

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusActiveCore ProcessorARM® Cortex®-M0+Core Size32-Bit Single-CoreSpeed48MHz	
Core Size 32-Bit Single-Core	
Speed 48MHz	
Connectivity I ² C, LINbus, SPI, UART/USART	
Peripherals Brown-out Detect/Reset, DMA, I	I ² S, LVD, POR, PWM, WDT
Number of I/O 54	
Program Memory Size 128KB (128K x 8)	
Program Memory Type FLASH	
EEPROM Size -	
RAM Size 32K x 8	
Voltage - Supply (Vcc/Vdd) 1.71V ~ 3.6V	
Data ConvertersA/D 20x16b; D/A 1x12b	
Oscillator Type Internal	
Operating Temperature -40°C ~ 105°C (TA)	
Mounting Type Surface Mount	
Package / Case 64-LFBGA	
Supplier Device Package 64-MAPBGA (5x5)	
Purchase URL https://www.e-xfl.com/product-o	detail/nxp-semiconductors/mkl17z128vmp4

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Related Resources (continued)

Туре	Description	Resource
Package drawing	Package dimensions are provided in package drawings.	64-LQFP: 98ASS23234W ¹ 64- MAPBGA: 98ASA00420D ^{, 1} 32- QFN: 98ASA00615D ¹ 48-QFN: 98ASA00616D ^{, 1} 36-WLCSP: 98ASA00949D ¹

1. To find the associated resource, go to http://www.nxp.com and perform a search using this term.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	 VLPS → RUN 					
		—	7.5	8	μs	
	• STOP → RUN					
		_	7.5	8	μs	

 Table 8. Power mode transition operating behaviors (continued)

1. Normal boot (FTFA_FOPT[LPBOOT]=11)

2.2.5 Power consumption operating behaviors

The maximum values stated in the following table represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

NOTE

The while (1) test is executed with flash cache enabled.

NOTE

The data at 105 °C are for QFN, LQFP and MAPBGA packages only.

 Table 9. Power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current		_	See note	mA	1
I _{DD_RUNCO}	Running CoreMark in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V_{DD} = 3.0 V					2
	• at 25 °C	—	5.76	6.40	mA	
	• at 105 °C	_	6.04	6.68		
I _{DD_RUNCO}	Running While(1) loop in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					
	• at 25 °C	_	3.21	3.85	mA	
	• at 105 °C	—	3.49	4.13		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 48 MHz core/24 MHz flash, V_{DD} = 3.0 V					2
	• at 25 °C	_	6.45	7.09	mA	
	• at 105 °C	—	6.75	7.39		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in flash all peripheral clock disable, 24 MHz core/12 MHz flash, V _{DD} = 3.0 V					2

Table continues on the next page...

10

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• at 25 °C		3.95	4.59		
	• at 105 °C	_	4.23	4.87	mA	
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 12 MHz core/6 MHz flash, V _{DD} = 3.0 V					2
	• at 25 °C	—	2.68	3.32	mA	
	• at 105 °C	—	2.96	3.60		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock enable 48 MHz core/24 MHz flash, V _{DD} = 3.0 V • at 25 °C		8.08	8.72	mA	2
	• at 105 °C	_	8.39	9.03		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in flash all peripheral clock disable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	3.90	4.54	mA	
	• at 105 °C	—	4.21	4.85		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in Flash all peripheral clock disable, 24 MHz core/12 MHz flash, V _{DD} = 3.0 V • at 25 °C		2.66	3.30	mA	
	• at 105 °C	—	2.94	3.58		
I _{DD_RUN}	Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock disable, 12 MHz core/6 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	2.03	2.67	mA	
		—				
	• at 105 °C		2.31	2.95		
I _{DD_RUN}	Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock enable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	5.52	6.16	mA	
	• at 105 °C		5.83	6.47		
	• at 105 C		5.65	0.47		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in SRAM all peripheral clock disable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V		5.00	5.00		
	• at 25 °C	—	5.29	5.93	mA	
	• at 105 °C	—	5.56	6.20		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in SRAM all peripheral clock enable, 48 MHz core/24 MHz flash, V_{DD} = 3.0 V		0.04	7 55		
		—	6.91	7.55	mA	
		—	7.19	7.91		

Table 9. Power consumption operating behaviors (continued)
--

Table continues on the next page...

