

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART, USB OTG
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 9x12b; D/A 1x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFLGA Exposed Pad
Supplier Device Package	44-MAPLGA (5x5)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf51ju32vhs

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2 Definition: Operating behavior

An *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

3.2.1 Example

This is an example of an operating behavior, which is guaranteed if you meet the accompanying operating requirements:

Symbol	Description	Min.	Max.	Unit
I _{WP}	Digital I/O weak pullup/ pulldown current	10	130	μΑ

3.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

3.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins		7	pF

3.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- Operating ratings apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.

- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

3.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

3.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

3.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

Nonswitching electrical specifications

Symbol	Description	Value	Unit
V _{DD}	3.3 V supply voltage	3.3	V

5.2 Nonswitching electrical specifications

5.2.1 Voltage and Current Operating Requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V _{DDA}	Analog supply voltage	1.71	3.6	V	
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
$V_{SS} - V_{SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{IH}	Input high voltage				1
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	$0.7 \times V_{DD}$	—	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	$0.75 \times V_{DD}$	—	V	
V _{IL}	Input low voltage				2
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	_	$0.35 \times V_{DD}$	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	_	$0.3 \times V_{DD}$	V	
I _{IC}	DC injection current — single pin				3
	• V _{IN} > V _{DD}	0	2	mA	
	• V _{IN} < V _{SS}	0	-0.2	mA	
	DC injection current — total MCU limit, includes sum				3
	of all stressed pins	0	25	mA	
	• V _{IN} < V _{SS}	0	-5	mA	
V _{RAM}	V _{DD} voltage required to retain RAM	1.2	_	V	

Table 1. Voltage and current operating requirements

1. The device always interprets an input as a 1 when the input is greater than or equal to V_{IH} (min.) and less than or equal to V_{IH} (max.), regardless of whether input hysteresis is turned on.

- The device always interprets an input as a 0 when the input is less than or equal to V_{IL} (max.) and greater than or equal to V_{IL} (min.), regardless of whether input hysteresis is turned on.
- 3. All functional non-supply pins are internally clamped to VSS and VDD. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values. Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).

MCF51JU128 Data Sheet, Rev. 4, 01/2012.

Nonswitching electrical specifications

- 5. 2 MHz core and system clocks, and 1 MHz bus clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash memory.
- 6. 2 MHz core and system clocks, and 1 MHz bus clock. MCG configured for BLPE mode. All peripheral clocks enabled, but peripherals are not in active operation. Code executing from flash memory.
- 7. 2 MHz core and system clocks, and 1 MHz bus clock. MCG configured for BLPE mode. All peripheral clocks disabled.
- 8. OSC clocks disabled.
- 9. All pads disabled.
- 10. Data reflects devices with 32 KB of RAM. For devices with 16 KB of RAM, power consumption is reduced by 500 nA. For devices with 8 KB of RAM, power consumption is reduced by 750 nA.
- 11. RTC function current includes LPTMR with OSC enabled with 32.768 kHz crystal at 3.0 V

5.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE mode, except for 50 MHz core (FEI mode)
- For the ALLOFF curve, all peripheral clocks are disabled except FTFL
- For the ALLON curve, all peripheral clocks are enabled, but peripherals are not in active operation
- USB Voltage Regulator disabled
- No GPIOs toggled
- Code execution from flash memory with cache enabled

Figure 1. Run mode supply current vs. core frequency

Clock modules

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
D _{lock}	Lock entry frequency tolerance	± 1.49	—	± 2.98	%	
D _{unl}	Lock exit frequency tolerance	± 4.47		± 5.97	%	
t _{pll_lock}	Lock detector detection time		_	150 × 10 ⁻⁶ + 1075(1/ f _{pll_ref})	S	9

Table 13. MCG specifications (continued)

1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).

- 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco t}) over voltage and temperature should be considered.
- 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 7. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 8. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

6.3.2 Oscillator electrical specifications

This section provides the electrical characteristics of the module.

