

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Core ProcessorC166SV2Core Size16/32-BitSpeed100MHzConnectivityCANbus, EBI/EMI, I²C, LINbus, SPI, SSC, UART/USART, USIPeripheralsI²S, POR, PWM, WDTNumber of I/O75Program Memory Size832KB (832K x 8)Program Memory TypeFLASHEEPROM Size-RAM SizeSOK x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.SVData ConvertersA/D 16x10bOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP Exposed PadSurface MountNot To Man	Detalls	
Core Size16/32-BitSpeed100MHzConnectivityCANbus, EBI/EMI, I²C, LINbus, SPI, SSC, UART/USART, USIPeripheralsI²S, POR, PWM, WDTNumber of I/O75Program Memory Size832KB (832K x 8)Program Memory TypeFLASHEEPROM Size-XAM Size50K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 16x10bOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP Exposed PadNonter PackagePG-LQFP-100-8	Product Status	Obsolete
Speed100MHzConnectivityCANbus, EBI/EMI, I²C, LINbus, SPI, SSC, UART/USART, USIPeripheralsI²S, POR, PWM, WDTNumber of I/O75Program Memory Size832KB (832K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size50K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 16x10bOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP Exposed PadNon ting Towice PackagePG-LQFP-100-8	Core Processor	C166SV2
ConnectivityCANbus, EBI/EMI, I²C, LINbus, SPI, SSC, UART/USART, USIPeripheralsI²S, POR, PWM, WDTNumber of I/O75Program Memory Size832KB (832K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size50K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 16x10bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP Exposed PadSupplier Device PackagePG-LQFP-100-8	Core Size	16/32-Bit
PeripheralsI²S, POR, PWM, WDTNumber of I/O75Program Memory Size832KB (832K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size50K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 16x10bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP Exposed PadSupplier Device PackagePG-LQFP-100-8	Speed	100MHz
Number of I/O75Program Memory Size832KB (832K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size50K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 16x10bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP Exposed PadSupplier Device PackagePG-LQFP-100-8	Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Program Memory Size832KB (832K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size50K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 16x10bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP Exposed PadSupplier Device PackagePG-LQFP-100-8	Peripherals	I ² S, POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size-RAM Size50K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 16x10bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP Exposed PadSupplier Device PackagePG-LQFP-100-8	Number of I/O	75
EEPROM Size-RAM Size50K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 16x10bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP Exposed PadSupplier Device PackagePG-LQFP-100-8	Program Memory Size	832KB (832K x 8)
RAM Size50K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 16x10bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP Exposed PadSupplier Device PackagePG-LQFP-100-8	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 16x10bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP Exposed PadSupplier Device PackagePG-LQFP-100-8	EEPROM Size	-
Data ConvertersA/D 16x10bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP Exposed PadSupplier Device PackagePG-LQFP-100-8	RAM Size	50K x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP Exposed PadSupplier Device PackagePG-LQFP-100-8	Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Operating Temperature -40°C ~ 125°C (TA) Mounting Type Surface Mount Package / Case 100-LQFP Exposed Pad Supplier Device Package PG-LQFP-100-8	Data Converters	A/D 16x10b
Mounting Type Surface Mount Package / Case 100-LQFP Exposed Pad Supplier Device Package PG-LQFP-100-8	Oscillator Type	Internal
Package / Case 100-LQFP Exposed Pad Supplier Device Package PG-LQFP-100-8	Operating Temperature	-40°C ~ 125°C (TA)
Supplier Device Package PG-LQFP-100-8	Mounting Type	Surface Mount
	Package / Case	100-LQFP Exposed Pad
Purchase URL https://www.e-xfl.com/product-detail/infineon-technologies/xc2364a104f100labhxuma1	Supplier Device Package	PG-LQFP-100-8
	Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2364a104f100labhxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

