | —    | 40   | kHz  |       |
| f <sub>osc_hi_1</sub> | Oscillator crystal or resonator frequency —<br>high-frequency mode (low range)<br>(MCG_C2[RANGE]=01)  | 3    | _    | 8    | MHz  |       |
| f <sub>osc_hi_2</sub> | Oscillator crystal or resonator frequency —<br>high frequency mode (high range)<br>(MCG_C2[RANGE]=1x) | 8    | _    | 32   | MHz  |       |
| f <sub>ec_extal</sub> | Input clock frequency (external clock mode)                                                           | _    |      | 48   | MHz  | 1, 2  |
| t <sub>dc_extal</sub> | Input clock duty cycle (external clock mode)                                                          | 40   | 50   | 60   | %    |       |
| t <sub>cst</sub>      | Crystal startup time — 32 kHz low-frequency,<br>low-power mode (HGO=0)                                | _    | 750  |      | ms   | 3, 4  |
|                       | Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)                                   | —    | 250  |      | ms   |       |
|                       | Crystal startup time — 8 MHz high-frequency<br>(MCG_C2[RANGE]=01), low-power mode<br>(HGO=0)          | —    | 0.6  | _    | ms   |       |
|                       | Crystal startup time — 8 MHz high-frequency<br>(MCG_C2[RANGE]=01), high-gain mode<br>(HGO=1)          | _    | 1    | _    | ms   |       |

1. Other frequency limits may apply when external clock is being used as a reference for the FLL

- 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG\_S register being set.

## 3.4 Memories and memory interfaces

### 3.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

#### 3.4.1.3 Flash high voltage current behaviors Table 25. Flash high voltage current behaviors

| Symbol              | Description                                                           | Min. | Тур. | Max. | Unit |
|---------------------|-----------------------------------------------------------------------|------|------|------|------|
| I <sub>DD_PGM</sub> | Average current adder during high voltage flash programming operation |      | 2.5  | 6.0  | mA   |
| I <sub>DD_ERS</sub> | Average current adder during high voltage flash erase operation       |      | 1.5  | 4.0  | mA   |

## 3.4.1.4 Reliability specifications

#### Table 26. NVM reliability specifications

| Symbol                  | Description                            | Min.    | Typ. <sup>1</sup> | Max. | Unit   | Notes |
|-------------------------|----------------------------------------|---------|-------------------|------|--------|-------|
|                         | Program                                | m Flash | -                 | -    | -      | -     |
| t <sub>nvmretp10k</sub> | Data retention after up to 10 K cycles | 5       | 50                | —    | years  | —     |
| t <sub>nvmretp1k</sub>  | Data retention after up to 1 K cycles  | 20      | 100               | _    | years  | —     |
| n <sub>nvmcycp</sub>    | Cycling endurance                      | 10 K    | 50 K              |      | cycles | 2     |

1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40 °C  $\leq$  T<sub>j</sub>  $\leq$  125 °C.

# 3.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

# 3.6 Analog

### 3.6.1 ADC electrical specifications

Using differential inputs can achieve better system accuracy than using single-end inputs.