6.3.2.1 Oscillator DC electrical specifications Table 14. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	—	3.6	V	
I _{DDOSC}	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	-	500	_	nA	
	• 1 MHz	-	200	_	μA	
	• 4 MHz	—	200	_	μA	
	• 8 MHz (RANGE=01)	—	300	_	μA	
	• 16 MHz	—	950	_	μA	
	• 24 MHz	—	1.2	_	mA	
	• 32 MHz	_	1.5	_	mA	

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
	Write endurance					4
n _{nvmwree16}	EEPROM backup to FlexRAM ratio = 16	35 K	175 K	—	writes	
n _{nvmwree128}	EEPROM backup to FlexRAM ratio = 128	315 K	1.6 M	—	writes	
n _{nvmwree512}	EEPROM backup to FlexRAM ratio = 512	1.27 M	6.4 M	—	writes	
n _{nvmwree4k}	EEPROM backup to FlexRAM ratio = 4096	10 M	50 M	—	writes	
n _{nvmwree8k}	• EEPROM backup to FlexRAM ratio = 8192	20 M	100 M	—	writes	

Table 19. NVM reliability specifications (continued)

1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology.

2. Data retention is based on $T_{javg} = 55^{\circ}C$ (temperature profile over the lifetime of the application).

3. Cycling endurance represents number of program/erase cycles at -40°C \leq T_j \leq 125°C.

4. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup. Minimum and typical values assume all byte-writes to FlexRAM.

6.4.1.5 Write endurance to FlexRAM for EEPROM

When the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values.

The bytes not assigned to data flash via the FlexNVM partition code are used by the FTFL to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space.

While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used.

Writes_FlexRAM =
$$\frac{\text{EEPROM} - 2 \times \text{EEESIZE}}{\text{EEESIZE}} \times \text{Write_efficiency} \times n_{\text{nvmcycd}}$$

where

- Writes_FlexRAM minimum number of writes to each FlexRAM location
- EEPROM allocated FlexNVM based on DEPART; entered with Program Partition command
- EEESIZE allocated FlexRAM based on DEPART; entered with Program Partition command
- Write_efficiency —

Figure 8. Mini-FlexBus write timing diagram

6.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

Figure 13. Offset at half scale vs. temperature

6.6.4 Voltage reference electrical specifications

Table 27.	VREF full-range	operating	requirements
	U		

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
T _A	Temperature	-40	105	°C	
CL	Output load capacitance	100		nF	1

1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V_{DDA} and temperature=25C	1.1965	1.2	1.2027	V	
V _{out}	Voltage reference output with— factory trim	1.1584		1.2376	V	
V _{out}	Voltage reference output — user trim	1.198	—	1.202	V	
V _{step}	Voltage reference trim step	_	0.5	_	mV	
V _{tdrift}	Temperature drift (Vmax -Vmin across the full temperature range)	_	_	80	mV	
I _{bg}	Bandgap only (MODE_LV = 00) current	_	—	80	μA	
l _{tr}	Tight-regulation buffer (MODE_LV =10) current			1.1	mA	
ΔV_{LOAD}	Load regulation (MODE_LV = 10)				mV	1
	• current = + 1.0 mA	_	2	_		
	• current = - 1.0 mA	_	5	_		
T _{stup}	Buffer startup time	—	—	100	μs	
V _{vdrift}	Voltage drift (Vmax -Vmin across the full voltage range) (MODE_LV = 10, REGEN = 1)	_	2	_	mV	

Table 28. VREF full-range operating behaviors

1. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

Table 29. VREF limited-range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
T _A	Temperature	0	50	°C	

Table 30. VREF limited-range operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim	1.173	1.225	V	

6.7 Timers

See General Switching Specifications.

Communication interfaces

Num.	Symbol	Description	Min.	Max.	Unit	Comment
6	t _{SU}	Data setup time (inputs)	21	—	ns	_
7	t _{HI}	Data hold time (inputs)	0	_	ns	
8	t _v	Data valid (after SPSCK edge)	—	25	ns	
9	t _{HO}	Data hold time (outputs)	0	_	ns	_
10	t _{RI}	Rise time input	—	t _{BUS} - 25	ns	
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	—	25	ns	—
	t _{FO}	Fall time output]			

1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 14. SPI master mode timing (CPHA=0)

