

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 20x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LFBGA
Supplier Device Package	64-MAPBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl17z128vmp4r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Related Resources (continued)

Туре	Description	Resource
Package drawing	Package dimensions are provided in package drawings.	64-LQFP: 98ASS23234W ¹ 64- MAPBGA: 98ASA00420D ^{, 1} 32- QFN: 98ASA00615D ¹ 48-QFN: 98ASA00616D ^{, 1} 36-WLCSP: 98ASA00949D ¹

1. To find the associated resource, go to http://www.nxp.com and perform a search using this term.

1 Ratings

1.1 Thermal handling ratings

Table 1. Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free		260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.2 Moisture handling ratings

Table 2. Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	_	1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.3 ESD handling ratings

Table 3. ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105 °C	-100	+100	mA	3

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

 Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

Symbol	Description	Min.	Max.	Unit	Notes
V_{DD}	Supply voltage	1.71	3.6	V	
V _{DDA}	Analog supply voltage	1.71	3.6	V	
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
$V_{SS} - V_{SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{IH}	Input high voltage				
	• 2.7 V \leq V _{DD} \leq 3.6 V	$0.7 \times V_{DD}$	_	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	$0.75 \times V_{DD}$	—	V	
V _{IL}	Input low voltage				
	• 2.7 V \leq V _{DD} \leq 3.6 V	_	$0.35 \times V_{DD}$	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	_	$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$	_	V	
I _{ICIO}	IO pin negative DC injection current — single pin • V _{IN} < V _{SS} -0.3V	-3	_	mA	1
I _{ICcont}	Contiguous pin DC injection current —regional limit, includes sum of negative injection currents of 16 contiguous pins				
	Negative current injection	-25	_	mA	
V _{ODPU}	Open drain pullup voltage level	V _{DD}	V _{DD}	V	2
V _{RAM}	V _{DD} voltage required to retain RAM	1.2	—	V	

2.2.1 Voltage and current operating requirements

Table 5. Voltage and current operating requirements

1. All I/O pins are internally clamped to V_{SS} through a ESD protection diode. There is no diode connection to V_{DD} . If V_{IN} greater than V_{IO_MIN} (= V_{SS} -0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R = $(V_{IO_MIN} - V_{IN})/|I_{ICIO}|$.

2. Open drain outputs must be pulled to V_{DD} .

2.2.2 LVD and POR operating requirements

Table 6. V_{DD} supply LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling V _{DD} POR detect voltage	0.8	1.1	1.5	V	_
V _{LVDH}	Falling low-voltage detect threshold — high range (LVDV = 01)	2.48	2.56	2.64	V	_
	Low-voltage warning thresholds — high range					1

Table continues on the next page ...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	 VLPS → RUN 					
		—	7.5	8	μs	
	• STOP → RUN					
		_	7.5	8	μs	

 Table 8. Power mode transition operating behaviors (continued)

1. Normal boot (FTFA_FOPT[LPBOOT]=11)

2.2.5 Power consumption operating behaviors

The maximum values stated in the following table represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

NOTE

The while (1) test is executed with flash cache enabled.

NOTE

The data at 105 °C are for QFN, LQFP and MAPBGA packages only.

 Table 9. Power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current		_	See note	mA	1
I _{DD_RUNCO}	Running CoreMark in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V_{DD} = 3.0 V					2
	• at 25 °C	—	5.76	6.40	mA	
	• at 105 °C	_	6.04	6.68		
I _{DD_RUNCO}	Running While(1) loop in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					
	• at 25 °C	_	3.21	3.85	mA	
	• at 105 °C	—	3.49	4.13		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 48 MHz core/24 MHz flash, $V_{DD} = 3.0 V$					2
	• at 25 °C	_	6.45	7.09	mA	
	• at 105 °C	_	6.75	7.39		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in flash all peripheral clock disable, 24 MHz core/12 MHz flash, V _{DD} = 3.0 V					2

Table continues on the next page...

Symbol	Description	Min.	Max.	Unit
f _{LPTMR_ERCLK}	LPTMR external reference clock	—	16	MHz
	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)		16	MHz
f _{TPM}	TPM asynchronous clock	—	8	MHz
f _{LPUART0/1}	LPUART0/1 asynchronous clock		8	MHz

Table 13. Device clock specifications (continued)

1. The maximum value of system clock, core clock, bus clock, and flash clock under normal run mode can be 3% higher than the specified maximum frequency when IRC 48MHz is used as the clock source.