#### 3.6.1.1 16-bit ADC operating conditions Table 27. 16-bit ADC operating conditions

| Symbol            | Description                       | Conditions                                                       | Min.             | Typ. <sup>1</sup> | Max.             | Unit | Notes |
|-------------------|-----------------------------------|------------------------------------------------------------------|------------------|-------------------|------------------|------|-------|
| V <sub>DDA</sub>  | Supply voltage                    | Absolute                                                         | 1.71             | _                 | 3.6              | V    | _     |
| $\Delta V_{DDA}$  | Supply voltage                    | Delta to V <sub>DD</sub> (V <sub>DD</sub> – V <sub>DDA</sub> )   | -100             | 0                 | +100             | mV   | 2     |
| $\Delta V_{SSA}$  | Ground voltage                    | Delta to V <sub>SS</sub> (V <sub>SS</sub> – V <sub>SSA</sub> )   | -100             | 0                 | +100             | mV   | 2     |
| V <sub>REFH</sub> | ADC reference voltage high        |                                                                  | 1.13             | V <sub>DDA</sub>  | V <sub>DDA</sub> | V    | 3     |
| V <sub>REFL</sub> | ADC reference voltage low         |                                                                  | V <sub>SSA</sub> | V <sub>SSA</sub>  | V <sub>SSA</sub> | V    | 3     |
| V <sub>ADIN</sub> | Input voltage                     | 16-bit differential mode                                         | VREFL            | _                 | 31/32 ×<br>VREFH | V    | _     |
|                   |                                   | All other modes                                                  | VREFL            | _                 | VREFH            |      |       |
| C <sub>ADIN</sub> | Input                             | 16-bit mode                                                      | _                | 8                 | 10               | pF   | _     |
|                   | capacitance                       | <ul> <li>8-bit / 10-bit / 12-bit<br/>modes</li> </ul>            | _                | 4                 | 5                |      |       |
| R <sub>ADIN</sub> | Input series<br>resistance        |                                                                  | —                | 2                 | 5                | kΩ   | _     |
| R <sub>AS</sub>   | Analog source                     | 13-bit / 12-bit modes                                            |                  |                   |                  |      | 4     |
|                   | resistance<br>(external)          | f <sub>ADCK</sub> < 4 MHz                                        | _                | _                 | 5                | kΩ   |       |
| f <sub>ADCK</sub> | ADC conversion<br>clock frequency | ≤ 13-bit mode                                                    | 1.0              | _                 | 24               | MHz  | 5     |
| f <sub>ADCK</sub> | ADC conversion<br>clock frequency | 16-bit mode                                                      | 2.0              |                   | 12.0             | MHz  | 5     |
| C <sub>rate</sub> | ADC conversion                    | ≤ 13-bit modes                                                   |                  |                   |                  |      | 6     |
|                   | rate                              | No ADC hardware averaging                                        | 20.000           | _                 | 1200             | ksps |       |
|                   |                                   | Continuous conversions<br>enabled, subsequent<br>conversion time |                  |                   |                  |      |       |
| C <sub>rate</sub> | ADC conversion                    | 16-bit mode                                                      |                  |                   |                  |      | 6     |
|                   | rate                              | No ADC hardware averaging                                        | 37.037           | _                 | 461.467          | ksps |       |
|                   |                                   | Continuous conversions<br>enabled, subsequent<br>conversion time |                  |                   |                  |      |       |

- Typical values assume V<sub>DDA</sub> = 3.0 V, Temp = 25 °C, f<sub>ADCK</sub> = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- 3. VREFH can act as VREF\_OUT when VREFV1 module is enabled.
- 4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R<sub>AS</sub>/C<sub>AS</sub> time constant should be kept to < 1 ns.</p>
- 5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

32



1.If configured as output

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

#### Figure 15. SPI master mode timing (CPHA = 1)

| Num. | Symbol              | Description                    | Min.                     | Max.                     | Unit                | Note |
|------|---------------------|--------------------------------|--------------------------|--------------------------|---------------------|------|
| 1    | f <sub>op</sub>     | Frequency of operation         | 0                        | f <sub>periph</sub> /4   | Hz                  | 1    |
| 2    | t <sub>SPSCK</sub>  | SPSCK period                   | 4 x t <sub>periph</sub>  | —                        | ns                  | 2    |
| 3    | t <sub>Lead</sub>   | Enable lead time               | 1                        | —                        | t <sub>periph</sub> | —    |
| 4    | t <sub>Lag</sub>    | Enable lag time                | 1                        | —                        | t <sub>periph</sub> |      |
| 5    | t <sub>WSPSCK</sub> | Clock (SPSCK) high or low time | t <sub>periph</sub> - 30 | —                        | ns                  | —    |
| 6    | t <sub>SU</sub>     | Data setup time (inputs)       | 2.5                      | —                        | ns                  | —    |
| 7    | t <sub>HI</sub>     | Data hold time (inputs)        | 3.5                      | —                        | ns                  |      |
| 8    | t <sub>a</sub>      | Slave access time              | —                        | t <sub>periph</sub>      | ns                  | 3    |
| 9    | t <sub>dis</sub>    | Slave MISO disable time        | —                        | t <sub>periph</sub>      | ns                  | 4    |
| 10   | t <sub>v</sub>      | Data valid (after SPSCK edge)  | —                        | 31                       | ns                  |      |
| 11   | t <sub>HO</sub>     | Data hold time (outputs)       | 0                        | —                        | ns                  | —    |
| 12   | t <sub>RI</sub>     | Rise time input                | —                        | t <sub>periph</sub> - 25 | ns                  | —    |
|      | t <sub>FI</sub>     | Fall time input                |                          |                          |                     |      |
| 13   | t <sub>RO</sub>     | Rise time output               | —                        | 25                       | ns                  | _    |
|      | t <sub>FO</sub>     | Fall time output               |                          |                          |                     |      |

