

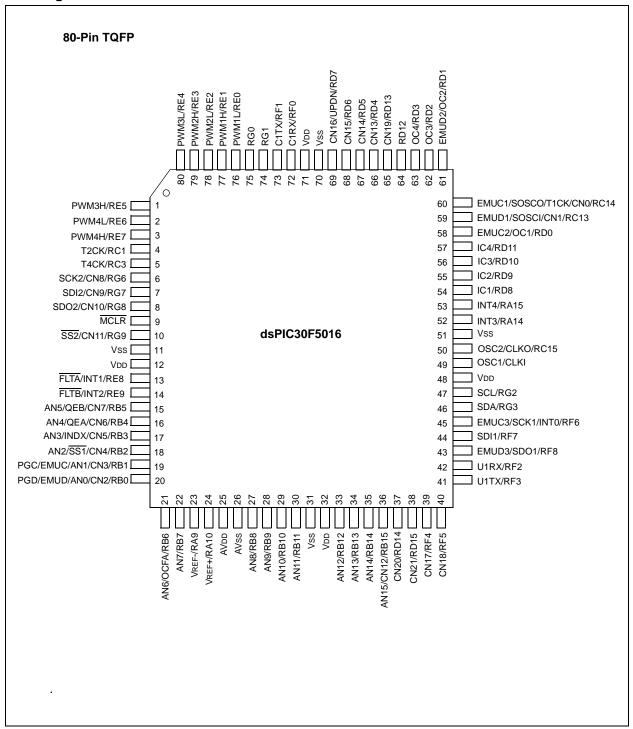
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

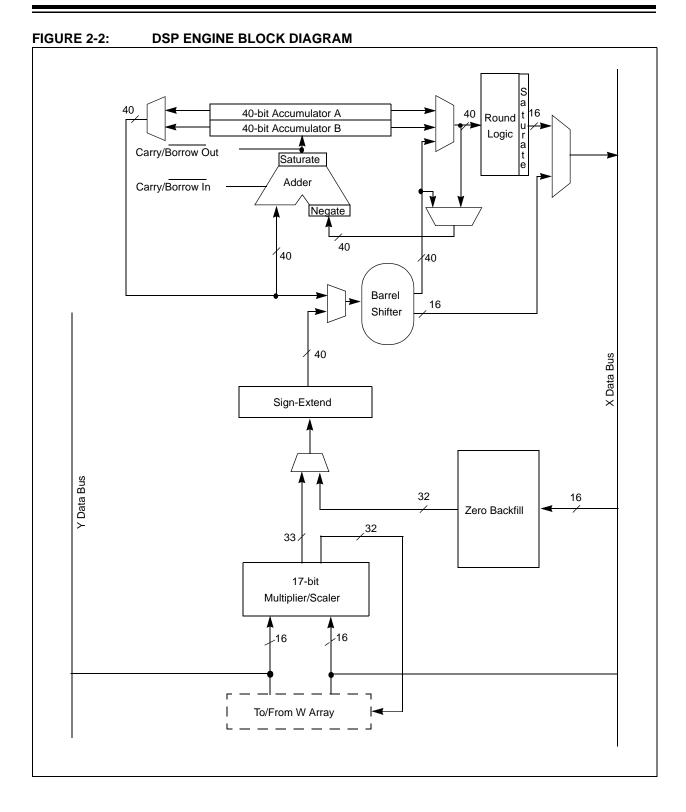

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	30 MIPs
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number of I/O	68
Program Memory Size	66KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f5016-30i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagram


1.0 DEVICE OVERVIEW

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046). For more information on the device instruction set and programming, refer to the "16-bit MCU and DSC Programmer's Reference Manual" (DS70157).

This document contains device specific information for the dsPIC30F5015/5016 devices. The dsPIC30F devices contain extensive Digital Signal Processor (DSP) functionality within a high-performance 16-bit microcontroller (MCU) architecture.

Figure 1-1 is a block diagram of the dsPIC30F5015 device. Following the block diagram, Table 1-1 provides a brief description of the device I/O pinout and the functions that are multiplexed to the port pins on the dsPIC30F5015.

Figure 1-2 is a block diagram of the dsPIC30F5016 device. Following the block diagram, Table 1-2 provides a brief description of the device I/O pinout and the functions that are multiplexed to the port pins on the dsPIC30F5016.

