

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART, USB OTG
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 11x12b; D/A 1x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf51ju64vlf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

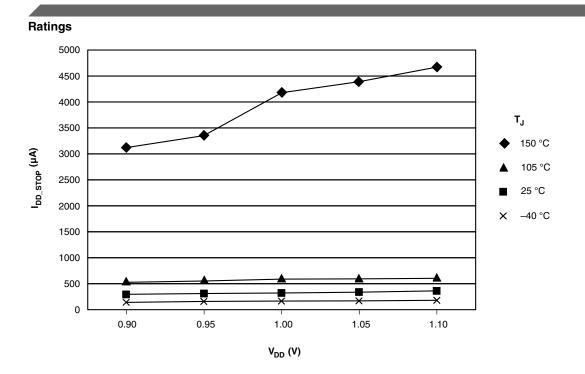
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

3.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.


3.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

3.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	—	260	°C	2
	Solder temperature, leaded	—	245		

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	—	3	_	1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105°C	-100	+100	mA	

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

4.4 Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	—	120	mA
V _{DIO}	Digital input voltage (except RESET, EXTAL, and XTAL)	-0.3	V _{DD} + 0.3	V
V _{AIO}	Analog, RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
۱ _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V
V _{USB_DP}	USB_DP input voltage	-0.3	3.63	V
V _{USB_DM}	USB_DM input voltage	-0.3	3.63	V
VREGIN	USB Regulator input	-0.3	6.0	V

5 General

5.1 Typical Value Conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	٥C

Table continues on the next page...

MCF51JU128 Data Sheet, Rev. 4, 01/2012.

Nonswitching electrical specifications

- 2. V_{DD} = 3 V, T_A = 25 °C, f_{OSC} = 32 kHz (crystal), f_{BUS} = 24 MHz
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method.

5.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to http://www.freescale.com.
- 2. Perform a keyword search for "EMC design."

5.2.8 Capacitance attributes

Table 7. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	_	7	pF
C _{IN_D}	Input capacitance: digital pins	_	7	pF

5.3 Switching electrical specifications

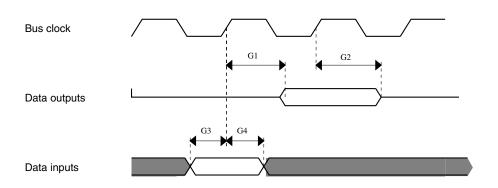
Table 8. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes
	Normal run mod	de	•		•
f _{SYS}	System and core clock	_	50	MHz	
f _{SYS_USB}	System and core clock when USB in operation	20	—	MHz	
f _{BUS}	Bus clock	_	25	MHz	
FB_CLK	Mini-FlexBus clock	_	25	MHz	1
f _{LPTMR}	LPTMR clock		25	MHz	
	VLPR mode				
f _{SYS}	System and core clock		2	MHz	
f _{BUS}	Bus clock		1	MHz	
FB_CLK	Mini-FlexBus clock	—	1	MHz	1
f _{LPTMR}	LPTMR clock ²		25	MHz	

1. When the Mini-FlexBus is enabled, its clock frequency is always the same as the bus clock frequency.

2. A maximum frequency of 25 MHz for the LPTMR in VLPR mode is possible when the LPTMR is configured for pulse counting mode and is driven externally via the LPTMR_ALT1, LPTMR_ALT2, or LPTMR_ALT3 pin.

5.3.1 General Switching Specifications


These general purpose specifications apply to all signals configured for EGPIO, MTIM, CMT, PDB, IRQ, and I²C signals. The conditions are 50 pf load, $V_{DD} = 1.71$ V to 3.6 V, and full temperature range. The GPIO are set for high drive, no slew rate control, and no input filter, digital or analog, unless otherwise specified.