٠

Summary of Features

- Two Synchronizable A/D Converters with a total of up to 16 channels, 10-bit resolution, conversion time below $1 \,\mu$ s, optional data preprocessing (data reduction, range check), broken wire detection
- Up to 6 serial interface channels to be used as UART, LIN, high-speed synchronous channel (SPI), IIC bus interface (10-bit addressing, 400 kbit/s), IIS interface
- On-chip MultiCAN interface (Rev. 2.0B active) with up to 64 message objects (Full CAN/Basic CAN) on up to 3 CAN nodes and gateway functionality
- On-chip system timer and on-chip real time clock
- Up to 12 Mbytes external address space for code and data
 - Programmable external bus characteristics for different address ranges
 - Multiplexed or demultiplexed external address/data buses
 - Selectable address bus width
 - 16-bit or 8-bit data bus width
 - Four programmable chip-select signals
- Single power supply from 3.0 V to 5.5 V
- Programmable watchdog timer and oscillator watchdog
- Up to 76 general purpose I/O lines
- On-chip bootstrap loaders
- Supported by a full range of development tools including C compilers, macroassembler packages, emulators, evaluation boards, HLL debuggers, simulators, logic analyzer disassemblers, programming boards
- · On-chip debug support via Device Access Port (DAP) or JTAG interface
- 100-pin Green LQFP package, 0.5 mm (19.7 mil) pitch

General Device Information

Tabl	Table 6Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
30	P5.8	1	In/A	Bit 8 of Port 5, General Purpose Input			
	ADC0_CH8	I	In/A	Analog Input Channel 8 for ADC0			
	ADC1_CH8	I	In/A	Analog Input Channel 8 for ADC1			
	CCU6x_T12H RC	I	In/A	External Run Control Input for T12 of CCU60/1			
	CCU6x_T13H RC	I	In/A	External Run Control Input for T13 of CCU60/1			
	U2C0_DX0F	1	In/A	USIC2 Channel 0 Shift Data Input			
31	P5.9	1	In/A	Bit 9 of Port 5, General Purpose Input			
	ADC0_CH9	I	In/A	Analog Input Channel 9 for ADC0			
	ADC1_CH9	I	In/A	Analog Input Channel 9 for ADC1			
	CC2_T7IN	I	In/A	CAPCOM2 Timer T7 Count Input			
32	P5.10	I	In/A	Bit 10 of Port 5, General Purpose Input			
	ADC0_CH10	I	In/A	Analog Input Channel 10 for ADC0			
	ADC1_CH10	I	In/A	Analog Input Channel 10 for ADC1			
	BRKIN_A	I	In/A	OCDS Break Signal Input			
	U2C1_DX0F	I	In/A	USIC2 Channel 1 Shift Data Input			
	CCU61_T13 HRA	I	In/A	External Run Control Input for T13 of CCU61			
33	P5.11	I	In/A	Bit 11 of Port 5, General Purpose Input			
	ADC0_CH11	1	In/A	Analog Input Channel 11 for ADC0			
	ADC1_CH11	1	In/A	Analog Input Channel 11 for ADC1			
34	P5.13	I	In/A	Bit 13 of Port 5, General Purpose Input			
	ADC0_CH13	I	In/A	Analog Input Channel 13 for ADC0			
35	P5.15	1	In/A	Bit 15 of Port 5, General Purpose Input			
	ADC0_CH15	I	In/A	Analog Input Channel 15 for ADC0			
	RxDC2F	I	In/A	CAN Node 2 Receive Data Input			
-		•					

XC2361A, XC2363A, XC2364A, XC2365A XC2000 Family / Base Line

General Device Information

Table	Table 6Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
59	P10.0	O0 / I	St/B	Bit 0 of Port 10, General Purpose Input/Output		
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output		
	CCU60_CC6 0	O2	St/B	CCU60 Channel 0 Output		
	AD0	OH / IH	St/B	External Bus Interface Address/Data Line 0		
	CCU60_CC6 0INA	I	St/B	CCU60 Channel 0 Input		
	ESR1_2	I	St/B	ESR1 Trigger Input 2		
	U0C0_DX0A	I	St/B	USIC0 Channel 0 Shift Data Input		
_	U0C1_DX0A	I	St/B	USIC0 Channel 1 Shift Data Input		
60	P10.1 00 / I St/B E			Bit 1 of Port 10, General Purpose Input/Output		
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output		
	CCU60_CC6 1	O2	St/B	CCU60 Channel 1 Output		
	AD1	OH / IH	St/B	External Bus Interface Address/Data Line 1		
	CCU60_CC6 1INA	I	St/B	CCU60 Channel 1 Input		
	U0C0_DX1A	I	St/B	USIC0 Channel 0 Shift Clock Input		
	U0C0_DX0B	I	St/B	USIC0 Channel 0 Shift Data Input		
61	P0.3	O0 / I	St/B	Bit 3 of Port 0, General Purpose Input/Output		
	U1C0_SELO 0	O1	St/B	USIC1 Channel 0 Select/Control 0 Output		
	U1C1_SELO 1	O2	St/B	USIC1 Channel 1 Select/Control 1 Output		
	CCU61_COU T60	O3	St/B	CCU61 Channel 0 Output		
	A3	ОН	St/B	External Bus Interface Address Line 3		
	U1C0_DX2A	I	St/B	USIC1 Channel 0 Shift Control Input		
	RxDC0B	I	St/B	CAN Node 0 Receive Data Input		