 The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN or from VLPR.

3. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.

2.3.2 General switching specifications

These general-purpose specifications apply to all signals configured for GPIO and UART signals.

Table 14. General switching specifications

Description	Min.	Max.	Unit	Notes
GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5		Bus clock cycles	1
External RESET and NMI pin interrupt pulse width — Asynchronous path	100		ns	2
GPIO pin interrupt pulse width — Asynchronous path	16	—	ns	2
Port rise and fall time	_	36	ns	3

1. The synchronous and asynchronous timing must be met.

2. This is the shortest pulse that is guaranteed to be recognized.

3. 75 pF load

2.4 Thermal specifications

2.4.1 Thermal operating requirements

Table 15. Thermal operating requirements for WLCSP package

Symbol	Description	Min.	Max.	Unit	Notes
TJ	Die junction temperature	-40	95	°C	
T _A	Ambient temperature	-40	85	°C	1

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed the maximum. The simplest method to determine T_J is: $T_J = T_A + R_{\theta JA} \times chip$ power dissipation.

Table 16. Thermal operating requirements for other packages

Symbol	Description	Min.	Max.	Unit	Notes
TJ	Die junction temperature	-40	125	°C	
T _A	Ambient temperature	-40	105	°C	1

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed the maximum. The simplest method to determine T_J is: $T_J = T_A + R_{\theta JA} \times$ chip power dissipation.

2.4.2 Thermal attributes

Table 17. Thermal attributes

Board type	Symbo I	Description	48 QFN	32 QFN	64 LQFP	64 MAPB GA	36 WLCS P	Unit	Notes
Single-layer (1S)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	86	101	70	50.3	77.6	°C/W	1
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	29	33	51	42.9	38.9	°C/W	
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	71	84	58	41.4	69.6	°C/W	
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	24	28	45	38.0	35.6	°C/W	
	R _{θJB}	Thermal resistance, junction to board	12	13	33	39.6	34.8	°C/W	2
	R _{θJC}	Thermal resistance, junction to case	1.7	1.7	20	27.3	0.37	°C/W	3
	Ψ_{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	2	3	4	0.4	0.2	°C/W	4
_	Ψ_{JB}	Thermal characterization parameter, junction to package bottom (natural convection)	-	-	-	12.6	-	°C/W	5

1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).

2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.

Peripheral operating requirements and behaviors

- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).
- 5. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

3 Peripheral operating requirements and behaviors

3.1 Core modules

3.1.1 SWD electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	25	MHz
J2	SWD_CLK cycle period	1/J1		ns
J3	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times		3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	_	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	0	—	ns
J11	SWD_CLK high to SWD_DIO data valid	_	32	ns
J12	SWD_CLK high to SWD_DIO high-Z	5		ns

Table 18. SWD full voltage range electricals

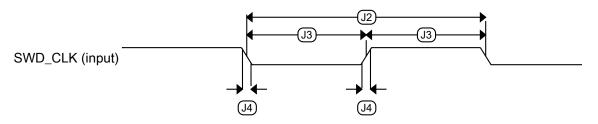


Figure 4. Serial wire clock input timing

Flash timing specifications — program and erase 3.4.1.1

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	—	7.5	18	μs	—
t _{hversscr}	Sector Erase high-voltage time	—	13	113	ms	1

52

452

ms

Table 23. NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

t_{hversblk128k}

Erase Block high-voltage time for 128 KB

Flash timing specifications — commands 3.4.1.2 Table 24. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Read 1s Block execution time					1
t _{rd1blk128k}	128 KB program flash	_	_	1.7	ms	
t _{rd1sec1k}	Read 1s Section execution time (flash sector)	_	—	60	μs	1
t _{pgmchk}	Program Check execution time	_	_	45	μs	1
t _{rdrsrc}	Read Resource execution time	_	—	30	μs	1
t _{pgm4}	Program Longword execution time	_	65	145	μs	_
	Erase Flash Block execution time					2
t _{ersblk128k}	128 KB program flash	-	88	600	ms	
t _{ersscr}	Erase Flash Sector execution time	_	14	114	ms	2
t _{rd1all}	Read 1s All Blocks execution time	_	_	1.8	ms	1
t _{rdonce}	Read Once execution time	_	_	25	μs	1
t _{pgmonce}	Program Once execution time	_	65	—	μs	_
t _{ersall}	Erase All Blocks execution time	_	175	1300	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	_	30	μs	1
t _{ersallu}	Erase All Blocks Unsecure execution time	_	175	1300	ms	2