Symbol	Description	Min.	Max.	Unit
G1	Bus clock from CLK_OUT pin high to GPIO output valid	—	32	ns
G2	Bus clock from CLK_OUT pin high to GPIO output invalid (output hold)	1	—	ns
G3	GPIO input valid to bus clock high	28	—	ns
G4	Bus clock from CLK_OUT pin high to GPIO input invalid	—	4	ns
	GPIO pin interrupt pulse width (digital glitch filter disabled) Synchronous path ¹	1.5	_	Bus clock cycles
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) Asynchronous path ²	100	_	ns
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled)	50		ns
	Asynchronous path ²			
	External reset pulse width (digital glitch filter disabled)	100	_	ns
	Mode select (MS) hold time after reset deassertion	2	_	Bus clock cycles

Table 9. EGPIO General Control Timing

1. The greater synchronous and asynchronous timing must be met.

2. This is the shortest pulse that is guaranteed to be recognized.

MCF51JU128 Data Sheet, Rev. 4, 01/2012.

Board type	Symbol	Description	64 LQFP	48 LQFP	44 Laminate QFN	32 QFN	Unit	Notes
Single-layer (1s)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	73	79	108	98	°C/W	1
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	54	55	69	33	°C/W	1
Single-layer (1s)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	61	66	91	81	°C/W	1
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	48	48	63	28	°C/W	1
_	R _{θJB}	Thermal resistance, junction to board	37	34	44	13	°C/W	2
—	R _{θJC}	Thermal resistance, junction to case	20	20	31	2.2	°C/W	3
_	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	5.0	4.0	6.0	6.0	°C/W	4

5.4.2 Thermal attributes

1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions —Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions — Forced Convection (Moving Air).

2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions —Junction-to-Board.

3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.

4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions – Natural Convection (Still Air).

6 Peripheral operating requirements and behaviors

6.1 Core modules

6.1.1 Debug specifications

Table 12. Background debug mode (BDM) timing

Number	Symbol	Description	Min.	Max.	Unit
1	t _{MSSU}	BKGD/MS setup time after issuing background debug force reset to enter user mode or BDM	500	—	ns
2	t _{MSH}	BKGD/MS hold time after issuing background debug force reset to enter user mode or BDM ¹	100	_	μs

MCF51JU128 Data Sheet, Rev. 4, 01/2012.

f _{dco_t_DMX3} [DCO output frequency range	Low range (DRS=00) $640 \times f_{fll_ref}$ Mid range (DRS=01) $1280 \times f_{fll_ref}$ Mid-high range (DRS=10) $1920 \times f_{fll_ref}$ High range (DRS=11) $2560 \times f_{fll_ref}$	20 40 60	20.97 41.94 62.91	25 50 75	MHz MHz MHz	2, 3
f	DCO output	$1280 \times f_{fll_ref}$ Mid-high range (DRS=10) $1920 \times f_{fll_ref}$ High range (DRS=11)	60				
f	DCO output	1920 × f _{fll_ref} High range (DRS=11)		62.91	75	MHz	
f	DCO output		00	1		11112	
f	DCO output		80	83.89	100	MHz	-
-	frequency	Low range (DRS=00) 732 × f _{fll_ref}	_	23.99	_	MHz	4, 5
		Mid range (DRS=01) 1464 × f _{fll_ref}	_	47.97	_	MHz	-
		Mid-high range (DRS=10) 2197 × f _{fll_ref}	_	71.99	_	MHz	
		High range (DRS=11) 2929 × f _{fll_ref}	_	95.98	_	MHz	
J _{cyc_fll} F	FLL period jitter			180		ps	
	 f_{VCO} = 48 Mł f_{VCO} = 98 Mł 		—	150	_		
t _{fll_acquire} F	FLL target frequen	cy acquisition time	_	—	1	ms	6
		PL	L				
f _{vco} ۱	VCO operating free	quency	48.0	—	100	MHz	
I _{pll} F		rent IHz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = / multiplier = 48)	_	1060	_	μΑ	7
I _{pll} F		rent IHz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = / multiplier = 24)	_	600	_	μΑ	7
f _{pll_ref} F	PLL reference freq	luency range	2.0	—	4.0	MHz	
J _{cyc_pll} F	PLL period jitter (R	RMS)					8
	• f _{vco} = 48 MH	z	—	120	_	ps	
	• f _{vco} = 100 M	Hz		50		ps	
J _{acc_pll} F	PLL accumulated j	jitter over 1µs (RMS)					8
	• f _{vco} = 48 MH	z	_	1350	_	ps	
	• f _{vco} = 100 M	Hz	—	600	—	ps	