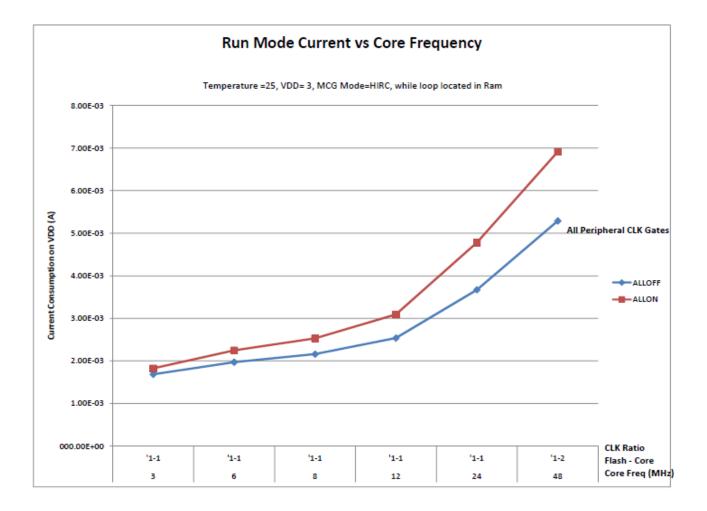
Table 9.	Power consumption operating behaviors (continued)
----------	---

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	disable, 125 kHz core / 31.25 kHz flash, V _{DD} = 3.0 V • at 25 °C	_	50	131	μA	
I _{DD_VLPR}	Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM all peripheral clock enable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C		208	289	μA	
I _{DD_WAIT}	Wait mode current—core disabled, 48 MHz system/24 MHz bus, flash disabled (flash doze enabled), all peripheral clocks disabled, MCG_Lite under HIRC mode, V _{DD} = 3.0 V	_	1.81	1.89	mA	
I _{DD_WAIT}	Wait mode current—core disabled, 24 MHz system/12 MHz bus, flash disabled (flash doze enabled), all peripheral clocks disabled, MCG_Lite under HIRC mode, V _{DD} = 3.0 V		1.22	1.39	mA	
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 4 MHz system/ 1 MHz bus and flash, all peripheral clocks disabled, $V_{DD} = 3.0$ V	—	172	182	μA	
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 2 MHz system/ 0.5 MHz bus and flash, all peripheral clocks disabled, $V_{DD} = 3.0$ V	_	69	76	μA	
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 125 kHz system/ 31.25 kHz bus and flash, all peripheral clocks disabled, $V_{DD} = 3.0$ V	_	36	40	μA	
DD_PSTOP2	Partial Stop 2, core and system clock disabled, 12 MHz bus and flash, V_{DD} = 3.0 V					
			1.81	2.06	mA	
I _{DD_PSTOP2}	Partial Stop 2, core and system clock disabled, flash doze enabled, 12 MHz bus, $V_{DD} = 3.0 V$					
		_	1.00	1.25	mA	
I _{DD_STOP}	Stop mode current at 3.0 V • at 25 °C and below	_	161.93	171.82		
	• at 50 °C	_	181.45	191.96		
	• at 85 °C		236.29	271.17	μA	
	• at 105 °C		390.33	465.58		
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V • at 25 °C and below	_	3.31	5.14		
	• at 50 °C	_	10.43	17.68		
	• at 85 °C	_	34.14	61.06	μA	
	• at 105 °C		104.38	164.44		
I _{DD_VLPS}	Very-low-power stop mode current at 1.8 V • at 25 °C and below	_	3.21	5.22		