1. Assumes 25 MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

3.6.1.1 16-bit ADC operating conditions Table 27. 16-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71	_	3.6	V	—
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V_{SS} ($V_{SS} - V_{SSA}$)	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	3
V _{REFL}	ADC reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	3
V _{ADIN}	Input voltage	16-bit differential mode	VREFL		31/32 × VREFH	V	
		All other modes	VREFL	—	VREFH		
C _{ADIN}	Input	16-bit mode	_	8	10	pF	_
	capacitance	• 8-bit / 10-bit / 12-bit modes	—	4	5		
R _{ADIN}	Input series resistance		_	2	5	kΩ	_
R _{AS}	Analog source resistance (external)	13-bit / 12-bit modes f _{ADCK} < 4 MHz		_	5	kΩ	4
f _{ADCK}	ADC conversion clock frequency	≤ 13-bit mode	1.0	_	24	MHz	5
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0	—	12.0	MHz	5
C _{rate}	ADC conversion	≤ 13-bit modes					6
	rate	No ADC hardware averaging	20.000	—	1200	ksps	
		Continuous conversions enabled, subsequent conversion time					
C _{rate}	ADC conversion	16-bit mode					6
	rate	No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	37.037	_	461.467	ksps	

- Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- 3. VREFH can act as VREF_OUT when VREFV1 module is enabled.
- 4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.</p>
- 5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

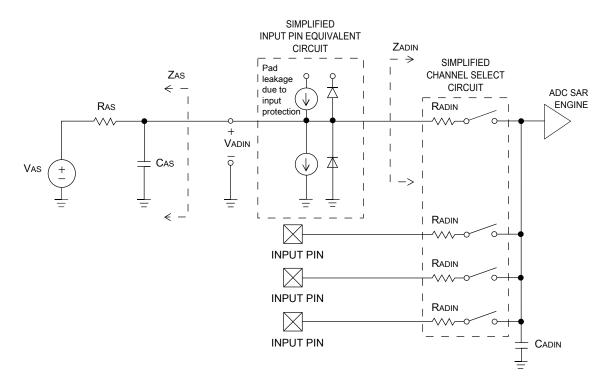


Figure 7. ADC input impedance equivalency diagram

3.6.1.2 16-bit ADC electrical characteristics

				- DDA,		- 33A/	
Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	—	1.7	mA	3
	ADC asynchronous	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	t _{ADACK} = 1/
	clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	f _{ADACK}
f _{ADACK}		• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter	for sample	times			
TUE	Total unadjusted	12-bit modes		±4	±6.8	LSB ⁴	5
	error	• <12-bit modes	—	±1.4	±2.1		
DNL	Differential non- linearity	12-bit modes	_	±0.7	-1.1 to +1.9	LSB ⁴	5
		 <12-bit modes 	—	±0.2	–0.3 to 0.5		
INL	Integral non-linearity	12-bit modes	_	±1.0	–2.7 to +1.9	LSB ⁴	5

Table 28.	16-bit ADC characteristics (V _{REFH} = V _{DDA} , V _{REFL} = V _{SSA})
-----------	---

Table continues on the next page ...

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
		• <12-bit modes	_	±0.5	-0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	_	-4	-5.4	LSB ⁴	$V_{ADIN} = V_{DDA}^5$
		 <12-bit modes 	—	-1.4	-1.8		
EQ	Quantization error	16-bit modes	_	-1 to 0		LSB ⁴	
		 ≤13-bit modes 	—	_	±0.5		
ENOB	Effective number of	16-bit differential mode					6
	bits	• Avg = 32	12.8	14.5	_	bits	
		• Avg = 4	11.9	13.8	_	bits	
		16-bit single-ended modeAvg = 32	12.2	13.9	_	bits	
		• Avg = 4	11.4	13.1	_	bits	
SINAD	Signal-to-noise plus distortion	See ENOB	6.02 ×	ENOB +	1.76	dB	
THD	Total harmonic	16-bit differential mode				dB	7
	distortion	• Avg = 32	—	-94	—	dB	
		16-bit single-ended modeAvg = 32	_	-85	_	ub	
SFDR	Spurious free dynamic range	16-bit differential modeAvg = 32	82	95	_	dB	7
					—	dB	
		16-bit single-ended modeAvg = 32	78	90			
E _{IL}	Input leakage error			$I_{ln} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	8
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	8