Table 13. MCG specifications (continued)

Table continues on the next page...

Clock modules

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
D _{lock}	Lock entry frequency tolerance	± 1.49	_	± 2.98	%	
D _{unl}	Lock exit frequency tolerance	± 4.47	_	± 5.97	%	
t _{pll_lock}	Lock detector detection time			150 × 10 ⁻⁶ + 1075(1/ f _{pll_ref})	S	9

Table 13. MCG specifications (continued)

1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).

- 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco t}) over voltage and temperature should be considered.
- 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 7. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 8. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

6.3.2 Oscillator electrical specifications

This section provides the electrical characteristics of the module.

6.3.2.1 Oscillator DC electrical specifications Table 14. Oscillator DC electrical specifications

Description	Min.	Тур.	Max.	Unit	Notes
Supply voltage	1.71	_	3.6	V	
Supply current — low-power mode (HGO=0)					1
• 32 kHz	_	500	_	nA	
• 1 MHz		200	—	μA	
• 4 MHz	_	200	_	μA	
• 8 MHz (RANGE=01)	_	300	_	μA	
• 16 MHz	_	950	_	μA	
• 24 MHz	_	1.2	_	mA	
• 32 MHz	_	1.5	_	mA	
	Supply voltage Supply current — low-power mode (HGO=0) • 32 kHz • 1 MHz • 4 MHz • 8 MHz (RANGE=01) • 16 MHz • 24 MHz	Supply voltage1.71Supply current — low-power mode (HGO=0)—• 32 kHz—• 1 MHz—• 4 MHz—• 8 MHz (RANGE=01)—• 16 MHz—• 24 MHz—	Supply voltage 1.71 — Supply current — low-power mode (HGO=0) — 500 • 32 kHz — 500 • 1 MHz — 200 • 4 MHz — 200 • 8 MHz (RANGE=01) — 300 • 16 MHz — 950 • 24 MHz — 1.2	Supply voltage 1.71 — 3.6 Supply current — low-power mode (HGO=0) — 500 — • 32 kHz — 500 — • 1 MHz — 200 — • 4 MHz — 200 — • 8 MHz (RANGE=01) — 300 — • 16 MHz — 950 — • 24 MHz — 1.2 —	Supply voltage 1.71 — 3.6 V Supply current — low-power mode (HGO=0) — 500 — nA • 32 kHz — 500 — nA • 1 MHz — 200 — µA • 4 MHz — 200 — µA • 8 MHz (RANGE=01) — 300 — µA • 16 MHz — 950 — µA • 24 MHz — 1.2 — mA

Table continues on the next page ...

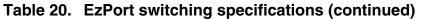

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
IDDOSC	Supply current — high gain mode (HGO=1)					1
	• 32 kHz	—	25	—	μA	
	• 1 MHz	_	300	_	μA	
	• 4 MHz	_	400	_	μA	
	• 8 MHz (RANGE=01)	_	500	_	μA	
	• 16 MHz	—	2.5	—	mA	
	• 24 MHz	—	3	_	mA	
	• 32 MHz	—	4	_	mA	
C _x	EXTAL load capacitance	_	_			2, 3
Cy	XTAL load capacitance		_	_		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	—	—	_	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	—	10	_	MΩ	
	Feedback resistor — high-frequency, low-power mode (HGO=0)	—	—	—	MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1	_	MΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	_			kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	_	200		kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	_			kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
	1 MHz resonator	_	6.6		kΩ	
	2 MHz resonator		3.3		kΩ	
	4 MHz resonator		0		kΩ	
	8 MHz resonator		0		kΩ	
	16 MHz resonator		0		kΩ	
	20 MHz resonator		0		kΩ	
	32 MHz resonator				132	

Table 14. Oscillator DC electrical specifications (continued)

Table continues on the next page...

