

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFL

Detalls	
Product Status	Obsolete
Core Processor	C1665V2
Core Size	16/32-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	75
Program Memory Size	448KB (448K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	50K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2361a56f80laakxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2014-06 Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

XC236xA					
-	listory: V2.12, 2014-06				
	Previous Version(s):				
V2.11, 201					
V2.1, 2011-					
V2.0, 2009-					
V1.31, 2008 V1.3, 2008-					
V1.3, 2008- V1.2, 2008-					
,	09 06 Preliminary				
	06 (Intermediate version)				
Page	Subjects (major changes since last revisions)				
V2.0 to V2.	1				
38	ID registers added				
85	ADC capacitances corrected (typ. vs. max.)				
89	Conditions relaxed for Δf_{INT}				
	Range for f_{WU} adapted according to PCN 2010-013-A				
	Added startup time from power-on t_{SPO}				
126	Quality declarations added				
V2.1 to V2.	11				
14f, 123f	14f, 123f Wrong package information (LQFP-144) removed				
V2.11 to V2.12					
9	Basic device types replaced				
10	Special device types added				
14	Logic symbol corrected				
123	Package type added				

Trademarks

C166[™], TriCore[™], and DAVE[™] are trademarks of Infineon Technologies AG.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Table of Contents

Flash Memory Parameters 92 AC Parameters 94 Testing Waveforms 94 Definition of Internal Timing 95 Phase Locked Loop (PLL) 96 Wakeup Clock 99 Selecting and Changing the Operating Frequency 99 External Clock Input Parameters 100 Pad Properties 102 External Bus Timing 105 Bus Cycle Control with the READY Input 111 Synchronous Serial Interface Timing 113
Debug Interface Timing 117
Package and Reliability123Packaging123Thermal Considerations125Quality Declarations126

General Device Information

2.1 Pin Configuration and Definition

The pins of the XC236xA are described in detail in **Table 6**, which includes all alternate functions. For further explanations please refer to the footnotes at the end of the table. The following figure summarizes all pins, showing their locations on the four sides of the package.

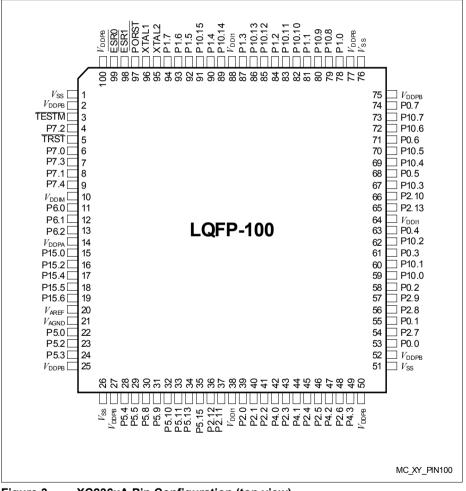


Figure 3 XC236xA Pin Configuration (top view)

General Device Information

Table 6 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function		
18	P15.5	I	In/A	Bit 5 of Port 15, General Purpose Input		
	ADC1_CH5	I	In/A	Analog Input Channel 5 for ADC1		
	T6EUDA	I	In/A	GPT12E Timer T6 External Up/Down Control Input		
19	P15.6	I	In/A	Bit 6 of Port 15, General Purpose Input		
	ADC1_CH6	I	In/A	Analog Input Channel 6 for ADC1		
20	V _{AREF}	-	PS/A	Reference Voltage for A/D Converters ADC0/1		
21	V _{AGND}	-	PS/A	Reference Ground for A/D Converters ADC0/1		
22	P5.0	I	In/A	Bit 0 of Port 5, General Purpose Input		
	ADC0_CH0	I	In/A	Analog Input Channel 0 for ADC0		
23	P5.2	I	In/A	Bit 2 of Port 5, General Purpose Input		
	ADC0_CH2	I	In/A	Analog Input Channel 2 for ADC0		
	TDI_A	I	In/A	JTAG Test Data Input		
24	P5.3	I	In/A	Bit 3 of Port 5, General Purpose Input		
	ADC0_CH3	I	In/A	Analog Input Channel 3 for ADC0		
	T3INA	I	In/A	GPT12E Timer T3 Count/Gate Input		
28	P5.4	I	In/A	Bit 4 of Port 5, General Purpose Input		
	ADC0_CH4	I	In/A	Analog Input Channel 4 for ADC0		
	T3EUDA	I	In/A	GPT12E Timer T3 External Up/Down Control Input		
	TMS_A	I	In/A	JTAG Test Mode Selection Input		
29	P5.5	I	In/A	Bit 5 of Port 5, General Purpose Input		
	ADC0_CH5	I	In/A	Analog Input Channel 5 for ADC0		
	CCU60_T12 HRB	I	In/A	External Run Control Input for T12 of CCU60		