Table 28.	16-bit ADC characteristics	$(V_{REFH} = V_{DDA},$, V _{REFL} = V _{SSA}) (continued)
-----------	----------------------------	------------------------	--	---------------

1. All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDA}$ 2. Typical values assume $V_{DDA} = 3.0 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 2.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

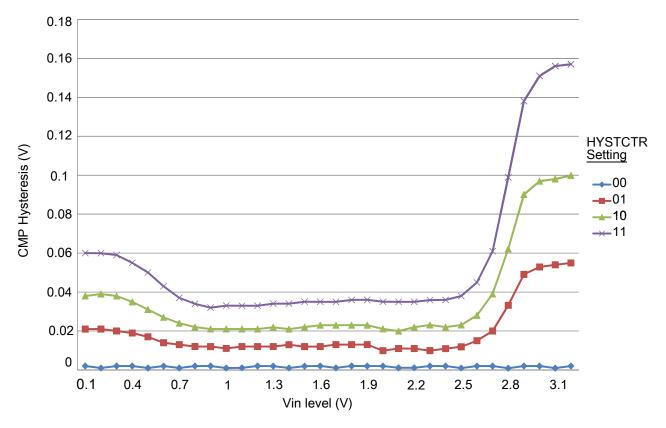


Figure 11. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

3.6.4 12-bit DAC electrical characteristics

3.6.4.1 12-bit DAC operating requirements Table 34. 12-bit DAC operating requirements

Symbol	Desciption	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage		3.6	V	
V _{DACR}	Reference voltage	1.13	3.6	V	1
CL	Output load capacitance	—	100	pF	2
١L	Output load current	—	1	mA	

1. The DAC reference can be selected to be V_{DDA} or V_{REFH}

2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.

3.6.4.2 12-bit DAC operating behaviors Table 35. 12-bit DAC operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA_DACL} P	Supply current — low-power mode		—	250	μΑ	
I _{DDA_DACH} P	Supply current — high-speed mode	_	—	900	μA	
t _{DACLP}	Full-scale settling time (0x080 to 0xF7F) — low-power mode	_	100	200	μs	1
t _{DACHP}	Full-scale settling time (0x080 to 0xF7F) — high-power mode	_	15	30	μs	1
t _{CCDACLP}	Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode	_	0.7	1	μs	1
V _{dacoutl}	DAC output voltage range low — high- speed mode, no load, DAC set to 0x000	_	—	100	mV	
V _{dacouth}	DAC output voltage range high — high- speed mode, no load, DAC set to 0xFFF	V _{DACR} -100	—	V _{DACR}	mV	
INL	Integral non-linearity error — high speed mode	—	—	±8	LSB	2
DNL	Differential non-linearity error — V _{DACR} > 2 V	—	—	±1	LSB	3
DNL	Differential non-linearity error — V _{DACR} = VREF_OUT	_	—	±1	LSB	4
V _{OFFSET}	Offset error	_	±0.4	±0.8	%FSR	5
E _G	Gain error	_	±0.1	±0.6	%FSR	5
PSRR	Power supply rejection ratio, $V_{DDA} \ge 2.4 V$	60	—	90	dB	
T _{CO}	Temperature coefficient offset voltage	—	3.7	—	μV/C	6
T_{GE}	Temperature coefficient gain error	—	0.000421	—	%FSR/C	
Rop	Output resistance (load = $3 \text{ k}\Omega$)			250	Ω	
SR	Slew rate -80h→ F7Fh→ 80h				V/µs	
	 High power (SP_{HP}) 	1.2	1.7	-		
	 Low power (SP_{LP}) 	0.05	0.12	—		
BW	3dB bandwidth				kHz	
	 High power (SP_{HP}) 	550		_		
	• Low power (SP _{LP})	40		_		

1. Settling within ±1 LSB

2. The INL is measured for 0 + 100 mV to V_{DACR} –100 mV

3. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV

4. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV with V_{DDA} > 2.4 V 5. Calculated by a best fit curve from V_{SS} + 100 mV to V_{DACR} – 100 mV

6. V_{DDA} = 3.0 V, reference select set for V_{DDA} (DACx_CO:DACRFS = 1), high power mode (DACx_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device