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VLLS3}	Very-low-leakage stop mode 3 current with RTC					3
	current, at 1.8 V • at 25 °C and below	—	1.96	2.36	μA	
	• at 50 °C	—	3.86	5.67		
	• at 70 °C	—	6.23	8.53		
	• at 85 °C	—	10.21	13.37		
	• at 105 °C	—	30.25	37.02		
I _{DD_VLLS1}	Very-low-leakage stop mode 1 current all peripheral disabled at 3.0 V					
	• at 25 °C and below	—	0.66	0.80		
	• at 50°C	—	1.78	3.87		
	• at 70°C	—	2.55	4.26	μΑ	
	• at 85°C	—	4.83	6.64		
	● at 105 °C	—	16.42	20.49		
	Very-low-leakage stop mode 1 current RTC					3
I _{DD_VLLS1}	enabled at 3.0 V		1.26	1.40		
	 at 25 °C and below 	_				
	• at 50°C		2.38	4.47		
	• at 70°C	_	3.15	4.86	μA	
	• at 85°C	_	5.43	7.24		
	• at 105 °C	_	17.02	21.09		
I _{DD_VLLS1}	Very-low-leakage stop mode 1 current RTC					3
	enabled at 1.8 V	_	1.16	1.30		
	• at 25 °C and below	_	1.96	2.28		
	• at 50°C	_	2.78	3.37	μA	
	• at 70°C	_	4.85	6.88		
	• at 85°C	_	15.78	18.81		
	• at 105 °C					
I _{DD_VLLS0}	Very-low-leakage stop mode 0 current all					
	peripheral disabled (SMC_STOPCTRL[PORPO] = 0) at 3.0 V					
	 at 25 °C and below 	—	0.35	0.47	μA	
	• at 50 °C	—	1.25	1.44		
	• at 70 °C	—	2.53	3.24		
	• at 85 °C	—	4.40	5.24		
	• at 105 °C	—	16.09	19.29		
I _{DD_VLLS0}	Very-low-leakage stop mode 0 current all peripheral disabled (SMC_STOPCTRL[PORPO] = 1) at 3 V					

Symbol	Description		٦	Tempera	ature (°0	C)		Unit
		-40	25	50	70	85	105	
								nA
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.	22	22	22	22	22	22	μΑ
IUART	 UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption. IRC8M (8 MHz internal reference clock) IRC2M (2 MHz internal reference clock) 	114 34	114 34	114 34	114 34	114 34	114 34	μA
ITPM	 TPM peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source configured for output compare generating 100 Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents. IRC8M (8 MHz internal reference clock) IRC2M (2 MHz internal reference clock) 	147 42	147 42	147 42	147 42	147 42	147 42	μΑ
I _{BG}	Bandgap adder when BGEN bit is set and device is placed in VLPx or VLLSx mode.	45	45	45	45	45	45	μA
IADC	ADC peripheral adder combining the measured values at V_{DD} and V_{DDA} by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions.	330	330	330	330	330	330	μA


Table 10. Low power mode peripheral adders — typical value (continued)

2.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG-Lite in HIRC for run mode, and LIRC for VLPR mode
- No GPIOs toggled
- Code execution from flash
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA

General

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed the maximum. The simplest method to determine T_J is: $T_J = T_A + R_{\theta JA} \times chip$ power dissipation.

Table 16. Thermal operating requirements for other packages

Symbol	Description	Min.	Max.	Unit	Notes
TJ	Die junction temperature	-40	125	°C	
T _A	Ambient temperature	-40	105	°C	1

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed the maximum. The simplest method to determine T_J is: $T_J = T_A + R_{\theta JA} \times$ chip power dissipation.

2.4.2 Thermal attributes

Table 17. Thermal attributes

Board type	Symbo I	Description	48 QFN	32 QFN	64 LQFP	64 MAPB GA	36 WLCS P	Unit	Notes
Single-layer (1S)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	86	101	70	50.3	77.6	°C/W	1
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	29	33	51	42.9	38.9	°C/W	
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	71	84	58	41.4	69.6	°C/W	
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	24	28	45	38.0	35.6	°C/W	
	R _{θJB}	Thermal resistance, junction to board	12	13	33	39.6	34.8	°C/W	2
	R _{θJC}	Thermal resistance, junction to case	1.7	1.7	20	27.3	0.37	°C/W	3
	Ψ_{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	2	3	4	0.4	0.2	°C/W	4
_	Ψ_{JB}	Thermal characterization parameter, junction to package bottom (natural convection)	-	-	-	12.6	-	°C/W	5

1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).