6.9 Human-machine interfaces (HMI)

6.9.1 TSI electrical specifications

Table 37. TSI electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DDTSI}	Operating voltage	1.71	—	3.6	V	
C _{ELE}	Target electrode capacitance range	1	20	500	pF	1
f _{REFmax}	Reference oscillator frequency	—	5.5	14	MHz	2
f _{ELEmax}	Electrode oscillator frequency	_	0.5	4.0	MHz	3
C _{REF}	Internal reference capacitor	0.5	1	1.2	pF	
V _{DELTA}	Oscillator delta voltage	100	600	760	mV	4
I _{REF}	Reference oscillator current source base current		1.133	1.5	μA	3,5
	 32uA setting (REFCHRG=31) 	_	36	50		
I _{ELE}	Electrode oscillator current source base current	_	1.133	1.5	μA	3,6
	 32uA setting (EXTCHRG=31) 	_	36	50		
Pres5	Electrode capacitance measurement precision	—	8.3333	38400	%	7
Pres20	Electrode capacitance measurement precision	_	8.3333	38400	%	8
Pres100	Electrode capacitance measurement precision	_	8.3333	38400	%	9
MaxSens	Maximum sensitivity	0.003	12.5	—	fF/count	10
Res	Resolution			16	bits	
T _{Con20}	Response time @ 20 pF	8	15	25	μs	11

Pinout

64- pin	48- pin	44- pin	32- pin	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
22	18	16	13	USB0 DP	USB0 DP								
23	19	17	14	VSS	VSS								
24	20	18	_	VDD	VDD								
25	21	19	15	ADC0_SE8/ TSI0_CH0	ADC0_SE8/ TSI0_CH0	PTA6		LPTMR_AL T1	FTM_FLT1	FBa_D7	FBa_AD17		
26	-	-	-	ADC0_SE9/ TSI0_CH1	ADC0_SE9/ TSI0_CH1	PTD2	FTM0_QD_ PHA	RGPIO10	FTM0_CH0				
27	22	20	_	ADC0_SE1 0/TSI0_CH2	ADC0_SE1 0/TSI0_CH2	PTD3	FTM0_QD_ PHB	RGPIO11	FTM0_CH1	FBa_D6	FBa_AD0		
28	_	—	—	ADC0_SE1 1/TSI0_CH3	ADC0_SE1 1/TSI0_CH3	PTD4		RGPIO12			FBa_D7		
29	—	—	—	ADC0_SE1 2/TSI0_CH4	ADC0_SE1 2/TSI0_CH4	PTD5		RGPIO13			FBa_D6		
30	23	21	16	ADC0_SE1 3/TSI0_CH5	ADC0_SE1 3/TSI0_CH5	PTA7	UART0_TX		FTM0_QD_ PHA		FBa_D5		
31	24	22	—	ADC0_SE1 4/TSI0_CH6	ADC0_SE1 4/TSI0_CH6	PTD6	UART0_RX	RGPIO14			FBa_D4		
32	—	—	—	ADC0_SE1 5/TSI0_CH7	ADC0_SE1 5/TSI0_CH7	PTD7	UART0_CT S_b	I2C3_SCL	RGPIO15		FBa_D3		
33	_	_	—	TSI0_CH8	TSI0_CH8	PTE0	UART0_RT S_b	I2C3_SDA			FBa_D2		
34	—	—	—	TSI0_CH9	TSI0_CH9	PTE1	SPI0_SS		FTM_FLT0		FBa_D1		
35	25	23	17	IRQ/ EZP_MS_b	Disabled	PTB0		I2C0_SCL		IRQ/ EZP_MS_b			EZP_CS_b
36	26	24	18	TSI0_CH10	TSI0_CH10	PTB1	SPI0_SCLK	I2C0_SDA	FTM_FLT2	LPTMR_AL T2	FTM0_QD_ PHB	FB_CLKOU T	
37	_	-	_	TSI0_CH11	TSI0_CH11	PTE2		I2C3_SCL			FBa_D0		
38	-	_	_	ADC0_SE1 6/ TSI0_CH12	ADC0_SE1 6/ TSI0_CH12	PTE3	SPI0_MOSI	I2C3_SDA			FBa_OE_b		
39	27	25	19	ADC0_SE1 7/ TSI0_CH13	ADC0_SE1 7/ TSI0_CH13	PTB2	SPI0_MISO				FBa_CS0_b		
40	28	26	20	ADC0_SE1 8/ TSI0_CH14	ADC0_SE1 8/ TSI0_CH14	PTB3	SPI0_MOSI			FBa_CS1_b	FBa_ALE		
41	29	_	_	ADC0_SE1 9/ TSI0_CH15	ADC0_SE1 9/ TSI0_CH15	PTE4	UART0_RT S_b	LPTMR_AL T3	SPI1_SS		FBa_AD1		
42	30	Ι	—	ADC0_SE2 0	ADC0_SE2 0	PTE5	UART0_CT S_b	I2C1_SCL	SPI1_SCLK		FBa_AD2		
43	—	—	—	ADC0_SE2 1	ADC0_SE2 1	PTE6	UART0_RX	I2C1_SDA	SPI1_MISO		FBa_AD3		
44	31	27	_	ADC0_SE2 2	ADC0_SE2 2	PTE7	UART0_TX	PDB0_EXT RG	SPI1_MOSI	FBa_RW_b	FBa_AD4		
45	32	28	21	BKGD/MS	Disabled	PTB4	BKGD/MS						
46	33	29	22	XTAL2	XTAL2	PTB5							