Memories and memory interfaces

Num	Description	Min.	Max.	Unit
EP3	EZP_CS input valid to EZP_CK high (setup)	15	—	ns
EP4	EZP_CK high to EZP_CS input invalid (hold)	0.0	—	ns
EP5	EZP_D input valid to EZP_CK high (setup)	15	—	ns
EP6	EZP_CK high to EZP_D input invalid (hold)	0.0	—	ns
EP7	EZP_CK low to EZP_Q output valid (setup)	—	25	ns
EP8	EZP_CK low to EZP_Q output invalid (hold)	0.0	_	ns
EP9	EZP_CS negation to EZP_Q tri-state		12	ns

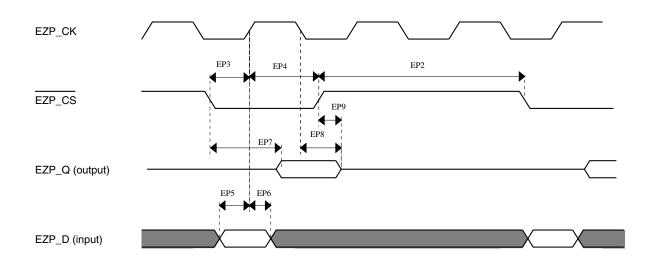


Figure 6. EzPort Timing Diagram

6.4.3 Mini-Flexbus Switching Specifications

All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency.

The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Mini-Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	
	Frequency of operation	_	25	MHz	
FB1	Clock period	40	_	ns	
FB2	Address, data, and control output valid	_	20	ns	1
FB3	Address, data, and control output hold	1	_	ns	1
FB4	Data and FB_TA input setup	20	—	ns	2
FB5	Data and FB_TA input hold	10	—	ns	2

Table 21. Flexbus switching specifications

1. Specification is valid for all FB_AD[31:0], FB_CSn, FB_OE, FB_R/W, and FB_TS.

2. Specification is valid for all FB_AD[31:0].

Note

The following diagrams refer to signal names that may not be included on your particular device. Ignore these extraneous signals.

Also, ignore the AA=0 portions of the diagrams because this setting is not supported in the Mini-FlexBus.

5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool: http://cache.freescale.com/ files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1

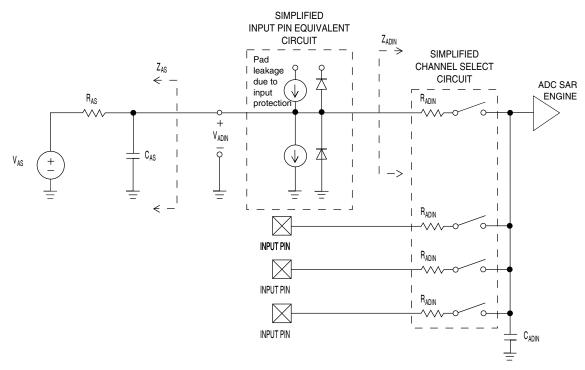


Figure 9. ADC input impedance equivalency diagram

6.6.1.2 12-bit ADC electrical characteristics Table 23. 12-bit ADC characteristics (V_{REFH} = V_{DDA}, V_{REFL} = V_{SSA})