XC2361A, XC2363A, XC2364A, XC2365A XC2000 Family / Base Line

General Device Information

Table	Table 6Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
98	ESR1	00 / I	St/B	External Service Request 1 After power-up, an internal weak pull-up device holds this pin high when nothing is driving it.			
	RxDC0E	I	St/B	CAN Node 0 Receive Data Input			
	U1C0_DX0F	I	St/B	USIC1 Channel 0 Shift Data Input			
	U1C0_DX2C	I	St/B	USIC1 Channel 0 Shift Control Input			
	U1C1_DX0C	I	St/B	USIC1 Channel 1 Shift Data Input			
	U1C1_DX2B	I	St/B	USIC1 Channel 1 Shift Control Input			
	U2C1_DX2C	I	St/B	USIC2 Channel 1 Shift Control Input			
99	ESR0	O0 / I	St/B	External Service Request 0 After power-up, ESR0 operates as open-drain bidirectional reset with a weak pull-up.			
	U1C0_DX0E	I	St/B	USIC1 Channel 0 Shift Data Input			
	U1C0_DX2B	I	St/B	USIC1 Channel 0 Shift Control Input			
10	V _{DDIM}	-	PS/M	Digital Core Supply Voltage for Domain M Decouple with a ceramic capacitor, see Data Sheet for details.			
38, 64, 88	V _{DDI1}	-	PS/1	Digital Core Supply Voltage for Domain 1 Decouple with a ceramic capacitor, see Data Sheet for details. All V_{DDI1} pins must be connected to each other.			
14	V _{DDPA}	-	PS/A	Digital Pad Supply Voltage for Domain A Connect decoupling capacitors to adjacent $V_{\text{DDP}}/V_{\text{SS}}$ pin pairs as close as possible to the pins. Note: The A/D_Converters and ports P5, P6 and P15 are fed from supply voltage V_{DDPA} .			

With this hardware most XC236xA instructions are executed in a single machine cycle of 12.5 ns with an 80-MHz CPU clock. For example, shift and rotate instructions are always processed during one machine cycle, no matter how many bits are shifted. Also, multiplication and most MAC instructions execute in one cycle. All multiple-cycle instructions have been optimized so that they can be executed very fast; for example, a 32-/16-bit division is started within 4 cycles while the remaining cycles are executed in the background. Another pipeline optimization, the branch target prediction, eliminates the execution time of branch instructions if the prediction was correct.

The CPU has a register context consisting of up to three register banks with 16 wordwide GPRs each at its disposal. One of these register banks is physically allocated within the on-chip DPRAM area. A Context Pointer (CP) register determines the base address of the active register bank accessed by the CPU at any time. The number of these register bank copies is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 32 Kwords is provided for storage of temporary data. The system stack can be allocated to any location within the address space (preferably in the on-chip RAM area); it is accessed by the CPU with the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared with the stack pointer value during each stack access to detect stack overflow or underflow.

The high performance of the CPU hardware implementation can be best utilized by the programmer with the highly efficient XC236xA instruction set. This includes the following instruction classes:

- Standard Arithmetic Instructions
- DSP-Oriented Arithmetic Instructions
- Logical Instructions
- Boolean Bit Manipulation Instructions
- Compare and Loop Control Instructions
- Shift and Rotate Instructions
- Prioritize Instruction
- Data Movement Instructions
- System Stack Instructions
- Jump and Call Instructions
- Return Instructions
- System Control Instructions
- Miscellaneous Instructions

The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words. A variety of direct, indirect or immediate addressing modes are provided to specify the required operands.

3.8 Capture/Compare Unit (CAPCOM2)

The CAPCOM2 unit supports generation and control of timing sequences on up to 16 channels with a maximum resolution of one system clock cycle (eight cycles in staggered mode). The CAPCOM2 unit is typically used to handle high-speed I/O tasks such as pulse and waveform generation, pulse width modulation (PWM), digital to analog (D/A) conversion, software timing, or time recording with respect to external events.

Two 16-bit timers (T7/T8) with reload registers provide two independent time bases for the capture/compare register array.