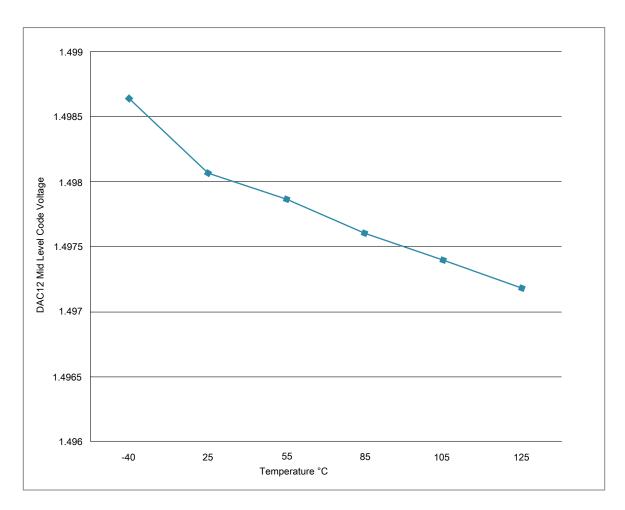
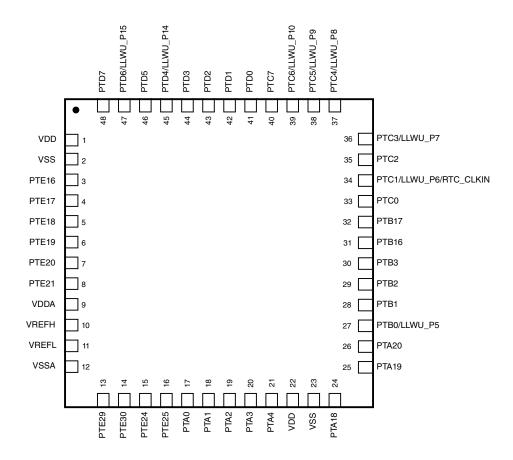



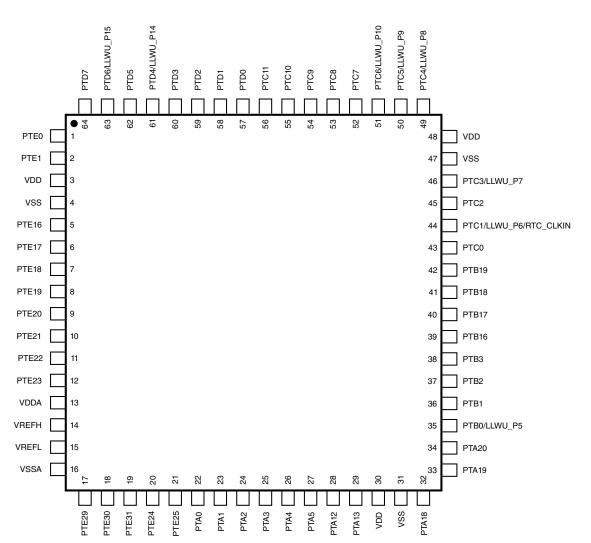
Figure 13. Offset at half scale vs. temperature

3.7 Timers

See General switching specifications.

3.8 Communication interfaces

Figure 25. 48 QFN Pinout diagram


Figure below shows the 64 MAPBGA pinouts:

Pinouts and Packaging

	1	2	3	4	5	6	7	8	
A	PTE0	PTD7	PTD4/ LLWU_P14	PTD1	PTC11	PTC8	PTC6/ LLWU_P10	PTC5/ LLWU_P9	A
в	PTE1	PTD6/ LLWU_P15	PTD3	PTC10	PTC9	PTC7	PTC2	PTC4/ LLWU_P8	в
С	PTD5	PTD2	PTD0	VSS	NC	PTC1/ LLWU_P6/ RTC_CLKIN	PTB19	PTC3/ LLWU_P7	С
D	PTE17	PTE19	PTA0	PTA1	PTA3	PTB18	PTB17	PTC0	D
E	PTE16	PTE18	VSS	VDD	PTA2	PTB16	PTB2	PTB3	Е
F	PTE21	PTE23	VSSA	VDDA	PTA5	PTB1	PTB0/ LLWU_P5	PTA20	F
G	PTE20	PTE22	VREFL	VREFH	PTA4	PTA13	VDD	PTA19	G
н	PTE29	PTE30	PTE31	PTE24	PTE25	PTA12	VSS	PTA18	н
	1	2	3	4	5	6	7	8	

Figure 26. 64 MAPBGA Pinout diagram:

Figure below shows the 64 LQFP pinouts:

Pinouts and Packaging

Figure 27. 64 LQFP Pinout diagram

5.3 Recommended connection for unused analog and digital pins

Table 46 shows the recommended connections for analog interface pins if those analog interfaces are not used in the customer's application