MCF51JU128 Data Sheet, Rev. 4, 01/2012.

64- pin	48- pin	44- pin	32- pin	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
47	34	30	23	EXTAL2	EXTAL2	PTB6							
48	35	31	24	VDD	VDD								
49	36	32	25	VSS	VSS								
50	37	33	26	EXTAL1	EXTAL1	PTB7		I2C1_SDA	TMR_CLKI N1				
51	38	34	27	XTAL1	XTAL1	PTC0		I2C1_SCL	TMR_CLKI N0	RGPIO0			
52	39	35	28	RESET_b	Disabled	PTC1	RESET_b						
53	_	-	_	CMP0_IN0	CMP0_IN0	PTF0	SPI0_SS				FBa_AD5		
54	_	-	—	Disabled	Disabled	PTF1	SPI0_SCLK			CMP0_OUT	FBa_AD6		
55	_	_	_	CMP0_IN1	CMP0_IN1	PTF2	SPI0_MISO				FBa_AD7		
56	40	36	_	CMP0_IN2	CMP0_IN2	PTF3	SPI0_MOSI			RGPIO1	FBa_AD8	I2S0_TXD	
57	41	37	29	CMP0_IN3	CMP0_IN3	PTC2	UART1_RT S_b	SPI1_SS		RGPIO2	FBa_AD18	I2S0_TX_F S	
58	42	38	-	Disabled	Disabled	PTF4	UART1_CT S_b	SPI1_SCLK		FBa_D3	FBa_AD19	I2S0_TX_B CLK	
59	43	39	—	Disabled	Disabled	PTF5	UART1_RX	SPI1_MISO		FBa_D2	FBa_RW_b	I2S0_RXD	
60	44	40	-	Disabled	Disabled	PTF6	UART1_TX	SPI1_MOSI		FBa_D1	FBa_AD9	I2S0_RX_F S	
61	45	41	_	Disabled	Disabled	PTF7	UART0_RT S_b		SPI0_SS	FBa_D0	FBa_AD10	I2S0_RX_B CLK	
62	46	42	30	Disabled	Disabled	PTC3	UARTO_CT S_b	RGPIO3	SPI0_SCLK	CLKOUT	USB_CLKIN	12S0_MCLK / 12S0_CLKIN	
63	47	43	31	Disabled	Disabled	PTC4	UART0_RX	RGPIO4	SPI0_MISO	PDB0_EXT RG	USB_SOF_ PULSE		
64	48	44	32	Disabled	Disabled	PTC5	UART0_TX	RGPIO5	SPI0_MOSI	CMT_IRO			

8.2 Pinout diagrams

The following diagrams show pinouts for the 64-pin, 48-pin, 44-pin, and 32-pin packages. These diagrams are representations for ease of reference. See the package drawings for mechanical details.

For each pin, the diagrams show the default function or (when disabled is the default) the ALT1 signal for a GPIO function. However, many signals may be multiplexed onto a single pin.