The input clock for the timers is programmable to several prescaled values of the internal system clock, or may be derived from an overflow/underflow of timer T6 in module GPT2. This provides a wide range or variation for the timer period and resolution and allows precise adjustments to the application-specific requirements. In addition, an external count input allows event scheduling for the capture/compare registers relative to external events.

The capture/compare register array contains 16 dual purpose capture/compare registers, each of which may be individually allocated to either CAPCOM timer and programmed for capture or compare function.

All registers have each one port pin associated with it which serves as an input pin for triggering the capture function, or as an output pin to indicate the occurrence of a compare event.

When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('captured') into the capture/compare register in response to an external event at the port pin which is associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event.

The contents of all registers which have been selected for one of the five compare modes are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the selected compare mode.

Compare Modes	Function
Mode 0	Interrupt-only compare mode; Several compare interrupts per timer period are possible
Mode 1	Pin toggles on each compare match; Several compare events per timer period are possible

Table 9 Compare Modes

Compare Modes	Function
Mode 2	Interrupt-only compare mode; Only one compare interrupt per timer period is generated
Mode 3	Pin set '1' on match; pin reset '0' on compare timer overflow; Only one compare event per timer period is generated
Double Register Mode	Two registers operate on one pin; Pin toggles on each compare match; Several compare events per timer period are possible
Single Event Mode	Generates single edges or pulses; Can be used with any compare mode

Table 9 Compare Modes (cont'd)

With its maximum resolution of 2 system clock cycles, the **GPT2 module** provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler or with external signals. The counting direction (up/down) for each timer can be programmed by software or altered dynamically with an external signal on a port pin (TxEUD¹). Concatenation of the timers is supported with the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5, and/or it may be output on pin T6OUT. The overflows/underflows of timer T6 can also be used to clock the CAPCOM2 timers and to initiate a reload from the CAPREL register.

The CAPREL register can capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN); timer T5 may optionally be cleared after the capture procedure. This allows the XC236xA to measure absolute time differences or to perform pulse multiplication without software overhead.

The capture trigger (timer T5 to CAPREL) can also be generated upon transitions of GPT1 timer T3 inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental Interface Mode.

¹⁾ Exception: T5EUD is not connected to a pin.

4.1.3 Pad Timing Definition

If not otherwise noted, all timing parameters are tested and are valid for the corresponding output pins operating in strong driver, fast edge mode. See also "Pad Properties" on Page 102.

4.1.4 Parameter Interpretation

The parameters listed in the following include both the characteristics of the XC236xA and its demands on the system. To aid in correctly interpreting the parameters when evaluating them for a design, they are marked accordingly in the column "Symbol":

CC (Controller Characteristics):

The logic of the XC236xA provides signals with the specified characteristics.

SR (System Requirement):

The external system must provide signals with the specified characteristics to the XC236xA.

Pullup/Pulldown Device Behavior

Most pins of the XC236xA feature pullup or pulldown devices. For some special pins these are fixed; for the port pins they can be selected by the application.

The specified current values indicate how to load the respective pin depending on the intended signal level. **Figure 13** shows the current paths.

The shaded resistors shown in the figure may be required to compensate system pull currents that do not match the given limit values.

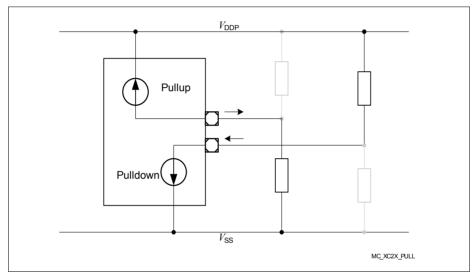


Figure 13 Pullup/Pulldown Current Definition

XC2361A, XC2363A, XC2364A, XC2365A XC2000 Family / Base Line

Electrical Parameters

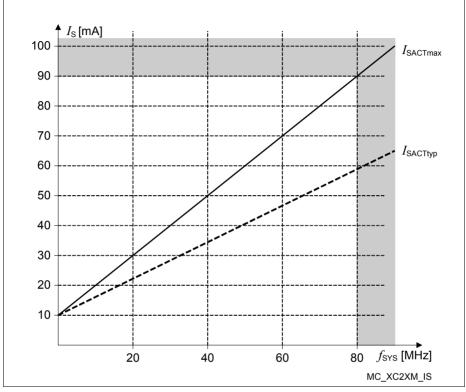


Figure 14Supply Current in Active Mode as a Function of FrequencyNote: Operating Conditions apply.