General Device Information

Pin	Symbol	Ctrl.	Туре	Function	
62	P10.2	00/1	-	Bit 2 of Port 10, General Purpose Input/Output	
	U0C0_SCLK OUT	01	St/B	USIC0 Channel 0 Shift Clock Output	
	CCU60_CC6 2	O2	St/B	CCU60 Channel 2 Output	
	AD2	OH / IH	St/B	External Bus Interface Address/Data Line 2	
	CCU60_CC6 2INA	1	St/B	CCU60 Channel 2 Input	
	U0C0_DX1B	I	St/B	USIC0 Channel 0 Shift Clock Input	
63	P0.4	O0 / I	St/B	Bit 4 of Port 0, General Purpose Input/Output	
	U1C1_SELO 0	01	St/B	USIC1 Channel 1 Select/Control 0 Output	
	U1C0_SELO 1	O2	St/B	USIC1 Channel 0 Select/Control 1 Output	
	CCU61_COU T61	O3	St/B	CCU61 Channel 1 Output	
	A4	OH	St/B	External Bus Interface Address Line 4	
	U1C1_DX2A	I	St/B	USIC1 Channel 1 Shift Control Input	
	RxDC1B	I	St/B	CAN Node 1 Receive Data Input	
	ESR2_8	I	St/B	ESR2 Trigger Input 8	
65	P2.13	O0 / I	St/B	Bit 13 of Port 2, General Purpose Input/Output	
	U2C1_SELO 2	01	St/B	USIC2 Channel 1 Select/Control 2 Output	
	RxDC2D	I	St/B	CAN Node 2 Receive Data Input	
66	P2.10	O0 / I	St/B	Bit 10 of Port 2, General Purpose Input/Output	
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output	
	U0C0_SELO 3	O2	St/B	USIC0 Channel 0 Select/Control 3 Output	
	CC2_CC23	O3 / I	St/B	CAPCOM2 CC23IO Capture Inp./ Compare Out.	
	A23	ОН	St/B	External Bus Interface Address Line 23	
	U0C1_DX0E	I	St/B	USIC0 Channel 1 Shift Data Input	
	CAPINA	I	St/B	GPT12E Register CAPREL Capture Input	

XC2361A, XC2363A, XC2364A, XC2365A XC2000 Family / Base Line

General Device Information

Table	Table 6Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
67	P10.3	O0 / I	St/B	Bit 3 of Port 10, General Purpose Input/Output		
	CCU60_COU T60	O2	St/B	CCU60 Channel 0 Output		
	AD3	OH / IH	St/B	External Bus Interface Address/Data Line 3		
	U0C0_DX2A	I	St/B	USIC0 Channel 0 Shift Control Input		
	U0C1_DX2A	I	St/B	USIC0 Channel 1 Shift Control Input		
68	P0.5	O0 / I	St/B	Bit 5 of Port 0, General Purpose Input/Output		
	U1C1_SCLK OUT	01	St/B	USIC1 Channel 1 Shift Clock Output		
	U1C0_SELO 2	O2	St/B	USIC1 Channel 0 Select/Control 2 Output		
	CCU61_COU T62	O3	St/B	CCU61 Channel 2 Output		
	A5	OH	St/B	External Bus Interface Address Line 5		
	U1C1_DX1A	I	St/B	USIC1 Channel 1 Shift Clock Input		
	U1C0_DX1C	I	St/B	USIC1 Channel 0 Shift Clock Input		
69	P10.4	O0 / I	St/B	Bit 4 of Port 10, General Purpose Input/Output		
	U0C0_SELO 3	01	St/B	USIC0 Channel 0 Select/Control 3 Output		
	CCU60_COU T61	O2	St/B	CCU60 Channel 1 Output		
	AD4	OH / IH	St/B	External Bus Interface Address/Data Line 4		
	U0C0_DX2B	I	St/B	USIC0 Channel 0 Shift Control Input		
	U0C1_DX2B	I	St/B	USIC0 Channel 1 Shift Control Input		
	ESR1_9	I	St/B	ESR1 Trigger Input 9		