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes		
I _{DDA_ADC}	Supply current		0.215	—	1.7	mA	3		
	ADC	ADLPC=1, ADHSC=0	1.2	2.4	3.9	MHz	$t_{ADACK} = 1/$		
4	asynchronous clock source	 ADLPC=1, ADHSC=1 	3.0	4.0	7.3	MHz	f _{ADACK}		
f _{ADACK}		 ADLPC=0, ADHSC=0 	2.4	5.2	6.1	MHz			
		ADLPC=0, ADHSC=1	4.4	6.2	9.5	MHz			
	Sample Time	See Reference Manual chapte	ee Reference Manual chapter for sample times						
TUE	Total unadjusted	12 bit modes	_	±4	±6.8	LSB ⁴	5		
	error	• <12 bit modes	—	±1.4	±2.1				
DNL	Differential non- linearity	12 bit modes	_	±0.7	-1.1 to +1.9	LSB ⁴	5		
		 <12 bit modes 	_	±0.2	-0.3 to 0.5				
INL	Integral non- linearity	12 bit modes	_	±1.0	-2.7 to +1.9	LSB ⁴	5		
		 <12 bit modes 	_	±0.5	-0.7 to +0.5				

Table continues on the next page ...

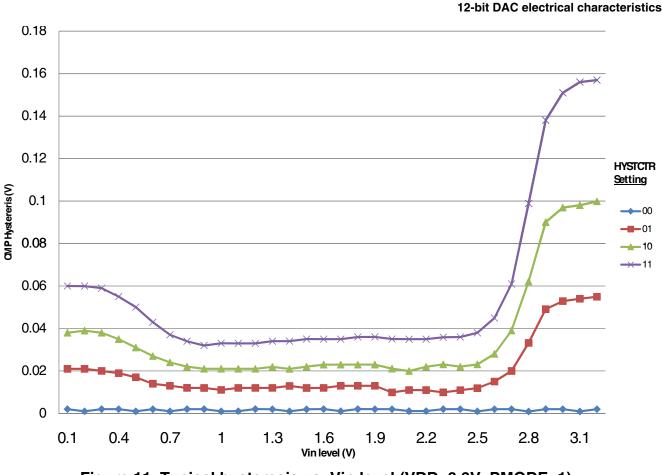


Figure 11. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1)

6.6.3 12-bit DAC electrical characteristics

6.6.3.1 12-bit DAC operating requirements Table 25. 12-bit DAC operating requirements

Symbol	Desciption	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
V _{DACR}	Reference voltage	1.13	3.6	V	1
T _A	Temperature	-40	105	°C	
CL	Output load capacitance	_	100	pF	2
ار	Output load current	—	1	mA	

1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREF_OUT)

2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC

12-bit DAC electrical characteristics

- 5. Calculated by a best fit curve from V_{SS}+100 mV to V_{DACR}-100 mV
- VDDA = 3.0V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode(DACx_CO:LPEN = 0), DAC set to 0x800, Temp range from -40C to 105C