#### Table 38. SPI slave mode timing on slew rate disabled pads

1. For SPI0 f<sub>periph</sub> is the bus clock (f<sub>BUS</sub>). For SPI1 f<sub>periph</sub> is the system clock (f<sub>SYS</sub>).

- 2.  $t_{periph} = 1/f_{periph}$ 3. Time to data active from high-impedance state
- 4. Hold time to high-impedance state

| Num. | Symbol              | Description                    | Min.                     | Max.                     | Unit                | Note |
|------|---------------------|--------------------------------|--------------------------|--------------------------|---------------------|------|
| 1    | f <sub>op</sub>     | Frequency of operation         | 0                        | f <sub>periph</sub> /4   | Hz                  | 1    |
| 2    | t <sub>SPSCK</sub>  | SPSCK period                   | 4 x t <sub>periph</sub>  | —                        | ns                  | 2    |
| 3    | t <sub>Lead</sub>   | Enable lead time               | 1                        | —                        | t <sub>periph</sub> | —    |
| 4    | t <sub>Lag</sub>    | Enable lag time                | 1                        | —                        | t <sub>periph</sub> | _    |
| 5    | t <sub>WSPSCK</sub> | Clock (SPSCK) high or low time | t <sub>periph</sub> - 30 | —                        | ns                  | —    |
| 6    | t <sub>SU</sub>     | Data setup time (inputs)       | 2                        | —                        | ns                  | —    |
| 7    | t <sub>HI</sub>     | Data hold time (inputs)        | 7                        | —                        | ns                  | _    |
| 8    | t <sub>a</sub>      | Slave access time              | _                        | t <sub>periph</sub>      | ns                  | 3    |
| 9    | t <sub>dis</sub>    | Slave MISO disable time        | _                        | t <sub>periph</sub>      | ns                  | 4    |
| 10   | t <sub>v</sub>      | Data valid (after SPSCK edge)  | _                        | 122                      | ns                  | _    |
| 11   | t <sub>HO</sub>     | Data hold time (outputs)       | 0                        | —                        | ns                  | —    |
| 12   | t <sub>RI</sub>     | Rise time input                | _                        | t <sub>periph</sub> - 25 | ns                  | —    |
|      | t <sub>FI</sub>     | Fall time input                |                          |                          |                     |      |
| 13   | t <sub>RO</sub>     | Rise time output               | _                        | 36                       | ns                  | _    |
|      | t <sub>FO</sub>     | Fall time output               |                          |                          |                     |      |

Table 39. SPI slave mode timing on slew rate enabled pads

1. For SPI0  $f_{periph}$  is the bus clock ( $f_{BUS}$ ). For SPI1  $f_{periph}$  is the system clock ( $f_{SYS}$ ).

2.

- $t_{periph} = 1/f_{periph}$ Time to data active from high-impedance state З.
- 4. Hold time to high-impedance state





### 3.8.3 UART

See General switching specifications.

### 3.8.4 I2S/SAI switching specifications

This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for noninverted serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures.

# 3.8.4.1 Normal Run, Wait and Stop mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes.

| Num. | Characteristic                                                    | Min. | Max. | Unit        |
|------|-------------------------------------------------------------------|------|------|-------------|
|      | Operating voltage                                                 | 1.71 | 3.6  | V           |
| S1   | I2S_MCLK cycle time                                               | 40   | —    | ns          |
| S2   | I2S_MCLK (as an input) pulse width high/low                       | 45%  | 55%  | MCLK period |
| S3   | I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)                       | 80   | _    | ns          |
| S4   | I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low                      | 45%  | 55%  | BCLK period |
| S5   | I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/<br>I2S_RX_FS output valid   | -    | 15.5 | ns          |
| S6   | I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/<br>I2S_RX_FS output invalid | 0    | _    | ns          |
| S7   | I2S_TX_BCLK to I2S_TXD valid                                      | —    | 19   | ns          |
| S8   | I2S_TX_BCLK to I2S_TXD invalid                                    | 0    | —    | ns          |
| S9   | I2S_RXD/I2S_RX_FS input setup before<br>I2S_RX_BCLK               | 26   | -    | ns          |
| S10  | I2S_RXD/I2S_RX_FS input hold after<br>I2S_RX_BCLK                 | 0    | -    | ns          |