4.4 System Parameters

The following parameters specify several aspects which are important when integrating the XC236xA into an application system.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
Short-term deviation of internal clock source frequency ¹⁾	∆f _{INT} CC	-1	_	1	%	⊿ <i>T</i> _J ≤ 10 °C
Internal clock source frequency	$f_{\rm INT}$ CC	4.8	5.0	5.2	MHz	
Wakeup clock source	$f_{\rm WU}$ CC	400	-	700	kHz	FREQSEL= 00
frequency ²⁾		210	-	390	kHz	FREQSEL= 01
		140	-	260	kHz	FREQSEL= 10
		110	-	200	kHz	FREQSEL= 11
Startup time from power- on with code execution from Flash	t _{SPO} CC	1.8	2.2	2.7	ms	$f_{ m WU}$ = 500 kHz
Startup time from stopover mode with code execution from PSRAM	t _{SSO} CC	11 / f _{WU} ³⁾	_	12 / f _{WU} ³⁾	μS	
Core voltage (PVC) supervision level	V _{PVC} CC	V _{LV} - 0.03	V _{LV}	V _{LV} + 0.07 ₄₎	V	5)
Supply watchdog (SWD) supervision level	V _{SWD} CC	V _{LV} - 0.10 ⁶⁾	$V_{\rm LV}$	V _{LV} + 0.15	V	Lower voltage range ⁵⁾
		V _{LV} - 0.15	V _{LV}	V _{LV} + 0.15	V	Upper voltage range ⁵⁾

Table 20 Various System Parameters

 The short-term frequency deviation refers to a timeframe of a few hours and is measured relative to the current frequency at the beginning of the respective timeframe. This parameter is useful to determine a time span for re-triggering a LIN synchronization.

 This parameter is tested for the fastest and the slowest selection. The medium selections are not subject to production test - verified by design/characterization

Coding of bit fields LEVX	baing of bit fields LEVXV in Register SWDCONU (cont d)						
Default Voltage Level	I Notes ¹⁾						
4.5 V	LEV2V: no request						
4.6 V							
4.7 V							
4.8 V							
4.9 V							
5.0 V							
5.5 V							
	Default Voltage Level 4.5 V 4.6 V 4.7 V 4.8 V 4.9 V 5.0 V						

Table 21 Coding of bit fields LEVxV in Register SWDCON0 (cont'd)

1) The indicated default levels are selected automatically after a power reset.

Table 22 Coding of Bitfields LEVxV in Registers PVCyCONz

Code	Default Voltage Level	Notes ¹⁾
000 _B	0.95 V	
001 _B	1.05 V	
010 _B	1.15 V	
011 _B	1.25 V	
100 _B	1.35 V	LEV1V: reset request
101 _B	1.45 V	LEV2V: interrupt request ²⁾
110 _B	1.55 V	
111 _B	1.65 V	

1) The indicated default levels are selected automatically after a power reset.

2) Due to variations of the tolerance of both the Embedded Voltage Regulators (EVR) and the PVC levels, this interrupt can be triggered inadvertently, even though the core voltage is within the normal range. It is, therefore, recommended not to use the this warning level.

4.6 AC Parameters

These parameters describe the dynamic behavior of the XC236xA.

4.6.1 Testing Waveforms

These values are used for characterization and production testing (except pin XTAL1).

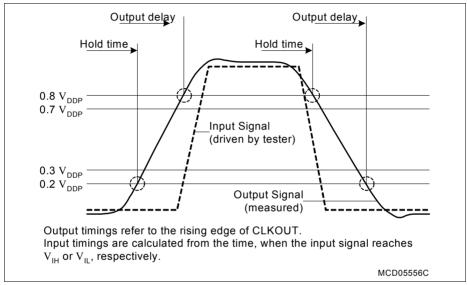
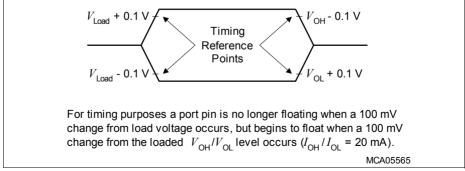



Figure 17 Input Output Waveforms

4.6.4 Pad Properties

The output pad drivers of the XC236xA can operate in several user-selectable modes. Strong driver mode allows controlling external components requiring higher currents such as power bridges or LEDs. Reducing the driving power of an output pad reduces electromagnetic emissions (EME). In strong driver mode, selecting a slower edge reduces EME.

The dynamic behavior, i.e. the rise time and fall time, depends on the applied external capacitance that must be charged and discharged. Timing values are given for a capacitance of 20 pF, unless otherwise noted.