2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
Tj	Period jitter (RMS)	—	35	150	ps	_
T _{su}	Startup time	—	2	3	μs	

Table 19. IRC48M specification (continued)

1. The maximum value represents characterized results equivalent to mean plus or minus three times the standard deviation (mean +/-3sigma).

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_2M}	Supply current in 2 MHz mode	_	14	17	μA	—
I _{DD_8M}	Supply current in 8 MHz mode	—	30	35	μA	—
f _{IRC_2M}	Output frequency	—	2	—	MHz	—
f _{IRC_8M}	Output frequency	—	8	—	MHz	—
f _{IRC_T_2M}	Output frequency range (trimmed)	—	—	±3	%f _{IRC}	_
f _{IRC_T_8M}	Output frequency range (trimmed)	—	—	±3	%f _{IRC}	—
T _{su_2M}	Startup time	_	—	12.5	μs	—
T _{su_8M}	Startup time	_	—	12.5	μs	—

Table 20. IRC8M/2M specification

Flash timing specifications — program and erase 3.4.1.1

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	—	7.5	18	μs	—
t _{hversscr}	Sector Erase high-voltage time	—	13	113	ms	1

52

452

ms

Table 23. NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

t_{hversblk128k}

Erase Block high-voltage time for 128 KB

Flash timing specifications — commands 3.4.1.2 Table 24. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Read 1s Block execution time					1
t _{rd1blk128k}	128 KB program flash	_	_	1.7	ms	
t _{rd1sec1k}	Read 1s Section execution time (flash sector)	_	—	60	μs	1
t _{pgmchk}	Program Check execution time	_	_	45	μs	1
t _{rdrsrc}	Read Resource execution time	_	—	30	μs	1
t _{pgm4}	Program Longword execution time	_	65	145	μs	_
	Erase Flash Block execution time					2
t _{ersblk128k}	128 KB program flash	-	88	600	ms	
t _{ersscr}	Erase Flash Sector execution time	_	14	114	ms	2
t _{rd1all}	Read 1s All Blocks execution time	_	_	1.8	ms	1
t _{rdonce}	Read Once execution time	_	_	25	μs	1
t _{pgmonce}	Program Once execution time	_	65	—	μs	_
t _{ersall}	Erase All Blocks execution time	_	175	1300	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	-	_	30	μs	1
t _{ersallu}	Erase All Blocks Unsecure execution time	_	175	1300	ms	2

1. Assumes 25 MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

1

3.4.1.3 Flash high voltage current behaviors Table 25. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation		2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation		1.5	4.0	mA

3.4.1.4 Reliability specifications

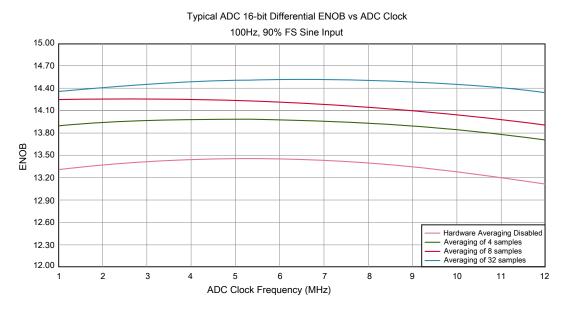
Table 26. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
	Program	n Flash	-	-		
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	_	years	_
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	_	years	_
n _{nvmcycp}	Cycling endurance	10 K	50 K		cycles	2

1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40 °C \leq T_j \leq 125 °C.

3.5 Security and integrity modules


There are no specifications necessary for the device's security and integrity modules.

3.6 Analog

3.6.1 ADC electrical specifications

Using differential inputs can achieve better system accuracy than using single-end inputs.