General Device Information

Pin Sym 79 P10. U0C		Ctrl.	Туре			
	.8		Type	Function		
U0C		O0 / I	St/B	Bit 8 of Port 10, General Purpose Input/Output		
OUT	0_MCLK	01	St/B	USIC0 Channel 0 Master Clock Output		
U0C 0	1_SELO	02	St/B	USIC0 Channel 1 Select/Control 0 Output		
U2C	1_DOUT	O3	St/B	USIC2 Channel 1 Shift Data Output		
AD8		OH / IH	St/B	External Bus Interface Address/Data Line 8		
CCL OS1	J60_ССР А	I	St/B	CCU60 Position Input 1		
U0C	0_DX1C	I	St/B	USIC0 Channel 0 Shift Clock Input		
BRK	(IN_B	1	St/B	OCDS Break Signal Input		
T3E	UDB	I	St/B	GPT12E Timer T3 External Up/Down Control Input		
80 P10.	.9	O0 / I	St/B	Bit 9 of Port 10, General Purpose Input/Output		
U0C 4	0_SELO	01	St/B	USIC0 Channel 0 Select/Control 4 Output		
U0C OUT	1_MCLK	02	St/B	USIC0 Channel 1 Master Clock Output		
AD9		OH / IH	St/B	External Bus Interface Address/Data Line 9		
CCL OS2	J60_CCP A	I	St/B	CCU60 Position Input 2		
ТСК	<u></u> B	IH	St/B	DAP0/JTAG Clock Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. If DAP pos. 1 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.		
T3IN	IB	1	St/B	GPT12E Timer T3 Count/Gate Input		

General Device Information

Table	Table 6Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
87	P1.3	O0 / I	St/B	Bit 3 of Port 1, General Purpose Input/Output			
	U1C0_SELO 7	O2	St/B	USIC1 Channel 0 Select/Control 7 Output			
	U2C0_SELO 4	O3	St/B	USIC2 Channel 0 Select/Control 4 Output			
	A11	ОН	St/B	External Bus Interface Address Line 11			
	ESR2_4	I	St/B	ESR2 Trigger Input 4			
89	P10.14	O0 / I	St/B	Bit 14 of Port 10, General Purpose Input/Output			
	U1C0_SELO 1	01	St/B	USIC1 Channel 0 Select/Control 1 Output			
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output			
	RD	OH	St/B	External Bus Interface Read Strobe Output			
	ESR2_2	I	St/B	ESR2 Trigger Input 2			
	U0C1_DX0C	I	St/B	USIC0 Channel 1 Shift Data Input			
90	P1.4	O0 / I	St/B	Bit 4 of Port 1, General Purpose Input/Output			
	U1C1_SELO 4	O2	St/B	USIC1 Channel 1 Select/Control 4 Output			
	U2C0_SELO 5	O3	St/B	USIC2 Channel 0 Select/Control 5 Output			
	A12	ОН	St/B	External Bus Interface Address Line 12			
	U2C0_DX2B	I	St/B	USIC2 Channel 0 Shift Control Input			
91	P10.15	O0 / I	St/B	Bit 15 of Port 10, General Purpose Input/Output			
	U1C0_SELO 2	01	St/B	USIC1 Channel 0 Select/Control 2 Output			
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output			
	U1C0_DOUT	O3	St/B	USIC1 Channel 0 Shift Data Output			
	ALE	ОН	St/B	External Bus Interf. Addr. Latch Enable Output			
	U0C1_DX1C	I	St/B	USIC0 Channel 1 Shift Clock Input			

Functional Description

Address Area	Start Loc.	End Loc.	Area Size ²⁾	Notes				
Data SRAM	00'A000 _H	00'DFFF _H	16 Kbytes	-				
Reserved for DSRAM	00'8000 _H	00'9FFF _H	8 Kbytes	-				
External memory area	00'0000 _H	00'7FFF _H	32 Kbytes	-				

Table 8 XC236xA Memory Map (cont'd)¹⁾

 Accesses to the shaded areas are reserved. In devices with external bus interface these accesses generate external bus accesses.