Table 42. I2S/SAI master mode timing



Figure 22. I2S/SAI timing — slave modes

# 4 Dimensions

### 4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

| If you want the drawing for this package | Then use this document number |
|------------------------------------------|-------------------------------|
| 32-pin QFN                               | 98ASA00615D                   |
| 36-pin WLCSP                             | 98ASA00949D                   |
| 48-pin QFN                               | 98ASA00616D                   |
| 64-pin LQFP                              | 98ASS23234W                   |
| 64-pin MAPBGA                            | 98ASA00420D                   |

#### **Pinouts and Packaging**

| 64<br>Map<br>Bga | 64<br>LQFP | 48<br>QFN | 36<br>WLC<br>SP | 32<br>QFN | Pin Name                       | Default   | ALT0      | ALT1                           | ALT2      | ALT3                 | ALT4                 | ALT5      | ALT6             | ALT7 |
|------------------|------------|-----------|-----------------|-----------|--------------------------------|-----------|-----------|--------------------------------|-----------|----------------------|----------------------|-----------|------------------|------|
| E8               | 38         | 30        | _               | _         | PTB3                           | ADC0_SE13 | ADC0_SE13 | PTB3                           | I2C0_SDA  | TPM2_CH1             |                      |           |                  |      |
| E6               | 39         | 31        | -               | _         | PTB16                          | DISABLED  |           | PTB16                          | SPI1_MOSI | LPUART0_<br>RX       | TPM_<br>CLKIN0       | SPI1_MISO |                  |      |
| D7               | 40         | 32        | _               | -         | PTB17                          | DISABLED  |           | PTB17                          | SPI1_MISO | LPUART0_<br>TX       | TPM_<br>CLKIN1       | SPI1_MOSI |                  |      |
| D6               | 41         |           | —               | -         | PTB18                          | DISABLED  |           | PTB18                          |           | TPM2_CH0             | I2S0_TX_<br>BCLK     |           |                  |      |
| C7               | 42         | -         | -               | -         | PTB19                          | DISABLED  |           | PTB19                          |           | TPM2_CH1             | I2S0_TX_<br>FS       |           |                  |      |
| D8               | 43         | 33        | _               | _         | PTC0                           | ADC0_SE14 | ADC0_SE14 | PTC0                           |           | EXTRG_IN             | audioUSB_<br>SOF_OUT | CMP0_OUT  | I2S0_TXD0        |      |
| C6               | 44         | 34        | B1              | 22        | PTC1/<br>LLWU_P6/<br>RTC_CLKIN | ADC0_SE15 | ADC0_SE15 | PTC1/<br>LLWU_P6/<br>RTC_CLKIN | I2C1_SCL  |                      | TPM0_CH0             |           | I2S0_TXD0        |      |
| B7               | 45         | 35        | B2              | 23        | PTC2                           | ADC0_SE11 | ADC0_SE11 | PTC2                           | I2C1_SDA  |                      | TPM0_CH1             |           | I2S0_TX_<br>FS   |      |
| C8               | 46         | 36        | A1              | 24        | PTC3/<br>LLWU_P7               | DISABLED  |           | PTC3/<br>LLWU_P7               | SPI1_SCK  | lpuart1_<br>RX       | TPM0_CH2             | CLKOUT    | I2S0_TX_<br>BCLK |      |
| E3               | 47         | —         | C4              | —         | VSS                            | VSS       | VSS       |                                |           |                      |                      |           |                  |      |
| E4               | 48         | —         | B3              | _         | VDD                            | VDD       | VDD       |                                |           |                      |                      |           |                  |      |
| B8               | 49         | 37        | A2              | 25        | PTC4/<br>LLWU_P8               | DISABLED  |           | PTC4/<br>LLWU_P8               | SPI0_PCS0 | LPUART1_<br>TX       | TPM0_CH3             | I2S0_MCLK |                  |      |
| A8               | 50         | 38        | A3              | 26        | PTC5/<br>LLWU_P9               | DISABLED  |           | PTC5/<br>LLWU_P9               | SPI0_SCK  | LPTMR0_<br>ALT2      | 12S0_RXD0            |           | CMP0_OUT         |      |