- The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
- 8. ADC conversion clock < 3 MHz

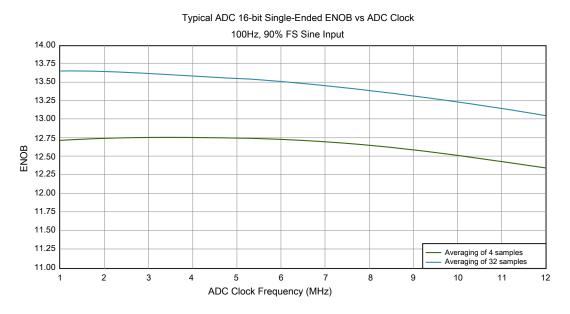


Figure 9. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

3.6.2 Voltage reference electrical specifications

Table 29.	VREF full-range	operating	requirements
-----------	------------------------	-----------	--------------

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage		3.6	V	
T _A	Temperature	Operating t range of t		°C	
CL	Output load capacitance	1(00	nF	1, 2

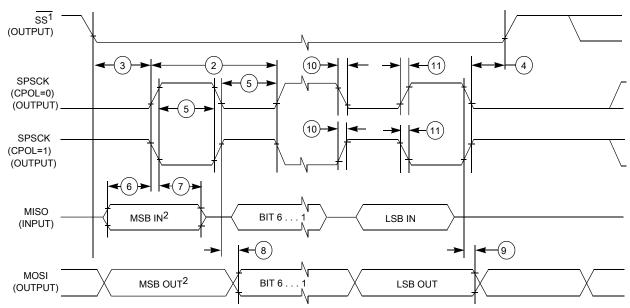
- 1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.
- The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.

Table 30 is tested under the condition of setting VREF_TRM[CHOPEN], VREF_SC[REGEN] and VREF_SC[ICOMPEN] bits to 1.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V_{DDA} and temperature=25C	1.1915	1.195	1.1977	V	1
V _{out}	Voltage reference output — factory trim	1.1584	—	1.2376	V	1
V _{out}	Voltage reference output — user trim	1.193	—	1.197	V	1
V _{step}	Voltage reference trim step	_	0.5	—	mV	1
V _{tdrift}	Temperature drift (Vmax -Vmin across the full temperature range: 0 to 70°C)	_		50	mV	1
I _{bg}	Bandgap only current	_	—	80	μA	1
I _{lp}	Low-power buffer current		_	360	uA	1
I _{hp}	High-power buffer current	_	—	1	mA	1
ΔV_{LOAD}	Load regulation				μV	1, 2
	• current = ± 1.0 mA	—	200	_		
T _{stup}	Buffer startup time	_	_	100	μs	
T _{chop_osc_st}	Internal bandgap start-up delay with chop oscillator enabled	—	—	35	ms	-
V _{vdrift}	Voltage drift (Vmax -Vmin across the full voltage range)	_	2	—	mV	1

Table 30. VREF full-range operating behaviors

1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.


2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

Num.	Symbol	Description	Min.	Max.	Unit	Note
8	t _v	Data valid (after SPSCK edge)	—	52	ns	—
9	t _{HO}	Data hold time (outputs)	0	—	ns	—
10	t _{RI}	Rise time input	—	t _{periph} - 25	ns	—
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	_	36	ns	—
	t _{FO}	Fall time output				

 Table 37. SPI master mode timing on slew rate enabled pads (continued)

1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

2. $t_{periph} = 1/f_{periph}$

1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 14. SPI master mode timing (CPHA = 0)

Peripheral operating requirements and behaviors

- 1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can be achieved only when using the high drive pins across the full voltage range and when using the normal drive pins and VDD ≥ 2.7 V.
- The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
 acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
 lines.
- 3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 4. Input signal Slew = 10 ns and Output Load = 50 pF
- 5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 6. A Fast mode I²C bus device can be used in a Standard mode I2C bus system, but the requirement t_{SU; DAT} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification) before the SCL line is released.
- 7. C_b = total capacitance of the one bus line in pF.