2) The areas marked with "<" are slightly smaller than indicated. See column "Notes".

3) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).

4) Several pipeline optimizations are not active within the external IO area. This is necessary to control external peripherals properly.

This common memory space consists of 16 Mbytes organized as 256 segments of 64 Kbytes; each segment contains four data pages of 16 Kbytes. The entire memory space can be accessed bytewise or wordwise. Portions of the on-chip DPRAM and the register spaces (ESFR/SFR) additionally are directly bit addressable.

The internal data memory areas and the Special Function Register areas (SFR and ESFR) are mapped into segment 0, the system segment.

The Program Management Unit (PMU) handles all code fetches and, therefore, controls access to the program memories such as Flash memory and PSRAM.

The Data Management Unit (DMU) handles all data transfers and, therefore, controls access to the DSRAM and the on-chip peripherals.

Both units (PMU and DMU) are connected to the high-speed system bus so that they can exchange data. This is required if operands are read from program memory, code or data is written to the PSRAM, code is fetched from external memory, or data is read from or written to external resources. These include peripherals on the LXBus such as USIC or MultiCAN. The system bus allows concurrent two-way communication for maximum transfer performance.

Up to 32 Kbytes of on-chip Program SRAM (PSRAM) are provided to store user code or data. The PSRAM is accessed via the PMU and is optimized for code fetches. A section of the PSRAM with programmable size can be write-protected.

Up to 16 Kbytes of on-chip Data SRAM (DSRAM) are used for storage of general user data. The DSRAM is accessed via a separate interface and is optimized for data access.

2 Kbytes of on-chip Dual-Port RAM (DPRAM) provide storage for user-defined variables, for the system stack, and for general purpose register banks. A register bank can consist of up to 16 word-wide (R0 to R15) and/or byte-wide (RL0, RH0, ..., RL7, RH7) General Purpose Registers (GPRs).

The upper 256 bytes of the DPRAM are directly bit addressable. When used by a GPR, any location in the DPRAM is bit addressable.

Functional Description

3.4 Memory Protection Unit (MPU)

The XC236xA's Memory Protection Unit (MPU) protects user-specified memory areas from unauthorized read, write, or instruction fetch accesses. The MPU can protect the whole address space including the peripheral area. This completes establisched mechanisms such as the register security mechanism or stack overrun/underrun detection.

Four Protection Levels support flexible system programming where operating system, low level drivers, and applications run on separate levels. Each protection level permits different access restrictions for instructions and/or data.

Every access is checked (if the MPU is enabled) and an access violating the permission rules will be marked as invalid and leads to a protection trap.

A set of protection registers for each protection level specifies the address ranges and the access permissions. Applications requiring more than 4 protection levels can dynamically re-program the protection registers.

3.5 Memory Checker Module (MCHK)

The XC236xA's Memory Checker Module calculates a checksum (fractional polynomial division) on a block of data, often called Cyclic Redundancy Code (CRC). It is based on a 32-bit linear feedback shift register and may, therefore, also be used to generate pseudo-random numbers.

The Memory Checker Module is a 16-bit parallel input signature compression circuitry which enables error detection within a block of data stored in memory, registers, or communicated e.g. via serial communication lines. It reduces the probability of error masking due to repeated error patterns by calculating the signature of blocks of data.

The polynomial used for operation is configurable, so most of the commonly used polynomials may be used. Also, the block size for generating a CRC result is configurable via a local counter. An interrupt may be generated if testing the current data block reveals an error.

An autonomous CRC compare circuitry is included to enable redundant error detection, e.g. to enable higher safety integrity levels.

The Memory Checker Module provides enhanced fault detection (beyond parity or ECC) for data and instructions in volatile and non volatile memories. This is especially important for the safety and reliability of embedded systems.