TABLE 3-3: CORE REGISTER MAP⁽¹⁾

SFR Name	Address (Home)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
W0	0000								W0/WR	EG								0000 0000 0000 0000
W1	0002								W1									0000 0000 0000 0000
W2	0004								W2									0000 0000 0000 0000
W3	0006								W3									0000 0000 0000 0000
W4	0008								W4									0000 0000 0000 0000
W5	000A		W5									0000 0000 0000 0000						
W6	000C		W6									0000 0000 0000 0000						
W7	000E		W7									0000 0000 0000 0000						
W8	0010		W8									0000 0000 0000 0000						
W9	0012		W9									0000 0000 0000 0000						
W10	0014								W10									0000 0000 0000 0000
W11	0016		W11								0000 0000 0000 0000							
W12	0018	W12									0000 0000 0000 0000							
W13	001A		W13								0000 0000 0000 0000							
W14	001C		W14								0000 0000 0000 0000							
W15	001E		W15								0000 1000 0000 0000							
SPLIM	0020		SPLIM								0000 0000 0000 0000							
ACCAL	0022								ACCA	L								0000 0000 0000 0000
ACCAH	0024								ACCA	Н								0000 0000 0000 0000
ACCAU	0026			Sign-E	xtension (ACCA<39)>)						ACC	AU				0000 0000 0000 0000
ACCBL	0028								ACCB	L								0000 0000 0000 0000
ACCBH	002A								ACCB	н								0000 0000 0000 0000
ACCBU	002C			Sign-E	xtension (ACCB<39)>)						ACC	BU				0000 0000 0000 0000
PCL	002E					-	-		PCL									0000 0000 0000 0000
PCH	0030	—	_	—	_	—	—	—	—	—				PCH				0000 0000 0000 0000
TBLPAG	0032	—	_	—	_	—	—	—	—				TBLF	PAG				0000 0000 0000 0000
PSVPAG	0034	—	—		—	—	—	—	—				PSVI	PAG				0000 0000 0000 0000
RCOUNT	0036								RCOU	NT								uuuu uuuu uuuu uuuu
DCOUNT	0038								DCOU	NT							-	uuuu uuuu uuuu uuuu
DOSTARTL	003A							DC	STARTL								0	uuuu uuuu uuuu uuu0
DOSTARTH	003C	_	_		_	—	—	—	—	—			D	OSTARTH				0000 0000 0uuu uuuu
DOENDL	003E							D	OENDL								0	uuuu uuuu uuuu uuu0
DOENDH	0040	_	_	—	_	—	—	_	—	—			[DOENDH				0000 0000 0uuu uuuu
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000 0000 0000 0000
CORCON	0044		-	_	US	EDT	DL2	DL1	DL0	SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0000 0000 0010 0000

Legend: u = uninitialized bit; -- = unimplemented bit, read as '0'

Note 1: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

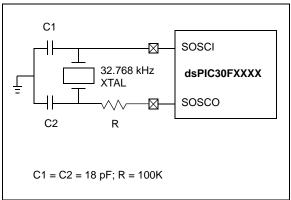
NOTES:

9.4 Timer Interrupt

The 16-bit timer has the ability to generate an interrupt on period match. When the timer count matches the Period register, the T1IF bit is asserted and an interrupt will be generated, if enabled. The T1IF bit must be cleared in software. The Timer Interrupt Flag, T1IF, is located in the IFS0 Control register in the interrupt controller.

When the Gated Time Accumulation mode is enabled, an interrupt will also be generated on the falling edge of the gate signal (at the end of the accumulation cycle).

Enabling an interrupt is accomplished via the respective Timer Interrupt Enable bit, T1IE. The Timer Interrupt Enable bit is located in the IEC0 Control register in the interrupt controller.


9.5 Real-Time Clock

Timer1, when operating in Real-Time Clock (RTC) mode, provides time-of-day and event time-stamping capabilities. Key operational features of the RTC are:

- Operation from 32 kHz LP oscillator
- 8-bit prescaler
- Low power
- Real-Time Clock Interrupts

These operating modes are determined by setting the appropriate bit(s) in the T1CON Control register.

FIGURE 9-2: RECOMMENDED COMPONENTS FOR TIMER1 LP OSCILLATOR RTC

9.5.1 RTC OSCILLATOR OPERATION

When the TON = 1, TCS = 1 and TGATE = 0, the timer increments on the rising edge of the 32 kHz LP oscillator output signal, up to the value specified in the Period register, and is then reset to '0'.

The TSYNC bit must be asserted to a logic '0' (Asynchronous mode) for correct operation.

Enabling LPOSCEN (OSCCON<1>) will disable the normal Timer and Counter modes and enable a timer carry-out wake-up event.

When the CPU enters Sleep mode, the RTC will continue to operate, provided the 32 kHz external crystal oscillator is active and the control bits have not been changed. The TSIDL bit should be cleared to '0' in order for RTC to continue operation in Idle mode.

9.5.2 RTC INTERRUPTS

When an interrupt event occurs, the respective interrupt flag, T1IF, is asserted and an interrupt will be generated, if enabled. The T1IF bit must be cleared in software. The respective Timer Interrupt Flag, T1IF, is located in the IFS0 Status register in the interrupt controller.

Enabling an interrupt is accomplished via the respective Timer Interrupt Enable bit, T1IE. The Timer Interrupt Enable bit is located in the IEC0 Control register in the interrupt controller.

TABLE 12-1: INPUT CAPTURE REGISTER MAP⁽¹⁾

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
IC1BUF 0140 Input 1 Capture Register								uuuu uuuu uuuu uuuu										
IC1CON	0142	_	_	ICSIDL	_		_	_		ICTMR	ICI<	1:0>	ICOV	ICBNE	l	CM<2:0:	>	0000 0000 0000 0000
IC2BUF	0144		Input 2 Capture Register							uuuu uuuu uuuu								
IC2CON	0146			ICSIDL					_	ICTMR	ICI<	1:0>	ICOV	ICBNE	ľ	ICM<2:0>		0000 0000 0000 0000
IC3BUF	0148							Input	3 Captur	e Register	·							uuuu uuuu uuuu
IC3CON	014A			ICSIDL					_	ICTMR	ICI<	1:0>	ICOV	ICBNE	ľ	CM<2:0:	>	0000 0000 0000 0000
IC4BUF	C4BUF 014C Input 4 Capture Register									uuuu uuuu uuuu								
IC4CON	014E		_	ICSIDL		_			_	ICTMR	ICI<	1:0>	ICOV	ICBNE	l	CM<2:0	>	0000 0000 0000 0000

Legend: u = uninitialized bit; — = unimplemented bit, read as '0'

Note 1: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

NOTES:

14.8 Quadrature Encoder Interface Interrupts

The Quadrature Encoder Interface has the ability to generate an interrupt on occurrence of the following events:

- Interrupt on 16-bit up/down position counter rollover/underflow
- Detection of qualified index pulse, or if CNTERR bit is set
- Timer period match event (overflow/underflow)
- Gate accumulation event

The QEI Interrupt Flag bit, QEIIF, is asserted upon occurrence of any of the above events. The QEIIF bit must be cleared in software. QEIIF is located in the IFS2 Status register.