Characteristic	Symbol	Minimum	Maximum	Unit
SCL Clock Frequency	f _{SCL}	0	1 ¹	MHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	0.26	_	μs
LOW period of the SCL clock	t _{LOW}	0.5	—	μs
HIGH period of the SCL clock	t _{HIGH}	0.26	—	μs
Set-up time for a repeated START condition	t _{SU} ; STA	0.26	—	μs
Data hold time for I_2C bus devices	t _{HD} ; DAT	0	—	μs
Data set-up time	t _{SU} ; DAT	50	_	ns
Rise time of SDA and SCL signals	tr	20 +0.1C _b	120	ns
Fall time of SDA and SCL signals	t _f	20 +0.1C _b ²	120	ns
Set-up time for STOP condition	t _{SU} ; STO	0.26	—	μs
Bus free time between STOP and START condition	t _{BUF}	0.5	—	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	0	50	ns

Table 41. I²C 1Mbit/s timing

- 1. The maximum SCL clock frequency of 1 Mbit/s can support maximum bus loading when using the high drive pins across the full voltage range.
- 2. C_b = total capacitance of the one bus line in pF.

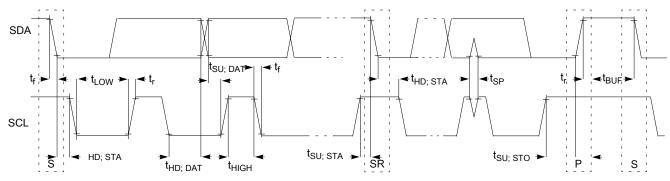


Figure 18. Timing definition for devices on the I²C bus

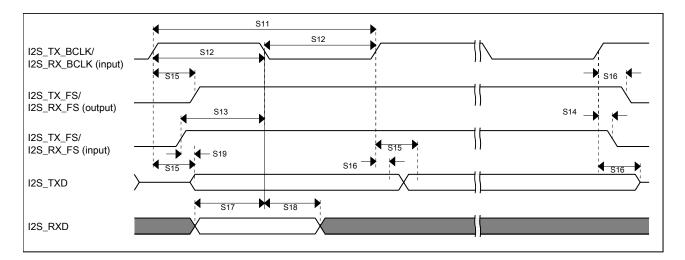


Figure 22. I2S/SAI timing — slave modes

4 Dimensions

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
32-pin QFN	98ASA00615D
36-pin WLCSP	98ASA00949D
48-pin QFN	98ASA00616D
64-pin LQFP	98ASS23234W
64-pin MAPBGA	98ASA00420D