| A7               | 51         | 39        | B4              | 27        | PTC6/<br>LLWU_P10              | CMP0_IN0  | CMP0_IN0  | PTC6/<br>LLWU_P10              | SPI0_MOSI | EXTRG_IN             | I2S0_RX_<br>BCLK     | SPI0_MISO | I2S0_MCLK        |      |
| B6               | 52         | 40        | A4              | 28        | PTC7                           | CMP0_IN1  | CMP0_IN1  | PTC7                           | SPI0_MISO | audioUSB_<br>SOF_OUT | I2S0_RX_<br>FS       | SPI0_MOSI |                  |      |
| A6               | 53         | _         | _               | _         | PTC8                           | CMP0_IN2  | CMP0_IN2  | PTC8                           | I2C0_SCL  | TPM0_CH4             | I2S0_MCLK            |           |                  |      |
| B5               | 54         | —         | -               | _         | PTC9                           | CMP0_IN3  | CMP0_IN3  | PTC9                           | I2C0_SDA  | TPM0_CH5             | I2S0_RX_<br>BCLK     |           |                  |      |
| B4               | 55         | —         | -               | _         | PTC10                          | DISABLED  |           | PTC10                          | I2C1_SCL  |                      | 12S0_RX_<br>FS       |           |                  |      |
| A5               | 56         | -         | —               | _         | PTC11                          | DISABLED  |           | PTC11                          | I2C1_SDA  |                      | I2S0_RXD0            |           |                  |      |
| C3               | 57         | 41        | _               | _         | PTD0                           | DISABLED  |           | PTD0                           | SPI0_PCS0 |                      | TPM0_CH0             |           | FXI00_D0         |      |
| A4               | 58         | 42        | _               | _         | PTD1                           | ADC0_SE5b | ADC0_SE5b | PTD1                           | SPI0_SCK  |                      | TPM0_CH1             |           | FXIO0_D1         |      |
| C2               | 59         | 43        | -               | -         | PTD2                           | DISABLED  |           | PTD2                           | SPI0_MOSI | UART2_RX             | TPM0_CH2             | SPI0_MISO | FXIO0_D2         |      |
| B3               | 60         | 44        | -               | -         | PTD3                           | DISABLED  |           | PTD3                           | SPI0_MISO | UART2_TX             | TPM0_CH3             | SPI0_MOSI | FXIO0_D3         |      |
| A3               | 61         | 45        | A5              | 29        | PTD4/<br>LLWU_P14              | DISABLED  |           | PTD4/<br>LLWU_P14              | SPI1_PCS0 | UART2_RX             | TPM0_CH4             |           | FXI00_D4         |      |
| C1               | 62         | 46        | B5              | 30        | PTD5                           | ADC0_SE6b | ADC0_SE6b | PTD5                           | SPI1_SCK  | UART2_TX             | TPM0_CH5             |           | FXIO0_D5         |      |
| B2               | 63         | 47        | A6              | 31        | PTD6/<br>LLWU_P15              | ADC0_SE7b | ADC0_SE7b | PTD6/<br>LLWU_P15              | SPI1_MOSI | LPUART0_<br>RX       |                      | SPI1_MISO | FXIO0_D6         |      |

# 8.4 Relationship between ratings and operating requirements



## 8.5 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

# 9 Revision History

The following table provides a revision history for this document.

| Rev. No. | Date              | Substantial Changes                                                                                                                                                                |
|----------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3        | 09 August<br>2014 | <ul> <li>Initial Public release</li> <li>Updated Table 9 - Power consumption operating behaviors.</li> <li>Added a note related to 32 QFN pin package in Pinouts topic.</li> </ul> |
| 4        | 03 March<br>2015  | <ul> <li>Updated the features and completed the ordering information.</li> <li>Removed thickness dimension from package diagrams.</li> </ul>                                       |

Table 48. Revision History



#### How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, the Energy Efficient Solutions logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM, the ARM powered logo, and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

©2014-2016 Freescale Semiconductor, Inc.

Document Number KL17P64M48SF6 Revision 6, 02/2016