In general, the performance of a pad driver depends on the available supply voltage V_{DDP} . The following table lists the pad parameters.

- Note: These parameters are not subject to production test but verified by design and/or characterization.
- Note: Operating Conditions apply.

 Table 27 is valid under the following conditions:

 $V_{\text{DDP}} \ge 3.0 \text{ V}; V_{\text{DDPtyp}} = 3.3 \text{ V}; V_{\text{DDP}} \le 4.5 \text{ V}; C_{\text{L}} \ge 20 \text{ pF}; C_{\text{L}} \le 100 \text{ pF};$

Table 27 Standard Pad Parameters for Lower Voltage Range
--

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Maximum output driver	I _{Omax}	-	-	10	mA	Strong driver
current (absolute value) ¹⁾	CC	-	-	2.5	mA	Medium driver
		-	-	0.5	mA	Weak driver
Nominal output driver	I _{Onom}	-	-	2.5	mA	Strong driver
current (absolute value)	CC	-	-	1.0	mA	Medium driver
		-	-	0.1	mA	Weak driver
Rise and Fall times (10% - 90%)	t _{RF} CC	-	-	6.2 + 0.24 x <i>C</i> _L	ns	Strong driver; Sharp edge
		-	-	24 + 0.3 x <i>C</i> L	ns	Strong driver; Medium edge
		-	-	34 + 0.3 x C _L	ns	Strong driver; Slow edge
		_	-	37 + 0.65 x <i>C</i> _L	ns	Medium driver
		-	-	500 + 2.5 x <i>C</i> _L	ns	Weak driver

 The total output current that may be drawn at a given time must be limited to protect the supply rails from damage. For any group of 16 neighboring output pins, the total output current in each direction (ΣI_{OL} and Σ-I_{OH}) must remain below 50 mA.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
DAP0 clock period	<i>t</i> ₁₁ SR	25 ¹⁾	-	-	ns	
DAP0 high time	t ₁₂ SR	8	-	-	ns	
DAP0 low time	t ₁₃ SR	8	-	-	ns	
DAP0 clock rise time	t ₁₄ SR	-	-	4	ns	
DAP0 clock fall time	t ₁₅ SR	-	-	4	ns	
DAP1 setup to DAP0 rising edge	<i>t</i> ₁₆ SR	6	-	-	ns	pad_type= stan dard
DAP1 hold after DAP0 rising edge	<i>t</i> ₁₇ SR	6	-	-	ns	pad_type= stan dard
DAP1 valid per DAP0 clock period ²⁾	<i>t</i> ₁₉ CC	12	17	-	ns	pad_type= stan dard

Table 37 DAP Interface Timing for Lower Voltage Range

1) The debug interface cannot operate faster than the overall system, therefore $t_{11} \ge t_{SYS}$.

2) The Host has to find a suitable sampling point by analyzing the sync telegram response.

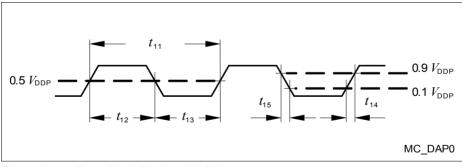


Figure 27 Test Clock Timing (DAP0)

Package and Reliability

5 Package and Reliability

The XC2000 Family devices use the package type PG-LQFP (Plastic Green - Low Profile Quad Flat Package). The following specifications must be regarded to ensure proper integration of the XC236xA in its target environment.

5.1 Packaging

These parameters specify the packaging rather than the silicon.

Parameter	Symbol	Lin	nit Values	Unit	Notes
		Min.	Max.		
Exposed Pad Dimension	$E x \times E y$	-	6.2 × 6.2	mm	-
Power Dissipation	P_{DISS}	-	1.0	W	-
Thermal resistance Junction-Ambient	R _{OJA}	-	47	K/W	No thermal via ¹⁾
			29	K/W	4-layer, no pad ²⁾
			23	K/W	4-layer, pad ³⁾

Table 40 Package Parameters (PG-LQFP-100-8/-15)

 Device mounted on a 2-layer JEDEC board (according to JESD 51-3) or a 4-layer board without thermal vias; exposed pad not soldered.

 Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad not soldered.

 Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad soldered to the board.

Note: To improve the EMC behavior, it is recommended to connect the exposed pad to the board ground, independent of the thermal requirements. Board layout examples are given in an application note.

Package Compatibility Considerations

The XC236xA is a member of the XC2000 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.

Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the Exposed Pad (if present) may vary.

If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration.