

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	93
Program Memory Size	256KB (256K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	120-LQFP
Supplier Device Package	120-LQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90922ncspmc-gs-112e1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

■ PRODUCT LINEUP

Part number	MB90 F922NC	MB90 F922NCS	MB90 F923NC	MB90 F923NCS	MB90 F924NC	MB90 F924NCS	MB90 922NCS	MB90 V920-101	MB90 V920-102
Parameter	TOLLING	10221100	1 020110	10201100	102110	1 02 1100		1020 101	1020 102
Туре		F	-lash mem	nory produc	t		MASK ROM product	Evaluatio	on product
CPU				F ² M	IC-16LX C	PU	I.	1	
System clock		PLL clock multiplier circuit (\times 1, \times 2, \times 3, \times 4, \times 8, 1/2 when PLL stopped) Minimum instruction execution time 31.25 ns (with 4 MHz oscillation clock \times 8)							
Sub clock pins (X0A, X1A)	Yes	No	Yes	No	Yes	No	No	No	Yes
ROM		memory Kbytes		memory Kbytes		memory Kbytes	256 K bytes	Exte	ernal
RAM	10 K	lbytes	16 K	lbytes	24 K	bytes	10 K bytes	30 K	bytes
I/O port	91 ports	93 ports	91 ports	93 ports	91 ports	93 ports	93 ports	93 ports	91 ports
LCD controller				32 segr	ment imes 4 c	ommon			
LIN-UART				UART (LI	N/SCI) 4	channels			
CAN interface				2	1 channels	6			
16-bit input capture				8	3 channels	6			
16-bit reload timer				2	1 channels	6			
16-bit free-run timer					1 channel				
Real time watch timer					1 channel				
16-bit PPG timer				6	6 channels	6			
External interrupt				8	3 channels	6			
8/10-bit A/D converter				٤	3 channels	6			
Low-voltage/ CPU operating detection reset				Yes				٩	lo
Stepping motor controller				2	1 channels	6			
Sound generator				2	2 channels	3			
Flash memory security			Y	es					
Operating voltage			4.	.0 V to 5.5 \	/			4.5 V 1	o 5.5 V
Package				LQFP-120				PGA	-299
DS07-13750-4E				FUJITSL	J				

HANDLING DEVICES

• Strictly observe maximum rated voltages (preventing latch-up)

In CMOS IC devices, a condition known as latch-up may occur if voltages higher than V_{cc} or lower than V_{ss} are applied to input or output pins other than medium or high withstand voltage pins, or if the voltage applied between VCC and VSS pins exceeds the rated voltage level. If a latch-up occurs, the power supply current may increase dramatically and may destroy semiconductor elements. When using semiconductor devices, always take sufficient care to avoid exceeding maximum ratings.

When the analog system power supply is switched on or off, be careful not to apply the analog power supply (AV_{cc}, AVRH), the analog input voltages and the power supply voltage for the high current output buffer pins (DV_{cc}) in excess of the digital power supply voltage (V_{cc}).

Once the digital power supply voltage (Vcc) has been disconnected, the analog power supply (AVcc, AVRH) and the power supply voltage for the high current output buffer pins (DVcc) may be turned on in any sequence.

Supply voltage stabilization

Rapid fluctuations in the power supply voltage can cause malfunctions even if the Vcc power supply voltage remains within the warranted operating range. It is recommended that the power supply be stabilized such that ripple fluctuations (P-P value) at commercial frequencies (50 Hz/60 Hz) be limited to within 10% of the standard Vcc value, and that transient fluctuations due to power supply switching, etc. be limited to a rate of 0.1 V/ms or less.

• Precautions when turning the power on

In order to prevent the built-in step-down circuits from malfunctioning, the time taken for the voltage to rise (0.2 V to 2.7 V) during power-on should be less than 50 μ s.

• Handling unused pins

If unused input pins are left open, they may cause malfunctions or latch-up which may lead to permanent damage to the semiconductor. Unused input pins should therefore be pulled up or pulled down through a resistor of at least 2 k Ω .

Unused input/output pins may be set to the output state and left open, or set to the input state and connected to a pull-up or pull-down resistance of 2 k Ω or more.

• Handling A/D converter power supply pins

Even if the A/D converter is not used, the power supply pins should be connected such as $AV_{CC} = V_{CC}$, and $AV_{SS} = AVRH = V_{SS}$.

• Notes on using an external clock

Even when an external clock is used, an oscillation stabilization wait time is required following power-on reset or release from sub clock mode or stop mode. Furthermore, only the X0A pin should be driven when an external clock is used, with the X1A pin open as shown in the following diagram. Do not use high-speed oscillation pins (X0 and X1) for external clock input.

• Handling the power supply for high-current output buffer pins (DVcc, DVss)

• Flash memory products and MASK ROM products (MB90F922NC/F922NCS/922NCS/F923NC/ F923NCS/F924NC/F924NCS)

In the Flash memory products and MASK ROM products, the power supply for the high-current output buffer pins (DVcc, DVss) is isolated from the digital power supply (Vcc).

Therefore, DVcc can therefore be set to a higher voltage than Vcc. If the power supply for the high-current output buffer pins (DVcc, DVss) is supplied before the digital power supply (Vcc), however, care needs to be taken because it is possible that the port 7 or port 8 stepping motor outputs may momentarily output an "H" or "L" level. In order to prevent this, connect the digital power supply (Vcc) prior to connecting the power supply for the high-current output buffer pins. Even when the high-current output buffer pins are used as general-purpose ports, power should be supplied to the power supply pins for the high-current output buffer pins (DVcc, DVss).

• Evaluation product (MB90V920-101/MB90V920-102)

In the evaluation products, the power supply for the high-current output buffer pins (DV_{cc}, DV_{ss}) is not isolated from the digital power supply (V_{cc}). Therefore, DV_{cc} must therefore be set to a lower voltage than Vcc. The power supply for the high-current output buffer pins (DV_{cc}, DV_{ss}) must always be applied after the digital power supply (V_{cc}) has been connected, and disconnected before the digital power supply (V_{cc}) is disconnected (the power supply for the high-current output buffer pins may also be connected and disconnected simultaneously with the digital power supply).

Even when the high-current output buffer pins are used as general-purpose ports, power should be supplied to the power supply pins for the high-current output buffer pins (DVcc, DVss).

Pull-up/pull-down resistors

MB90920 series does not support internal pull-up/pull-down resistors. Use external components as necessary.

Precautions when not using a sub clock signal

If the X0A and X1A pins are not connected to an oscillator, apply a pull-down resistance to the X0A pin and leave the X1A pin open.

Notes on operating when the external clock is stopped

The MB90920 series is not guaranteed to operate correctly using the internal oscillator circuit when there is no external oscillator or the external clock input is stopped.

• Flash memory security function

A security bit is located within the Flash memory region. The security function is activated by writing the protection code 01_{H} to the security bit.

Do not write the value 01_{H} to this address if you are not using the security function.

Please refer to following table for the address of the security bit.

	Flash memory size	Address for security bit
MB90F922NC MB90F922NCS	Built-in 2 Mbits Flash Memory	FC0001н
MB90F923NCS	Built-in 3 Mbits Flash Memory	F80001н
MB90F924NCS	Built-in 4 Mbits Flash Memory	F80001 н

MEMORY MAP

Note: To select models without the ROM mirror function, refer to the "ROM Mirror Function Selection Module" in Hardware Manual. The image of the ROM data in the FF bank appears at the top of the 00 bank, in order to enable efficient use of small C compiler models. The lower 16-bits of the FF bank addresses are allocated to the same addresses as the lower 16-bits of the 00 bank, making it possible to reference tables in ROM without declaring the "far" modifier with the pointers. For example, when an access is made to the address 00C000_H, the actual address to be accessed is FFC000_H in ROM. Because the size of the FF bank ROM area exceeds 32 Kbytes, it is not possible to view the entire region in the 00 bank image. Therefore because the ROM data from FF8000_H to FFFFF_H appears in the image from 008000_H to 00FFFF_H, it is recommended that ROM data tables be stored in the area from FF8000_H to FFFFF_H.

Address	Register name	Symbol	Read/write	Resource name	Initial value
003944н	land antime register 0		D		XXXXXXXXB
003945н	Input capture register 6	IPCP6	R	least continue C/Z	XXXXXXXXB
003946н	1	10007		Input capture 6/7	XXXXXXXXB
003947н	Input capture register 7	IPCP7	R		XXXXXXXXB
003948н to		(Disab	led)		•
00394Fн		,	,		
003950н	Minute data register 2/Reload register 2	TMR2/	R/W	16-bit reload timer	XXXXXXXXB
003951 н	Minute data register 2/neload register 2	TMRLR2	11/ VV	2	XXXXXXXXB
003952н	Minute data register 3/Reload register 3	TMR3/	R/W	16-bit reload timer	XXXXXXXXB
003953н	Millule data register 3/ Neload register 3	TMRLR3	U/ M	3	XXXXXXXXB
003954н to 003957н		(Disab	led)		
003958н					XXXXXXXXB
003959н	Sub second data register	WTBR	R/W		XXXXXXXXB
00395Ан					XXXXXXXXB
00395Вн	Second data register	WTSR	R/W	Real time watch timer	ХХ00000в
00395Сн	Minute data register	WTMR	R/W	water unier	ХХ00000в
00395D н	Hour data register	WTHR	R/W		ХХХ00000в
00395Ен	Day data register	WTDR	R/W		00Х0001в
00395F н	· · · · · · · · · · · · · · · · · · ·	(Disab	led)		
003960н					XXXXXXXXB
003961н					XXXXXXXXB
003962н					XXXXXXXXB
003963н					XXXXXXXXB
003964н					XXXXXXXXB
003965н					XXXXXXXXB
003966н					XXXXXXXXB
003967н	LCD display RAM	VRAM	R/W	LCD controller/	XXXXXXXXB
003968н		VITAIVI	U/ M	driver	XXXXXXXXB
003969н					XXXXXXXXB
00396Ан					XXXXXXXXB
00396Вн					XXXXXXXXB
00396Сн					XXXXXXXXB
00396Dн					XXXXXXXXB
00396Eн					XXXXXXXXB
00396Fн	1				XXXXXXXXB