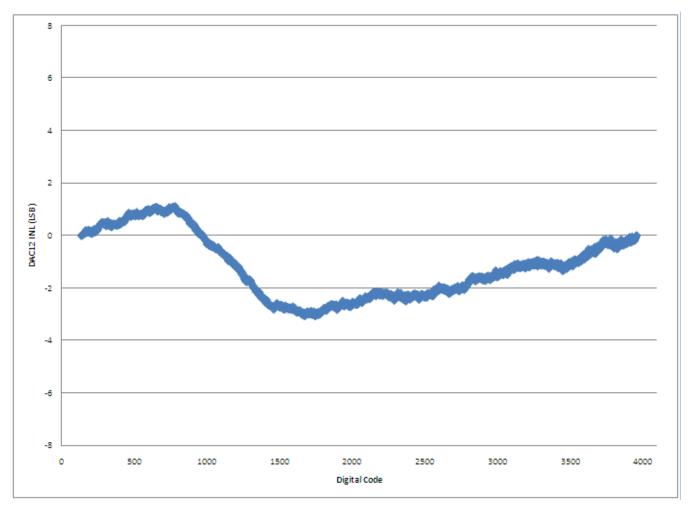


Figure 12. Typical INL error vs. digital code

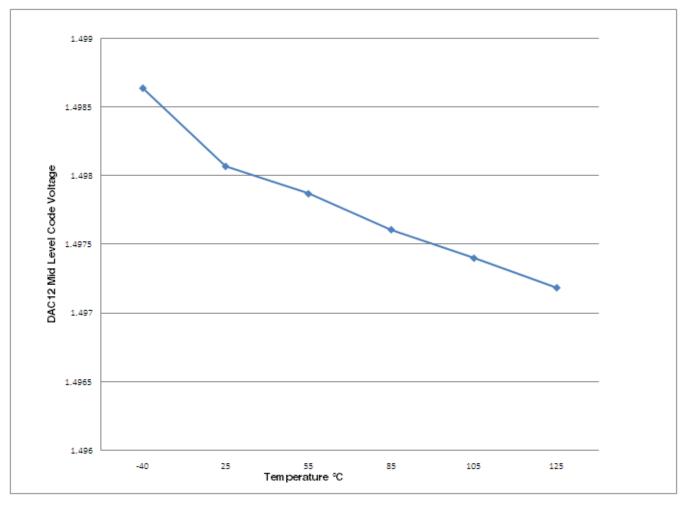


Figure 13. Offset at half scale vs. temperature

6.6.4 Voltage reference electrical specifications

Table 27.	VREF full-range operating requirements
-----------	--

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
T _A	Temperature	-40 105		°C	
CL	Output load capacitance	100		nF	1

1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.

8 Pinout

8.1 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Mux Control module is responsible for selecting which ALT functionality is available on each pin.

NOTE

• On PTB0, EZP_MS_b is active only during reset. Refer to the detailed boot description.

64- pin	48- pin	44- pin	32- pin	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
1			-	VDD	VDD								
2	_	_	_	VSS	VSS								
3	_	_	_	Disabled	Disabled	PTC6	UART0_TX	I2C0_SCL	RGPIO6	SPI1_MOSI	FBa_AD11		
4	_	_	_	Disabled	Disabled	PTC7	UART0_RX	I2C0_SDA	RGPI07	SPI1_MISO	FBa_AD12		
5	1	_	_	Disabled	Disabled	PTD0	UART0_CT S_b	I2C1_SDA	RGPIO8	SPI1_SCLK	FBa_AD13	I2S0_MCLK / I2S0_CLKIN	
6	2	_	-	Disabled	Disabled	PTD1	UART0_RT S_b	I2C1_SCL	RGPIO9	SPI1_SS	FBa_AD14	I2S0_RX_B CLK	
7	3	1	1	Disabled	Disabled	PTA0		I2C2_SCL	FTM1_CH0	SPI0_SS	FBa_AD15	I2S0_RX_F S	
8	4	2	2	Disabled	Disabled	PTA1		I2C2_SDA	FTM1_CH1		FBa_AD16	I2S0_RXD	
9	5	3	3	Disabled	Disabled	PTA2	UART1_TX		FTM1_CH2	SPI1_SS			
10	6	4	4	Disabled	Disabled	PTA3	UART1_RX		FTM1_CH3	SPI1_SCLK		I2S0_TX_B CLK	EZP_CLK
11	7	5	5	ADC0_SE2	ADC0_SE2	PTA4	UART1_CT S_b	I2C2_SCL	FTM1_CH4	SPI1_MISO		I2S0_TX_F S	EZP_DI
12	8	6	6	ADC0_SE3	ADC0_SE3	PTA5	UART1_RT S_b	I2C2_SDA	FTM1_CH5	SPI1_MOSI	CLKOUT	I2S0_TXD	EZP_DO
13	9	7	7	VDDA	VDDA								
14	10	8	_	VREFH	VREFH								
15	11	9	_	VREF_OUT	VREF_OUT								
16	12	10	—	VREFL	VREFL								
17	13	11	8	VSSA	VSSA								
18	14	12	9	DAC0_OUT	DAC0_OUT								
19	15	13	10	VREGIN	VREGIN								
20	16	14	11	VOUT33	VOUT33								
21	17	15	12	USB0_DM	USB0_DM								

• PTC1 is open drain.