Pinout

Table 38	Module signals by	GPIO port and	nin (continued)
	module signals b	y al lo port and	buu (continueu)

64-pin	48-pin	44-pin	32-pin	Port	Module signal(s)
63	47	43	31	PTC4	LLWU_P15
		RG	PIO		
51	38	34	27	PTC0	RGPIO0
56	40	36		PTF3	RGPIO1
57	41	37	29	PTC2	RGPIO2
62	46	42	30	PTC3	RGPIO3
63	47	43	31	PTC4	RGPIO4
64	48	44	32	PTC5	RGPIO5
3				PTC6	RGPIO6
4				PTC7	RGPIO7
5	1			PTD0	RGPIO8
6	2			PTD1	RGPIO9
26				PTD2	RGPIO10
27	22	20		PTD3	RGPIO11
28				PTD4	RGPIO12
29				PTD5	RGPIO13
31	24	22		PTD6	RGPIO14
32				PTD7	RGPIO15
		LPT	MR		
25	21	19	15	PTA6	LPTMR_ALT1
36	26	24	18	PTB1	LPTMR_ALT2
41	29			PTE4	LPTMR_ALT3
		LPTM	R-TOD		
50	37	33	26	PTB7	EXTAL1
47	34	30	23	PTB6	EXTAL2
25	21	19	15	PTA6	LPTMR_ALT1
36	26	24	18	PTB1	LPTMR_ALT2
41	29			PTE4	LPTMR_ALT3
51	38	34	27	PTC0	XTAL1
46	33	29	22	PTB5	XTAL2
		P.	ГА		
7	3	1	1	PTA0	PTA0
8	4	2	2	PTA1	PTA1
9	5	3	3	PTA2	PTA2
10	6	4	4	PTA3	PTA3

64-pin	48-pin	44-pin	32-pin	Port	Module signal(s)
11	7	5	5	PTA4	I2S0_TX_FS
57	41	37	29	PTC2	I2S0_TX_FS
12	8	6	6	PTA5	I2S0_TXD
56	40	36		PTF3	I2S0_TXD
		т	SIO		
25	21	19	15	PTA6	TSI0_CH0
26				PTD2	TSI0_CH1
27	22	20		PTD3	TSI0_CH2
28				PTD4	TSI0_CH3
29				PTD5	TSI0_CH4
30	23	21	16	PTA7	TSI0_CH5
31	24	22		PTD6	TSI0_CH6
32				PTD7	TSI0_CH7
33				PTE0	TSI0_CH8
34				PTE1	TSI0_CH9
36	26	24	18	PTB1	TSI0_CH10
37				PTE2	TSI0_CH11
38				PTE3	TSI0_CH12
39	27	25	19	PTB2	TSI0_CH13
40	28	26	20	PTB3	TSI0_CH14
41	29			PTE4	TSI0_CH15
		PD)B0	•	
44	31	27		PTE7	PDB0_EXTRG
63	47	43	31	PTC4	PDB0_EXTRG
		FT	MO		
34				PTE1	FTM_FLT0
25	21	19	15	PTA6	FTM_FLT1
36	26	24	18	PTB1	FTM_FLT2 / FTM0_QD_PHB
26				PTD2	FTM0_CH0/ FTM0_QD_PHA
27	22	20		PTD3	FTM0_CH1 / FTM0_QD_PHB
30	23	21	16	PTA7	FTM0_QD_PHA
51	38	34	27	PTC0	TMR_CLKIN0
50	37	33	26	PTB7	TMR_CLKIN1

Table 38. Module signals by GPIO port and pin (continued)

Pinout

Table 38.	Module signals b	v GPIO port	and pin	(continued)
	module signals b	y ai io poit		(continucu)

64-pin	48-pin	44-pin	32-pin	Port	Module signal(s)				
	•	FT	M1	•					
34				PTE1	FTM_FLT0				
25	21	19	15	PTA6	FTM_FLT1				
36	26	24	18	PTB1	FTM_FLT2				
7	3	1	1	PTA0	FTM1_CH0				
8	4	2	2	PTA1	FTM1_CH1				
9	5	3	3	PTA2	FTM1_CH2				
10	6	4	4	PTA3	FTM1_CH3				
11	7	5	5	PTA4	FTM1_CH4				
12	8	6	6	PTA5	FTM1_CH5				
51	38	34	27	PTC0	TMR_CLKIN0				
50	37	33	26	PTB7	TMR_CLKIN1				
MTIM									
51	38	34	27	PTC0	TMR_CLKIN0				
50	37	33	26	PTB7	TMR_CLKIN1				
Mini-FlexBus									
36	26	24	18	PTB1	FB_CLKOUT				
27	22	20		PTD3	FBa_AD0				
41	29			PTE4	FBa_AD1				
42	30			PTE5	FBa_AD2				
43				PTE6	FBa_AD3				
44	31	27		PTE7	FBa_AD4				
53				PTF0	FBa_AD5				
54				PTF1	FBa_AD6				
55				PTF2	FBa_AD7				
56	40	36		PTF3	FBa_AD8				
60	44	40		PTF6	FBa_AD9				
61	45	41		PTF7	FBa_AD10				
3				PTC6	FBa_AD11				
4				PTC7	FBa_AD12				
5	1			PTD0	FBa_AD13				
6	2			PTD1	FBa_AD14				
7	3	1	1	PTA0	FBa_AD15				
8	4	2	2	PTA1	FBa_AD16				
25	21	19	15	PTA6	FBa_AD17				