8.2 Examples

Operating rating:

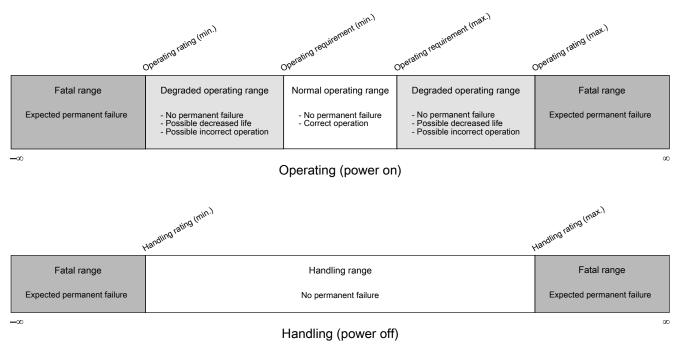
Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V

Operating requirement:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

4.

Operating behavior that includes a typical value:


Symbol	Description	Min.	Тур.	Max.	Unit
	Digital I/O weak pullup/pulldown current	10 AM	70	130	μA

8.3 Typical-value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	٥C
V _{DD}	Supply voltage	3.3	V

8.4 Relationship between ratings and operating requirements

8.5 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

9 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes	
3	09 August 2014Initial Public release • Updated Table 9 - Power consumption operating behaviors. • Added a note related to 32 QFN pin package in Pinouts topic.		
4	03 March 2015	Updated the features and completed the ordering information.Removed thickness dimension from package diagrams.	

Table 48. Revision History

Table continues on the next page...

Rev. No.	Date	Substantial Changes
		 Updated Related Resources table to include Chip Errata resource name and Package Drawing part numbers in the respective rows. Also updated Product Brief resource references. Updated Table 7. Voltage and current operating behaviors. Specified correct max. value for I_{IN}. Updated Table - 9 Power consumption operating behaviors. Rows added for IDD for reset pin hold low (I_{DD_RESET_LOW}) at 1.7V and 3V. Measurement unit updated for I_{DD_VLLS1} from nA to µA. Footnote 1 was moved in the beginning of the table as text. Added Table - 11 EMC radiated emissions operating behaviors for 64-pin LQFP package under section 2.2.6. Updated Table - 18 (IRC48M specification) and Table - 19 (IRC8M/2M specification) under section 3.3.1 - 'MCG-Lite specifications'. Removed supply voltage (V_{DD}), temperature range (T), untrimmed (f_{IRC_UT}), trim function (Δf_{IRC_C}, Δf_{IRC_F}) data from Table - 18 (IRC48M specification). Removed supply voltage (V_{DD}), temperature range (T) data from Table - 19 (IRC8M/2M specification). Removed supply voltage (V_{DD}), temperature curve after Table - 19 (IRC8M/2M specification). Added Figure 6. IRC8M Frequency Drift vs Temperature curve after Table - 19 (IRC8M/2M specification). Updated Table 29. VREF full-range operating behaviors. Removed A_Q(Aging coefficient) row. Added T_{chop_osc_stup} parameter. Added T_{chop_osc_stup} parameter. Added T_{chop_osc_stup} parameter. Added Table 29. VREF full-range operating behaviors. Removed A_Q(Aging coefficient) row. Added T_{chop_osc_stup} parameter. Added Tables: "I2C timing" and "I2C 1Mbit/s timing" under section - I²C. Added VREF specifications (V_{REFH} and V_{REF}
5	12 August 2015	 In Table 9. Power consumption operating behaviors: Updated Max. values of I_{DD_WAIT}, I_{DD_VLPW}, I_{DD_STOP}, I_{DD_VLPS}, I_{DD_LLS}, I_{DD_VLLS3}, I_{DD_VLLS1}, I_{DD_VLLS0} Modified unit of I_{DD_VLLS0} from nA to µA. Removed I_{DD_RESET_LOW} information. In Table 13. Device clock specifications, added a footnote for normal run mode. In Table 15. Thermal operating requirements, modified the footnote for Ambient temperature. In Table 18. IRC48M specification, removed f_{IRC_T} data and added Δf_{irc48m_of_lv} and Δf_{irc48m_of_hv} specifications. In Table 26. 16-bit ADC operating conditions, updated Max. value of f_{ADCK} and C_{rate}.
5.1	16 Nov 2015	Added 36-pin WLCSP package information.
6	25 Jan 2016	Completed all the TBDs of the 36-pin WLCSP package.