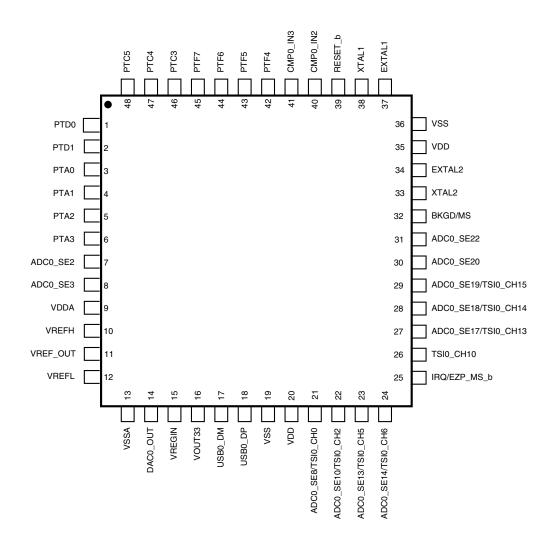


Figure 21. 48-pin LQFP

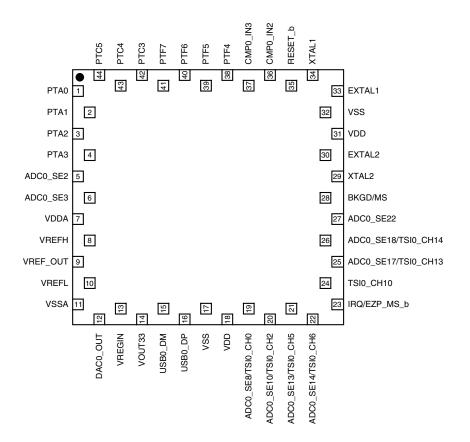


Figure 22. 44-pin Laminate QFN

64-pin	48-pin	44-pin	32-pin	Port	Module signal(s)
39	27	25	19	PTB2	PTE3
41	29			PTE4	PTE4
42	30			PTE5	PTE5
43				PTE6	PTE6
44	31	27		PTE7	PTE7
			PTF		
53				PTF0	PTF0
54				PTF1	PTF1
55				PTF2	PTF2
56	40	36		PTF3	PTF3
58	42	38		PTF4	PTF4
59	43	39		PTF5	PTF5
60	44	40		PTF6	PTF6
61	45	41		PTF7	PTF7
	1	5 V	VREG		
20	16	14	11		VOUT33
19	15	13	10		VREGIN
		L	ISB0	1	
63	47	43	31	PTC4	USB_SOF_PULSE
62	46	42	30	PTC3	USB_CLKIN
21	17	15	12		USB0_DM
22	18	16	13		USB0_DP
20	16	14	11		VOUT33
19	15	13	10		VREGIN
		A	DC0		I
11	7	5	5	PTA4	ADC0_SE2
12	8	6	6	PTA5	ADC0_SE3
25	21	19	15	PTA6	ADC0_SE8
26				PTD2	ADC0_SE9
27	22	20		PTD3	ADC0_SE10
28				PTD4	ADC0_SE11
29				PTD5	ADC0_SE12
30	23	21	16	PTA7	ADC0_SE13
31	24	22		PTD6	ADC0_SE14
32				PTD7	ADC0_SE15

Table 38. Module signals by GPIO port and pin (continued)

Table continues on the next page ...

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

 $\label{eq:rescale} Freescale TM and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.$

© 2010–2012 Freescale Semiconductor, Inc.

Document Number: MCF51JU128 Rev. 4, 01/2012