Functional Description

3.16 Watchdog Timer

The Watchdog Timer is one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after an application reset of the chip. It can be disabled and enabled at any time by executing the instructions DISWDT and ENWDT respectively. The software has to service the Watchdog Timer before it overflows. If this is not the case because of a hardware or software failure, the Watchdog Timer overflows, generating a prewarning interrupt and then a reset request.

The Watchdog Timer is a 16-bit timer clocked with the system clock divided by 16,384 or 256. The Watchdog Timer register is set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the Watchdog Timer is reloaded and the prescaler is cleared.

Time intervals between 3.2 μ s and 13.42 s can be monitored (@ 80 MHz). The default Watchdog Timer interval after power-up is 6.5 ms (@ 10 MHz).

3.17 Clock Generation

The Clock Generation Unit can generate the system clock signal f_{SYS} for the XC236xA from a number of external or internal clock sources:

- External clock signals with pad voltage or core voltage levels
- External crystal or resonator using the on-chip oscillator
- On-chip clock source for operation without crystal/resonator
- · Wake-up clock (ultra-low-power) to further reduce power consumption

The programmable on-chip PLL with multiple prescalers generates a clock signal for maximum system performance from standard crystals, a clock input signal, or from the on-chip clock source. See also **Section 4.6.2**.

The Oscillator Watchdog (OWD) generates an interrupt if the crystal oscillator frequency falls below a certain limit or stops completely. In this case, the system can be supplied with an emergency clock to enable operation even after an external clock failure.

All available clock signals can be output on one of two selectable pins.

4.1.3 Pad Timing Definition

If not otherwise noted, all timing parameters are tested and are valid for the corresponding output pins operating in strong driver, fast edge mode. See also "Pad Properties" on Page 102.

4.1.4 Parameter Interpretation

The parameters listed in the following include both the characteristics of the XC236xA and its demands on the system. To aid in correctly interpreting the parameters when evaluating them for a design, they are marked accordingly in the column "Symbol":

CC (Controller Characteristics):

The logic of the XC236xA provides signals with the specified characteristics.

SR (System Requirement):

The external system must provide signals with the specified characteristics to the XC236xA.

Table 23Flash Parameters (cont'd)

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Number of erase cycles	N _{Er} SR	-	-	15 000	cycle s	$t_{RET} \ge 5$ years; Valid for up to 64 user- selected sectors (data storage)
		-	-	1 000	cycle s	$t_{RET} \ge 20$ years

 All Flash module(s) can be erased/programmed while code is executed and/or data is read from only one Flash module or from PSRAM. The Flash module that delivers code/data can, of course, not be erased/programmed.

 Flash module 3 can be erased/programmed while code is executed and/or data is read from any other Flash module.

3) Value of IMB_IMBCTRL.WSFLASH.

4) Programming and erase times depend on the internal Flash clock source. The control state machine needs a few system clock cycles. This increases the stated durations noticably only at extremely low system clock frequencies.

Access to the XC236xA Flash modules is controlled by the IMB. Built-in prefetch mechanisms optimize the performance for sequential access.

Flash access waitstates only affect non-sequential access. Due to prefetch mechanisms, the performance for sequential access (depending on the software structure) is only partially influenced by waitstates.

PLL frequency band selection

Different frequency bands can be selected for the VCO so that the operation of the PLL can be adjusted to a wide range of input and output frequencies:

Table 24	System PLL	Parameters
----------	------------	------------

Parameter Symbol			Values	;	Unit	Note /
		Min.	Тур.	Max.		Test Condition
VCO output frequency	$f_{\rm VCO}{\rm CC}$	50	-	110	MHz	VCOSEL = 00 _B
(VCO controlled)		100	-	160	MHz	VCOSEL = 01 _B
VCO output frequency	$f_{\rm VCO}$ CC	10	-	40	MHz	VCOSEL = 00 _B
(VCO free-running)		20	-	80	MHz	VCOSEL = 01 _B

4.6.2.2 Wakeup Clock

When wakeup operation is selected (SYSCON0.CLKSEL = 00_B), the system clock is derived from the low-frequency wakeup clock source:

 $f_{SYS} = f_{WU}$.

In this mode, a basic functionality can be maintained without requiring an external clock source and while minimizing the power consumption.