			•	• •	,
64-pin	48-pin	44-pin	32-pin	Port	Module signal(s)
43				PTE6	I2C1_SDA
50	37	33	26	PTB7	I2C1_SDA
		I2C2 a	ind I2C3		
7	3	1	1	PTA0	I2C2_SCL
11	7	5	5	PTA4	I2C2_SCL
8	4	2	2	PTA1	I2C2_SDA
12	8	6	6	PTA5	I2C2_SDA
32				PTD7	I2C3_SCL
37				PTE2	I2C3_SCL
33				PTE0	I2C3_SDA
38				PTE3	I2C3_SDA
		S	PI0	1	
39	27	25	19	PTB2	SPI0_MISO
55				PTF2	SPI0_MISO
63	47	43	31	PTC4	SPI0_MISO
38				PTE3	SPI0_MOSI
40	28	26	20	PTB3	SPI0_MOSI
56	40	36		PTF3	SPI0_MOSI
64	48	44	32	PTC5	SPI0_MOSI
36	26	24	18	PTB1	SPI0_SCLK
54				PTF1	SPI0_SCLK
62	46	42	30	PTC3	SPI0_SCLK
7	3	1	1	PTA0	SPI0_SS
34				PTE1	SPI0_SS
53				PTF0	SPI0_SS
61	45	41		PTF7	SPI0_SS
		S	PI1		
4				PTC7	SPI1_MISO
11	7	5	5	PTA4	SPI1_MISO
43				PTE6	SPI1_MISO
59	43	39		PTF5	SPI1_MISO
3				PTC6	SPI1_MOSI
12	8	6	6	PTA5	SPI1_MOSI
44	31	27		PTE7	SPI1_MOSI
60	44	40		PTF6	SPI1 MOSI

Table 38. Module signals by GPIO port and pin (continued)

64-pin	48-pin	44-pin	32-pin	Port	Module signal(s)
5	1			PTD0	SPI1_SCLK
10	6	4	4	PTA3	SPI1_SCLK
42	30			PTE5	SPI1_SCLK
58	42	38		PTF4	SPI1_SCLK
6	2			PTD1	SPI1_SS
9	5	3	3	PTA2	SPI1_SS
41	29			PTE4	SPI1_SS
57	41	37	29	PTC2	SPI1_SS
UART0					
5	1			PTD0	UART0_CTS_b
32				PTD7	UART0_CTS_b
42	30			PTE5	UART0_CTS_b
62	46	42	30	PTC3	UART0_CTS_b
6	2			PTD1	UART0_RTS_b
33				PTE0	UART0_RTS_b
41	29			PTE4	UART0_RTS_b
61	45	41		PTF7	UART0_RTS_b
4				PTC7	UART0_RX
31	24	22		PTD6	UART0_RX
43				PTE6	UART0_RX
63	47	43	31	PTC4	UART0_RX
3				PTC6	UART0_TX
30	23	21	16	PTA7	UART0_TX
44	31	27		PTE7	UART0_TX
64	48	44	32	PTC5	UART0_TX
UART1					
11	7	5	5	PTA4	UART1_CTS_b
58	42	38		PTF4	UART1_CTS_b
12	8	6	6	PTA5	UART1_RTS_b
57	41	37	29	PTC2	UART1_RTS_b
10	6	4	4	PTA3	UART1_RX
59	43	39		PTF5	UART1_RX
9	5	3	3	PTA2	UART1_TX
60	44	40		PTF6	UART1_TX

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

 $\label{eq:rescale} Freescale TM and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.$

© 2010–2012 Freescale Semiconductor, Inc.

Document Number: MCF51JU128 Rev. 4, 01/2012