Pinouts and Packaging

64 MAP BGA	64 LQFP	48 QFN	36 WLC SP	32 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
E8	38	30	- 3P	_	PTB3	ADC0_SE13	ADC0_SE13	PTB3	I2C0_SDA	TPM2_CH1				
E6	39	31	-	_	PTB16	DISABLED	_	PTB16	SPI1_MOSI	LPUARTO_ RX	TPM_ CLKIN0	SPI1_MISO		
D7	40	32	-	_	PTB17	DISABLED		PTB17	SPI1_MISO	LPUART0_ TX	TPM_ CLKIN1	SPI1_MOSI		
D6	41	-	-	-	PTB18	DISABLED		PTB18		TPM2_CH0	I2S0_TX_ BCLK			
C7	42	-	-	_	PTB19	DISABLED		PTB19		TPM2_CH1	I2S0_TX_ FS			
D8	43	33	-	-	PTC0	ADC0_SE14	ADC0_SE14	PTC0		EXTRG_IN	audioUSB_ SOF_OUT	CMP0_OUT	I2S0_TXD0	
C6	44	34	B1	22	PTC1/ LLWU_P6/ RTC_CLKIN	ADC0_SE15	ADC0_SE15	PTC1/ LLWU_P6/ RTC_CLKIN	I2C1_SCL		TPM0_CH0		I2S0_TXD0	
B7	45	35	B2	23	PTC2	ADC0_SE11	ADC0_SE11	PTC2	I2C1_SDA		TPM0_CH1		I2S0_TX_ FS	
C8	46	36	A1	24	PTC3/ LLWU_P7	DISABLED		PTC3/ LLWU_P7	SPI1_SCK	LPUART1_ RX	TPM0_CH2	CLKOUT	I2S0_TX_ BCLK	
E3	47	_	C4	-	VSS	VSS	VSS							
E4	48	_	B3	_	VDD	VDD	VDD							
B8	49	37	A2	25	PTC4/ LLWU_P8	DISABLED		PTC4/ LLWU_P8	SPI0_PCS0	LPUART1_ TX	TPM0_CH3	I2S0_MCLK		
A8	50	38	A3	26	PTC5/ LLWU_P9	DISABLED		PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ ALT2	I2S0_RXD0		CMP0_OUT	
A7	51	39	B4	27	PTC6/ LLWU_P10	CMP0_IN0	CMP0_IN0	PTC6/ LLWU_P10	SPI0_MOSI	EXTRG_IN	I2S0_RX_ BCLK	SPI0_MISO	I2S0_MCLK	
B6	52	40	A4	28	PTC7	CMP0_IN1	CMP0_IN1	PTC7	SPI0_MISO	audioUSB_ SOF_OUT	I2S0_RX_ FS	SPI0_MOSI		
A6	53	-	_	_	PTC8	CMP0_IN2	CMP0_IN2	PTC8	I2C0_SCL	TPM0_CH4	I2S0_MCLK			
B5	54	_	_	_	PTC9	CMP0_IN3	CMP0_IN3	PTC9	I2C0_SDA	TPM0_CH5	I2S0_RX_ BCLK			
B4	55	-	-	_	PTC10	DISABLED		PTC10	I2C1_SCL		I2S0_RX_ FS			
A5	56	-	-	_	PTC11	DISABLED		PTC11	I2C1_SDA		I2S0_RXD0			
C3	57	41	-	-	PTD0	DISABLED		PTD0	SPI0_PCS0		TPM0_CH0		FXI00_D0	
A4	58	42	-	_	PTD1	ADC0_SE5b	ADC0_SE5b	PTD1	SPI0_SCK		TPM0_CH1		FXIO0_D1	
C2	59	43	-	_	PTD2	DISABLED		PTD2	SPI0_MOSI	UART2_RX	TPM0_CH2	SPI0_MISO	FXIO0_D2	
B3	60	44	-	_	PTD3	DISABLED		PTD3	SPI0_MISO	UART2_TX	TPM0_CH3	SPI0_MOSI	FXIO0_D3	
A3	61	45	A5	29	PTD4/ LLWU_P14	DISABLED		PTD4/ LLWU_P14	SPI1_PCS0	UART2_RX	TPM0_CH4		FXI00_D4	
C1	62	46	B5	30	PTD5	ADC0_SE6b	ADC0_SE6b	PTD5	SPI1_SCK	UART2_TX	TPM0_CH5		FXIO0_D5	
B2	63	47	A6	31	PTD6/ LLWU_P15	ADC0_SE7b	ADC0_SE7b	PTD6/ LLWU_P15	SPI1_MOSI	LPUART0_ RX		SPI1_MISO	FXIO0_D6	

7.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

7.2 Format

Part numbers for this device have the following format:

Q KL## A FFF R T PP CC N

7.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
KL##	Kinetis family	• KL17
A	Key attribute	• Z = Cortex-M0+
FFF	Program flash memory size	 128 = 128 KB 256 = 256 KB
R	Silicon revision	 (Blank) = Main A = Revision after main
Т	Temperature range (°C)	 V = -40 to 105 C = -40 to 85
PP	Package identifier	 FM = 32 QFN (5 mm x 5 mm) AL = 36 WLCSP (2.8 mm x 2.7 mm) FT = 48 QFN (7 mm x 7 mm) LH = 64 LQFP (10 mm x 10 mm) MP = 64 MAPBGA (5 mm x 5 mm)
CC	Maximum CPU frequency (MHz)	• 4 = 48 MHz
N	Packaging type	R = Tape and reel

 Table 47. Part number fields descriptions

7.4 Example

This is an example part number:

8.2 Examples

Operating rating:

Symbol	Description	Min.	Max.	Unit		
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V		

Operating requirement:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

4.

Operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
	Digital I/O weak pullup/pulldown current	10 AM	70	130	μA

8.3 Typical-value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	٥C
V _{DD}	Supply voltage	3.3	V

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, the Energy Efficient Solutions logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM, the ARM powered logo, and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

©2014-2016 Freescale Semiconductor, Inc.

Document Number KL17P64M48SF6 Revision 6, 02/2016