4.6.2.3 Selecting and Changing the Operating Frequency

When selecting a clock source and the clock generation method, the required parameters must be carefully written to the respective bit fields, to avoid unintended intermediate states.

Many applications change the frequency of the system clock (f_{SYS}) during operation in order to optimize system performance and power consumption. Changing the operating frequency also changes the switching currents, which influences the power supply.

To ensure proper operation of the on-chip EVRs while they generate the core voltage, the operating frequency shall only be changed in certain steps. This prevents overshoots and undershoots of the supply voltage.

To avoid the indicated problems, recommended sequences are provided which ensure the intended operation of the clock system interacting with the power system. Please refer to the Programmer's Guide.

4.6.4 Pad Properties

The output pad drivers of the XC236xA can operate in several user-selectable modes. Strong driver mode allows controlling external components requiring higher currents such as power bridges or LEDs. Reducing the driving power of an output pad reduces electromagnetic emissions (EME). In strong driver mode, selecting a slower edge reduces EME.

The dynamic behavior, i.e. the rise time and fall time, depends on the applied external capacitance that must be charged and discharged. Timing values are given for a capacitance of 20 pF, unless otherwise noted.

In general, the performance of a pad driver depends on the available supply voltage V_{DDP} . The following table lists the pad parameters.

- Note: These parameters are not subject to production test but verified by design and/or characterization.
- Note: Operating Conditions apply.

Note: The term CLKOUT refers to the reference clock output signal which is generated by selecting f_{SYS} as the source signal for the clock output signal EXTCLK on pin P2.8 and by enabling the high-speed clock driver on this pin.

Variable Memory Cycles

External bus cycles of the XC236xA are executed in five consecutive cycle phases (AB, C, D, E, F). The duration of each cycle phase is programmable (via the TCONCSx registers) to adapt the external bus cycles to the respective external module (memory, peripheral, etc.).

The duration of the access phase can optionally be controlled by the external module using the READY handshake input.

This table provides a summary of the phases and the ranges for their length.

Table 29	Programmable Bus C	vcle Phases (see timino	diagrams)
	i logiannasio Bao e	,	000	

Bus Cycle Phase	Parameter	Valid Values	Unit
Address setup phase, the standard duration of this phase (1 \dots 2 TCS) can be extended by 0 \dots 3 TCS if the address window is changed	tpAB	1 2 (5)	TCS
Command delay phase	tpC	03	TCS
Write Data setup/MUX Tristate phase	tpD	0 1	TCS
Access phase	tpE	1 32	TCS
Address/Write Data hold phase	tpF	03	TCS

Note: The bandwidth of a parameter (from minimum to maximum value) covers the whole operating range (temperature, voltage) as well as process variations. Within a given device, however, this bandwidth is smaller than the specified range. This is also due to interdependencies between certain parameters. Some of these interdependencies are described in additional notes (see standard timing).

Note: Operating Conditions apply; $C_L = 20 \text{ pF}$.

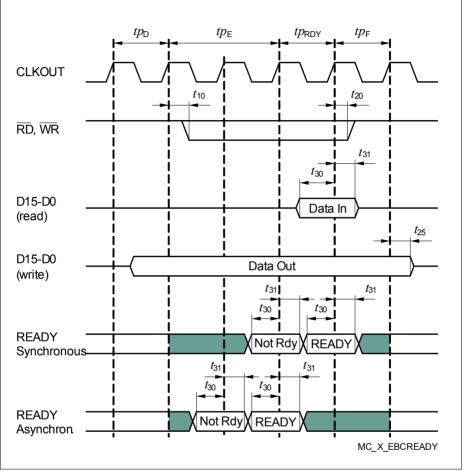


Figure 25 READY Timing

Note: If the READY input is sampled inactive at the indicated sampling point ("Not Rdy") a READY-controlled waitstate is inserted (tpRDY),

sampling the READY input active at the indicated sampling point ("Ready") terminates the currently running bus cycle.

Note the different sampling points for synchronous and asynchronous READY. This example uses one mandatory waitstate (see tpE) before the READY input value is used.