Enabling an interrupt is accomplished via the respective enable bit, QEIIE. The QEIIE bit is located in the IEC2 Control register.

17.4.1 10-BIT MODE SLAVE TRANSMISSION

Once a slave is addressed in this fashion, with the full 10-bit address (we will refer to this state as "PRIOR_ADDR_MATCH"), the master can begin sending data bytes for a slave reception operation.

17.4.2 10-BIT MODE SLAVE RECEPTION

Once addressed, the master can generate a Repeated Start, reset the high byte of the address and set the R_W bit without generating a Stop bit, thus initiating a slave transmit operation.

17.5 Automatic Clock Stretch

In the slave modes, the module can synchronize buffer reads and write to the master device by clock stretching.

17.5.1 TRANSMIT CLOCK STRETCHING

Both 10-bit and 7-bit transmit modes implement clock stretching by asserting the SCLREL bit after the falling edge of the ninth clock if the TBF bit is cleared, indicating the buffer is empty.

In slave transmit modes, clock stretching is always performed, irrespective of the STREN bit.

Clock synchronization takes place following the ninth clock of the transmit sequence. If the device samples an ACK on the falling edge of the ninth clock, and if the TBF bit is still clear, then the SCLREL bit is automatically cleared. The SCLREL being cleared to '0' will assert the SCL line low. The user's ISR must set the SCLREL bit before transmission is allowed to continue. By holding the SCL line low, the user has time to service the ISR and load the contents of the I2CTRN before the master device can initiate another transmit sequence.

- Note 1: If the user loads the contents of I2CTRN, setting the TBF bit before the falling edge of the ninth clock, the SCLREL bit will not be cleared and clock stretching will not occur.
 - **2:** The SCLREL bit can be set in software, regardless of the state of the TBF bit.

17.5.2 RECEIVE CLOCK STRETCHING

The STREN bit in the I2CCON register can be used to enable clock stretching in Slave Receive mode. When the STREN bit is set, the SCL pin will be held low at the end of each data receive sequence.

17.5.3 CLOCK STRETCHING DURING 7-BIT ADDRESSING (STREN = 1)

When the STREN bit is set in Slave Receive mode, the SCL line is held low when the Buffer register is full. The method for stretching the SCL output is the same for both 7 and 10-bit addressing modes.

Clock stretching takes place following the ninth clock of the receive sequence. On the falling edge of the ninth clock at the end of the ACK sequence, if the RBF bit is set, the SCLREL bit is automatically cleared, forcing the SCL output to be held low. The user's ISR must set the SCLREL bit before reception is allowed to continue. By holding the SCL line low, the user has time to service the ISR and read the contents of the I2CRCV before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring.

Note 1:	If the user reads the contents of the								
	I2CRCV, clearing the RBF bit before the								
	falling edge of the ninth clock, the								
	SCLREL bit will not be cleared and clock								
	stretching will not occur.								
	-								

2: The SCLREL bit can be set in software, regardless of the state of the RBF bit. The user should be careful to clear the RBF bit in the ISR before the next receive sequence in order to prevent an overflow condition.

17.5.4 CLOCK STRETCHING DURING 10-BIT ADDRESSING (STREN = 1)

Clock stretching takes place automatically during the addressing sequence. Because this module has a register for the entire address, it is not necessary for the protocol to wait for the address to be updated.

After the address phase is complete, clock stretching will occur on each data receive or transmit sequence as was described earlier.

17.6 Software Controlled Clock Stretching (STREN = 1)

When the STREN bit is '1', the SCLREL bit may be cleared by software to allow software to control the clock stretching. The logic will synchronize writes to the SCLREL bit with the SCL clock. Clearing the SCLREL bit will not assert the SCL output until the module detects a falling edge on the SCL output and SCL is sampled low. If the SCLREL bit is cleared by the user while the SCL line has been sampled low, the SCL output will be asserted (held low). The SCL output will remain low until the SCLREL bit is set, and all other devices on the I²C bus have deasserted SCL. This ensures that a write to the SCLREL bit will not violate the minimum high time requirement for SCL.

If the STREN bit is '0', a software write to the SCLREL bit will be disregarded and have no effect on the SCLREL bit.

18.3.4 TRANSMIT INTERRUPT

The transmit interrupt flag (U1TXIF) is located in the corresponding Interrupt Flag register.

The transmitter generates an edge to set the UxTXIF bit. The condition for generating the interrupt depends on UTXISEL control bit:

- If UTXISEL = 0, an interrupt is generated when a word is transferred from the Transmit buffer to the Transmit Shift register (UxTSR). This implies that the transmit buffer has at least one empty word.
- If UTXISEL = 1, an interrupt is generated when a word is transferred from the Transmit buffer to the Transmit Shift register (UxTSR) and the Transmit buffer is empty.

Switching between the two interrupt modes during operation is possible and sometimes offers more flexibility.

18.3.5 TRANSMIT BREAK

Setting the UTXBRK bit (UxSTA<11>) will cause the UxTX line to be driven to logic '0'. The UTXBRK bit overrides all transmission activity. Therefore, the user should generally wait for the transmitter to be Idle before setting UTXBRK.

To send a break character, the UTXBRK bit must be set by software and must remain set for a minimum of 13 baud clock cycles. The UTXBRK bit is then cleared by software to generate Stop bits. The user must wait for a duration of at least one or two baud clock cycles in order to ensure a valid Stop bit(s) before reloading the UxTXB or starting other transmitter activity. Transmission of a break character does not generate a transmit interrupt.

18.4 Receiving Data

18.4.1 RECEIVING IN 8-BIT OR 9-BIT DATA MODE

The following steps must be performed while receiving 8-bit or 9-bit data:

- 1. Set up the UART (see Section 18.3.1 "Transmitting in 8-bit Data Mode").
- 2. Enable the UART (see Section 18.3.1 "Transmitting in 8-bit Data Mode").
- A receive interrupt will be generated when one or more data words have been received, depending on the receive interrupt settings specified by the URXISEL bits (UxSTA<7:6>).
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- Read the received data from UxRXREG. The act of reading UxRXREG will move the next word to the top of the receive FIFO, and the PERR and FERR values will be updated.

18.4.2 RECEIVE BUFFER (UXRXB)

The receive buffer is 4 words deep. Including the Receive Shift register (UxRSR), the user effectively has a 5-word deep FIFO buffer.

URXDA (UxSTA<0>) = 1 indicates that the receive buffer has data available. URXDA = 0 implies that the buffer is empty. If a user attempts to read an empty buffer, the old values in the buffer will be read and no data shift will occur within the FIFO.

The FIFO is reset during any device Reset. It is not affected when the device enters or wakes up from a Power-Saving mode.

18.4.3 RECEIVE INTERRUPT

The receive interrupt flag (U1RXIF or U2RXIF) can be read from the corresponding Interrupt Flag register. The interrupt flag is set by an edge generated by the receiver. The condition for setting the receive interrupt flag depends on the settings specified by the URXISEL<1:0> (UxSTA<7:6>) control bits.

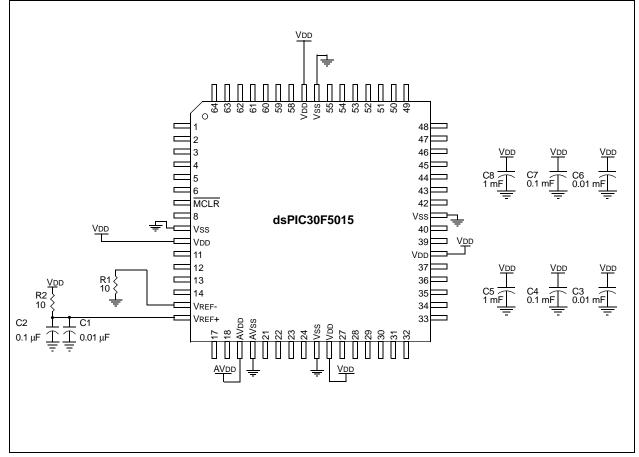
- If URXISEL<1:0> = 00 or 01, an interrupt is generated every time a data word is transferred from the Receive Shift register (UxRSR) to the Receive Buffer. There may be one or more characters in the receive buffer.
- If URXISEL<1:0> = 10, an interrupt is generated when a word is transferred from the Receive Shift register (UxRSR) to the Receive Buffer, which, as a result of the transfer, contains 3 characters.
- If URXISEL<1:0> = 11, an interrupt is set when a word is transferred from the Receive Shift register (UxRSR) to the Receive Buffer, which, as a result of the transfer, contains 4 characters (i.e., becomes full).

Switching between the Interrupt modes during operation is possible, though generally not advisable during normal operation.

18.5 Reception Error Handling

18.5.1 RECEIVE BUFFER OVERRUN ERROR (OERR BIT)

The OERR bit (UxSTA<1>) is set if all of the following conditions occur:


- The receive buffer is full.
- The Receive Shift register is full, but unable to transfer the character to the receive buffer.
- The Stop bit of the character in the UxRSR is detected, indicating that the UxRSR needs to transfer the character to the buffer.

Once OERR is set, no further data is shifted in UxRSR (until the OERR bit is cleared in software or a Reset occurs). The data held in UxRSR and UxRXREG remains valid.

The configuration guidelines give the required setup values for the conversion speeds above 500 ksps, since they require external VREF pins usage and there are some differences in the configuration procedure. Configuration details that are not critical to the conversion speed have been omitted.

The following figure depicts the recommended circuit for the conversion rates above 500 ksps.

20.7.1 1 Msps CONFIGURATION GUIDELINE

The configuration for 1 Msps operation is dependent on whether a single input pin is to be sampled or whether multiple pins will be sampled.

20.7.1.1 Single Analog Input

For conversions at 1 Msps for a single analog input, at least two sample and hold channels must be enabled. The analog input multiplexer must be configured so that the same input pin is connected to both sample and hold channels. The ADC converts the value held on one S/H channel, while the second S/H channel acquires a new input sample.

20.7.1.2 Multiple Analog Inputs

The ADC can also be used to sample multiple analog inputs using multiple sample and hold channels. In this case, the total 1 Msps conversion rate is divided among the different input signals. For example, four inputs can be sampled at a rate of 250 ksps for each signal or two inputs could be sampled at a rate of 500 ksps for each signal. Sequential sampling must be used in this configuration to allow adequate sampling time on each input. Table 21-5 shows the Reset conditions for the RCON register. Since the control bits within the RCON register are R/W, the information in the table implies that all the bits are negated prior to the action specified in the condition column.

	1		1							
Condition	Program Counter	TRAPR	IOPUWR	EXTR	SWR	WDTO	IDLE	SLEEP	POR	BOR
Power-on Reset	0x000000	0	0	0	0	0	0	0	1	1
Brown-out Reset	0x000000	0	0	0	0	0	0	0	0	1
MCLR Reset during normal operation	0x000000	0	0	1	0	0	0	0	0	0
Software Reset during normal operation	0x000000	0	0	0	1	0	0	0	0	0
MCLR Reset during Sleep	0x000000	0	0	1	0	0	0	1	0	0
MCLR Reset during Idle	0x000000	0	0	1	0	0	1	0	0	0
WDT Time-out Reset	0x000000	0	0	0	0	1	0	0	0	0
WDT Wake-up	PC + 2	0	0	0	0	1	0	1	0	0
Interrupt Wake-up from Sleep	PC + 2 ⁽¹⁾	0	0	0	0	0	0	1	0	0
Clock Failure Trap	0x000004	0	0	0	0	0	0	0	0	0
Trap Reset	0x000000	1	0	0	0	0	0	0	0	0
Illegal Operation Trap	0x000000	0	1	0	0	0	0	0	0	0

TABLE 21-5: INITIALIZATION CONDITION FOR RCON REGISTER CASE 1

Note 1: When the wake-up is due to an enabled interrupt, the PC is loaded with the corresponding interrupt vector.

Table 21-6 shows a second example of the bit conditions for the RCON register. In this case, it is not assumed the user has set/cleared specific bits prior to action specified in the condition column.

TABLE 21-6: INITIALIZATION CONDITION FOR RCON REGISTER CASE 2

Condition	Program Counter	TRAPR	IOPUWR	EXTR	SWR	WDTO	IDLE	SLEEP	POR	BOR
Power-on Reset	0x000000	0	0	0	0	0	0	0	1	1
Brown-out Reset	0x000000	u	u	u	u	u	u	u	0	1
MCLR Reset during normal operation	0x000000	u	u	1	0	0	0	0	u	u
Software Reset during normal operation	0x000000	u	u	0	1	0	0	0	u	u
MCLR Reset during Sleep	0x000000	u	u	1	u	0	0	1	u	u
MCLR Reset during Idle	0x000000	u	u	1	u	0	1	0	u	u
WDT Time-out Reset	0x000000	u	u	0	0	1	0	0	u	u
WDT Wake-up	PC + 2	u	u	u	u	1	u	1	u	u
Interrupt Wake-up from Sleep	PC + 2 ⁽¹⁾	u	u	u	u	u	u	1	u	u
Clock Failure Trap	0x000004	u	u	u	u	u	u	u	u	u
Trap Reset	0x000000	1	u	u	u	u	u	u	u	u
Illegal Operation Reset	0x000000	u	1	u	u	u	u	u	u	u

Legend: u = unchanged

Note 1: When the wake-up is due to an enabled interrupt, the PC is loaded with the corresponding interrupt vector.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions, but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction, require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

Note:	For more details on the instruction set,
	refer to the "16-bit MCU and DSC
	Programmer's Reference Manual"
	(DS70157).

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-word mode selection
.S	Shadow register select
.W	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator write-back destination address register \in {W13, [W13] + = 2}
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal $\in \{015\}$
lit5	5-bit unsigned literal $\in \{031\}$
lit8	8-bit unsigned literal $\in \{0255\}$
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal $\in \{016384\}$
lit16	16-bit unsigned literal $\in \{065535\}$
lit23	23-bit unsigned literal \in {08388608}; LSB must be '0'
None	Field does not require an entry, may be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal \in {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}

TABLE 22-1. STINDOLS USED IN OF CODE DESCRIPTIONS	TABLE 22-1:	SYMBOLS USED IN OPCODE DESCRIPTIONS
---	-------------	-------------------------------------

24.1 DC Characteristics

TABLE 24-1: OPERATING MIPS VS. VOLTAGE FOR dsPIC30F5015

VDD Range	Temp Range	Max MIPS					
(in Volts)	(in °C)	dsPIC30F5015-30I	dsPIC30F5015-20E				
4.5-5.5	-40 to +85	30	—				
4.5-5.5	-40 to +125	—	20				
3.0-3.6	-40 to +85	20	—				
3.0-3.6	-40 to +125	—	15				
2.5-3.0	-40 to +85	10	—				

TABLE 24-2: OPERATING MIPS VS. VOLTAGE FOR dsPIC30F5016

VDD Range	Temp Range	Max MIPS					
(in Volts)	(in °C)	dsPIC30F5016-30I	dsPIC30F5016-20E				
4.5-5.5	-40 to +85	30	_				
4.5-5.5	-40 to +125	_	20				
3.0-3.6	-40 to +85	20	—				
3.0-3.6	-40 to +125	—	15				
2.5-3.0	-40 to +85	10	—				

TABLE 24-3: THERMAL OPERATING CONDITIONS FOR dsPIC30F5015/5016

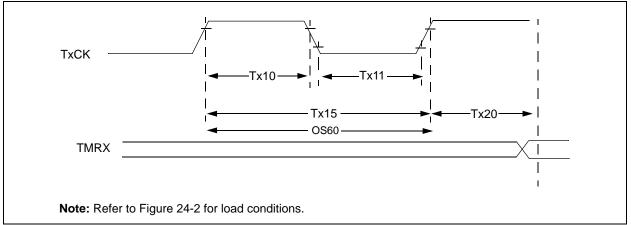

Rating	Symbol	Min	Тур	Max	Unit
dsPIC30F5015-30I/dsPIC30F5016-30I					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
dsPIC30F5015-20E/dsPIC30F5016-20E					
Operating Junction Temperature Range	TJ	-40	—	+150	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal chip power dissipation: $P_{INT} = V_{DD} \times (I_{DD} - \sum I_{OH})$ I/O Pin Power Dissipation: $P_{I/O} = \sum (\{V_{DD} - V_{OH}\} \times I_{OH}) + \sum (V_{OL} \times I_{OL})$	PD		Pint + Pi/c)	W
Maximum Allowed Power Dissipation	Pdmax	(ΓJ – TA)/θ.	JA	W

TABLE 24-4: THERMAL PACKAGING CHARACTERISTICS

Symbol	Тур	Max	Unit	Notes
θја	39		°C/W	1
θја	39		°C/W	1
	θја	θJA 39	θ _{JA} 39 —	θJA 39 — °C/W

Note 1: Junction to ambient thermal resistance, Theta-ja (θ JA) numbers are achieved by package simulations.

FIGURE 24-7: TIMER1, 2, 3, 4 AND 5 EXTERNAL CLOCK TIMING CHARACTERISTICS

АС СНА	RACTERIST	ïCS		(unless	rd Operating (s otherwise sta ing temperatur	ated) e -40°	C ≤TA ≤+8	35°C for	ndustrial br Extended
Param No.	Symbol	Characte	eristic		Min	Тур	Max	Units	Conditions
TA10	ТтхН	TxCK High Time	Synchron no presca		0.5 Tcy + 20	—	—	ns	Must also meet parameter TA15
			Synchron with prese		10	_	_	ns	
			Asynchro	nous	10	_		ns	
TA11	TTXL	TxCK Low Time	Synchron no presca		0.5 TCY + 20	_	—	ns	Must also meet parameter TA15
			Synchron with prese		10	_	—	ns	
			Asynchro	nous	10	_		ns	
TA15	ΤτχΡ	TxCK Input Period	Synchron no presca		Tcy + 10	_	—	ns	—
			Synchron with prese		Greater of: 20 ns or (Tcy + 40)/N	—	_	_	N = prescale value (1, 8, 64, 256)
			Asynchro	nous	20			ns	—
OS60	Ft1	SOSC1/T1CK oscil frequency range (or by setting bit TCS (scillator en	abled	DC	—	50	kHz	—
TA20	TCKEXTMRL	Delay from Externa Edge to Timer Incre		ock	0.5 TCY		1.5 TCY	_	

TABLE 24-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

Note 1: Timer1 is a Type A.

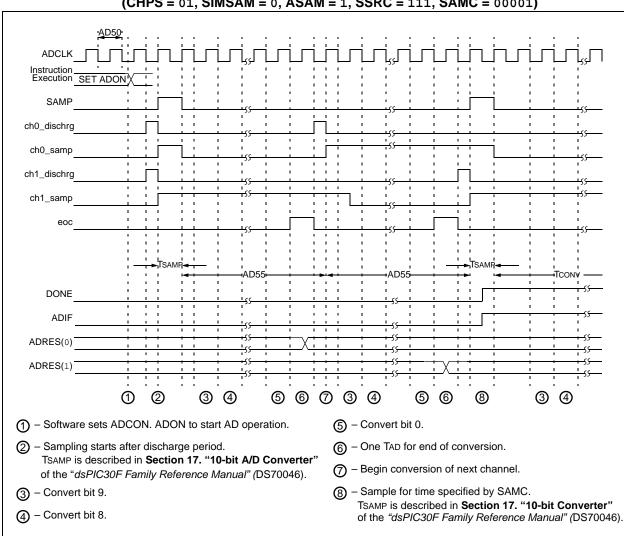

AC CHA	RACTERI	STICS	(unless ot	herwise	ure -40°C	≤Ta ≤+8	to 5.5V 5°C for Industrial 25°C for Extended
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
AD24	Eoff	Offset Error ⁽²⁾	±1	±2	±3	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 5V
AD24A	EOFF	Offset Error ⁽²⁾	±1	±2	±3	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3V
AD25	—	Monotonicity ⁽³⁾	—	—	_	—	Guaranteed
		Dy	namic Perf	ormance	•		
AD30	THD	Total Harmonic Distortion	—	-64	-67	dB	—
AD31	SINAD	Signal to Noise and Distortion	_	57	58	dB	_
AD32	SFDR	Spurious Free Dynamic Range		67	71	dB	
AD33	Fnyq	Input Signal Bandwidth	—	—	500	kHz	—
AD34	ENOB	Effective Number of Bits	9.29	9.41	_	bits	_

TABLE 24-40: 10-BIT HIGH-SPEED A/D MODULE SPECIFICATIONS⁽¹⁾ (CONTINUED)

Note 1: These parameters are characterized but not tested in manufacturing.

2: Measurements taken with external VREF+ and VREF- used as the ADC voltage references.

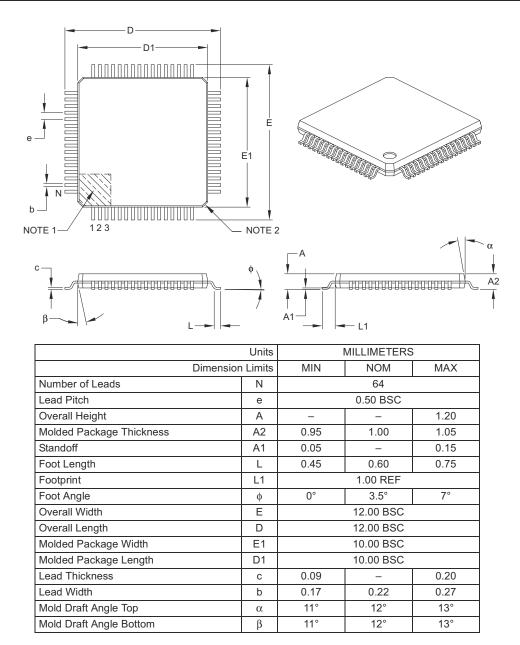

3: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.

FIGURE 24-26: 10-BIT HIGH-SPEED A/D CONVERSION TIMING CHARACTERISTICS (CHPS = 01, SIMSAM = 0, ASAM = 1, SSRC = 111, SAMC = 00001)

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B

Transmission117
I ² C Module
Addresses115
General Call Address Support 117
Interrupts117
IPMI Support117
Master Operation117
Master Support117
Operating Function Description113
Operation During CPU Sleep and Idle Modes 118
Pin Configuration113
Programmer's Model113
Register Map119
Registers113
Slope Control117
Software Controlled Clock Stretching (STREN = 1) . 116
Various Modes113
I ² C 10-bit Slave Mode Operation115
Reception116
Transmission116
I ² C 7-bit Slave Mode Operation115
Reception115
Transmission115

Μ

Memory Organization	25
Microchip Internet Web Site	. 229
Modulo Addressing	38
Applicability	40
Operation Example	39
Start and End Address	39
W Address Register Selection	39
Motor Control PWM Module	97
MPLAB ASM30 Assembler, Linker, Librarian	. 174
MPLAB Integrated Development Environment Software	. 173
MPLAB PM3 Device Programmer	. 176
MPLAB REAL ICE In-Circuit Emulator System	. 175
MPLINK Object Linker/MPLIB Object Librarian	. 174

N NVM

Register Map	55
0	
Operating Current (IDD)	
Oscillator	
Operating Modes (Table)	152
System Overview	
Oscillator Configurations	
Fail-Safe Clock Monitor	156
Fast RC (FRC)	
Initial Clock Source Selection	154
Low-Power RC (LPRC)	
LP Oscillator Control	
Phase-Locked Loop (PLL)	
Start-up Timer (OST)	155
Oscillator Selection	151
Output Compare Module	85
Interrupts	88
Operation During CPU Idle Mode	88
Operation During CPU Sleep Mode	88
Register Map	
Timer2, Timer3 Selection Mode	86
P	

Packaging	
Information	

Marking
dsPIC30F5015
POR. See Power-on Reset.
Port Write/Read Example
Position Measurement Mode
Power-Down Current (IPD)
Power-on Reset (POR) 151
Oscillator Start-up Timer (OST) 151
Power-up Timer (PWRT)
Power-Saving Modes
Idle
Sleep
Power-Saving Modes (Sleep and Idle) 151
Program Address Space
Construction26
Data Access from Program Memory Using Program
Space Visibility
Data Access from Program Memory Using Table Instruc-
tions
Data Access from, Address Generation 26
Memory Map 25
Table Instructions
TBLRDH
TBLRDL
TBLWTH
TBLWTL
Program Counter
Program Data Table Access (MSB)
Program Space Visibility
Window into Program Space Operation
Programmable 151
Programmable
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157 PWM 157
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157 PWM Center-Aligned 101
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157 PWM Center-Aligned 101 Complementary Operation 102
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157 PWM Center-Aligned 101 Complementary Operation 102 Dead-Time Generators 102
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157 PWM Center-Aligned 101 Complementary Operation 102 Dead-Time Generators 102 Assignment 103
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157 PWM Center-Aligned 101 Complementary Operation 102 Dead-Time Generators 103 Ranges 103
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157 PWM 101 Complementary Operation 102 Dead-Time Generators 103 Ranges 103 Selection Bits 103
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157 PWM 101 Complementary Operation 102 Dead-Time Generators 103 Ranges 103 Selection Bits 103 Duty Cycle Comparison Units 101
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157 PWM 101 Complementary Operation 102 Dead-Time Generators 103 Ranges 103 Selection Bits 103 Duty Cycle Comparison Units 101 Immediate Updates 102
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157 PWM 101 Complementary Operation 102 Dead-Time Generators 103 Ranges 103 Selection Bits 103 Duty Cycle Comparison Units 101 Immediate Updates 102 Register Buffers 102
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157 PWM 101 Complementary Operation 102 Dead-Time Generators 103 Ranges 103 Selection Bits 103 Duty Cycle Comparison Units 101 Immediate Updates 102 Register Buffers 102 Edge-Aligned 100
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157 PWM 101 Complementary Operation 102 Dead-Time Generators 103 Ranges 103 Selection Bits 103 Duty Cycle Comparison Units 101 Immediate Updates 102 Register Buffers 102 Edge-Aligned 100 Fault Pins 105
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157 PWM 101 Complementary Operation 102 Dead-Time Generators 103 Ranges 103 Selection Bits 103 Duty Cycle Comparison Units 101 Immediate Updates 102 Register Buffers 102 Edge-Aligned 100 Fault Pins 105 Enable Bits 105
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157 PWM 101 Complementary Operation 102 Dead-Time Generators 103 Ranges 103 Selection Bits 103 Duty Cycle Comparison Units 101 Immediate Updates 102 Register Buffers 102 Edge-Aligned 100 Fault Pins 105 Enable Bits 105 Fault States 105
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157 PWM 101 Complementary Operation 102 Dead-Time Generators 103 Ranges 103 Selection Bits 103 Duty Cycle Comparison Units 101 Immediate Updates 102 Register Buffers 102 Edge-Aligned 100 Fault Pins 105 Enable Bits 105 Input Modes 105
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157 PWM 101 Complementary Operation 102 Dead-Time Generators 103 Ranges 103 Selection Bits 103 Duty Cycle Comparison Units 101 Immediate Updates 102 Register Buffers 102 Edge-Aligned 100 Fault Pins 105 Enable Bits 105 Input Modes 105 Priority 105
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157 PWM 101 Complementary Operation 102 Dead-Time Generators 103 Ranges 103 Selection Bits 103 Duty Cycle Comparison Units 101 Immediate Updates 102 Register Buffers 102 Edge-Aligned 100 Fault Pins 105 Input Modes 105 Priority 105 Independent Output 104
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157 PWM 101 Complementary Operation 102 Dead-Time Generators 103 Ranges 103 Selection Bits 103 Duty Cycle Comparison Units 101 Immediate Updates 102 Register Buffers 102 Edge-Aligned 100 Fault Pins 105 Enable Bits 105 Input Modes 105 Priority 105
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157 PWM 101 Complementary Operation 102 Dead-Time Generators 103 Ranges 103 Selection Bits 103 Duty Cycle Comparison Units 101 Immediate Updates 102 Register Buffers 102 Edge-Aligned 100 Fault Pins 105 Enable Bits 105 Fault States 105 Independent Output 104 Operation During CPU Idle Mode 106 Operation During CPU Sleep Mode 106
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157 PWM 101 Complementary Operation 102 Dead-Time Generators 103 Ranges 103 Selection Bits 103 Duty Cycle Comparison Units 101 Immediate Updates 102 Register Buffers 102 Edge-Aligned 100 Fault Pins 105 Enable Bits 105 Pault States 105 Input Modes 105 Independent Output 104 Operation During CPU Idle Mode 106
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157 PWM 101 Complementary Operation 102 Dead-Time Generators 103 Ranges 103 Selection Bits 103 Duty Cycle Comparison Units 101 Immediate Updates 102 Register Buffers 102 Edge-Aligned 100 Fault Pins 105 Input Modes 105 Priority 105 Independent Output 104 Operation During CPU Idle Mode 106 Operation During CPU Sleep Mode 106 Output and Polarity Control 105
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157 PWM 101 Center-Aligned 101 Complementary Operation 102 Dead-Time Generators 102 Assignment 103 Ranges 103 Selection Bits 103 Duty Cycle Comparison Units 101 Immediate Updates 102 Register Buffers 102 Edge-Aligned 100 Fault Pins 105 Enable Bits 105 Fault States 105 Input Modes 105 Priority 105 Independent Output 104 Operation During CPU Idle Mode 106 Operation During CPU Sleep Mode 106 Output and Polarity Control 105 Output Pin Control 105
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157 PWM 101 Complementary Operation 102 Dead-Time Generators 103 Ranges 103 Selection Bits 103 Duty Cycle Comparison Units 101 Immediate Updates 102 Register Buffers 102 Edge-Aligned 100 Fault Pins 105 Input Modes 105 Priority 105 Independent Output 104 Operation During CPU Idle Mode 106 Output and Polarity Control 105 Output Pin Control 105 Output Pin Control 105 Output Pin Control 105
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157 PWM 101 Complementary Operation 102 Dead-Time Generators 103 Ranges 103 Selection Bits 103 Duty Cycle Comparison Units 101 Immediate Updates 102 Register Buffers 102 Edge-Aligned 100 Fault States 105 Input Modes 105 Priority 105 Independent Output 104 Operation During CPU Idle Mode 106 Output and Polarity Control 105 Output Pin Control 105 Output Pin Control 105 Output Verride 104 Complementary Output Mode 104 Period 104
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157 PWM 101 Center-Aligned 101 Complementary Operation 102 Dead-Time Generators 102 Assignment 103 Ranges 103 Selection Bits 103 Duty Cycle Comparison Units 101 Immediate Updates 102 Register Buffers 102 Edge-Aligned 100 Fault Pins 105 Enable Bits 105 Not Modes 105 Priority 105 Independent Output 104 Operation During CPU Idle Mode 106 Output and Polarity Control 105 Output Pin Control 105 Output Pin Control 105 Output Verride 104 Complementary Output Mode 104 Synchronization 104 Period 100 Single-Pulse Operation </td
Programmable151Programmable Digital Noise Filters93Programmer's Model18Protection Against Accidental Writes to OSCCON157PWMCenter-Aligned101Complementary Operation102Dead-Time Generators102Assignment103Ranges103Selection Bits103Duty Cycle Comparison Units101Immediate Updates102Register Buffers102Edge-Aligned100Fault Pins105Enable Bits105Neuth Modes105Priority105Independent Output104Operation During CPU Idle Mode106Output and Polarity Control105Output Pin Control105Output Verride104Complementary Output Mode104Synchronization104Special Event Trigger106
Programmable 151 Programmable Digital Noise Filters 93 Programmer's Model 18 Protection Against Accidental Writes to OSCCON 157 PWM 101 Center-Aligned 101 Complementary Operation 102 Dead-Time Generators 102 Assignment 103 Ranges 103 Selection Bits 103 Duty Cycle Comparison Units 101 Immediate Updates 102 Register Buffers 102 Edge-Aligned 100 Fault Pins 105 Enable Bits 105 Not Modes 105 Priority 105 Independent Output 104 Operation During CPU Idle Mode 106 Output and Polarity Control 105 Output Pin Control 105 Output Pin Control 105 Output Verride 104 Complementary Output Mode 104 Synchronization 104 Period 100 Single-Pulse Operation </td