Table 33 USIC SSC Master Mode Timing for Lower Voltage Range (cont'd)

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
Receive data input setup time to SCLKOUT receive edge	t ₄ SR	40	-	-	ns	
Data input DX0 hold time from SCLKOUT receive edge	t ₅ SR	-5	-	-	ns	

1) $t_{SYS} = 1 / f_{SYS}$

Table 34 USIC SSC Slave Mode Timing for Upper Voltage Range

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
Select input DX2 setup to first clock input DX1 transmit edge ¹⁾	<i>t</i> ₁₀ SR	7	-	-	ns	
Select input DX2 hold after last clock input DX1 receive edge ¹⁾	<i>t</i> ₁₁ SR	7	-	-	ns	
Receive data input setup time to shift clock receive edge ¹⁾	<i>t</i> ₁₂ SR	7	-	-	ns	
Data input DX0 hold time from clock input DX1 receive edge ¹⁾	<i>t</i> ₁₃ SR	5	-	-	ns	
Data output DOUT valid time	<i>t</i> ₁₄ CC	7	-	33	ns	

1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0).

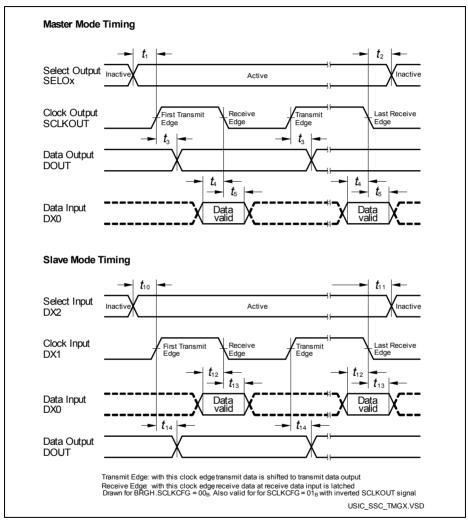


Figure 26 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration where the slave select signal is low-active and the serial clock signal is not shifted and not inverted.

Debug via JTAG

The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply; C_L = 20 pF.

Parameter	Symbol	Values			Unit	Note /
	l	Min.	Тур.	Max.	1	Test Condition
TCK clock period	t ₁ SR	50 ¹⁾	-	-	ns	2)
TCK high time	t ₂ SR	16	-	-	ns	
TCK low time	t ₃ SR	16	-	-	ns	
TCK clock rise time	t ₄ SR	-	-	8	ns	
TCK clock fall time	t ₅ SR	-	-	8	ns	
TDI/TMS setup to TCK rising edge	t ₆ SR	6	-	-	ns	
TDI/TMS hold after TCK rising edge	t ₇ SR	6	-	-	ns	
TDO valid from TCK falling edge (propagation delay) ³⁾	t ₈ CC	_	25	29	ns	
TDO high impedance to valid output from TCK falling edge ⁴⁾³⁾	t ₉ CC	-	25	29	ns	
TDO valid output to high impedance from TCK falling edge ³⁾	<i>t</i> ₁₀ CC	-	25	29	ns	
TDO hold after TCK falling edge ³⁾	<i>t</i> ₁₈ CC	5	-	-	ns	

Table 38JTAG Interface Timing for Upper Voltage Range

1) The debug interface cannot operate faster than the overall system, therefore $t_1 \ge t_{SYS}$.

2) Under typical conditions, the interface can operate at transfer rates up to 20 MHz.

3) The falling edge on TCK is used to generate the TDO timing.

4) The setup time for TDO is given implicitly by the TCK cycle time.

XC2361A, XC2363A, XC2364A, XC2365A XC2000 Family / Base Line

Package and Reliability

Package Outlines

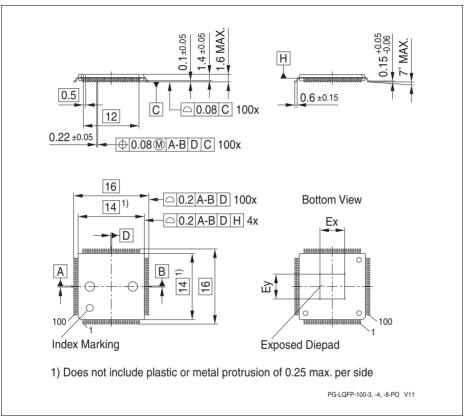


Figure 32 PG-LQFP-100-8/-15 (Plastic Green Thin Quad Flat Package)

All dimensions in mm.

You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page "Packages": http://www.infineon.com/packages