Address	Register name	Symbol	Read/write	Resource name	Initial value
003970н to 003973н		(Disab	led)		
003974н	Frequency data register 1	SGFR1	R/W		XXXXXXXXB
003975н	Amplitude data register 1	SGAR1	R/W	Sound concretor 1	0000000в
003976н	Decrement grade register 1	SGDR1	R/W	Sound generator 1	XXXXXXXXB
003977н	Tone count register 1	SGTR1	R/W		XXXXXXXXB
003978н to 00397Fн		(Disab	led)		
003980н	DWM1 compare register 0	PWC10	R/W		XXXXXXXXB
003981 н	PWM1 compare register 0	FWCIU	U/ M		XXXXXXXXB
003982н	BWW compare register 0	PWC20	R/W	Stepping motor	XXXXXXXXB
003983н	PWM2 compare register 0	FW020	U/ M	controller 0	XXXXXXXXB
003984н	PWM1 select register 0	PWS10	R/W		0000000в
003985н	PWM2 select register 0	PWS20	R/W		Х000000в
003986н, 003987н		(Disab	led)		
003988н	DWM1 compare register 1	PWC11	R/W		XXXXXXXXB
003989н	PWM1 compare register 1	PWCII	H/ VV		XXXXXXXXB
00398Ан	DWM2 compare register 1	PWC21	R/W	Stepping motor	XXXXXXXXB
00398Вн	PWM2 compare register 1	PWC21	H/ VV	controller 1	XXXXXXXXB
00398Сн	PWM1 select register 1	PWS11	R/W		0000000в
00398Dн	PWM2 select register 1	PWS21	R/W		Х000000в
00398Eн, 00398Fн		(Disab	led)		
003990н					XXXXXXXXB
003991 н	PWM1 compare register 2	PWC12	R/W		XXXXXXXXB
003992н	DW/M2 compare register 2			Stepping motor	XXXXXXXXB
003993н	PWM2 compare register 2	PWC22	R/W	controller 2	XXXXXXXXB
003994н	PWM1 select register 2	PWS12	R/W		0000000в
003995н	PWM2 select register 2	PWS22	R/W		Х000000в
003996н, 003997н		(Disab	led)		(Continued

Address	Register name	Symbol	Read/write	Resource name	Initial value			
003998н		DWO10			XXXXXXXXB			
003999н	PWM1 compare register 3	PWC13	R/W		XXXXXXXXB			
00399Ан				Stepping motor	XXXXXXXXB			
00399Вн	PWM2 compare register 3	PWC23	R/W	controller 3	XXXXXXXXB			
00399Сн	PWM1 select register 3	PWS13	R/W		0000000в			
00399Dн	PWM2 select register 3	PWS23	R/W		Х000000в			
00399Ен to 0039А5н		(Disab	led)					
0039А6н	Flash write control register 0	FWR0	R/W	Elech I/E	0000000в			
0039А7 н	Flash write control register 1	FWR1	- N/VV	Flash I/F	0000000в			
0039А8н to 0039BFн		(Disab	led)					
0039C0н to 0039DFн	Area reserved for CAN C	ontroller 2. F	lefer to "∎ CA	N CONTROLLERS"	,			
0039E0н to 0039FFн	Area reserved for CAN C	ontroller 3. F	lefer to "∎ CA	N CONTROLLERS"				
003A00н to 003AFFн	Area reserved for CAN C	ontroller 0. F	lefer to " ∎ CA	N CONTROLLERS	,			
003B00н to 003BFFн	Area reserved for CAN C	ontroller 1. F	lefer to " ■ CA	N CONTROLLERS"	,			
003C00н to 003CFFн	Area reserved for CAN C	ontroller 0. F	lefer to "∎ CA	N CONTROLLERS"				
003D00н to 003DFFн	Area reserved for CAN C	ontroller 1. F	lefer to "∎ CA	N CONTROLLERS"				
003E00н to 003EFFн	Area reserved for CAN C	Area reserved for CAN Controller 2. Refer to "■ CAN CONTROLLERS"						
003F00н to 003FFFн	Area reserved for CAN C	ontroller 3. F	lefer to " ■ CA	N CONTROLLERS"	,			

CAN CONTROLLERS

The CAN controller has the following features :

- Conforms to CAN Specification Version 2.0 Part A and B
 - Supports transmission/reception in standard frame and extended frame formats
- Supports transmission of data frames by receiving remote frames
- 16 transmission/reception message buffers
 - 29-bit ID and 8-byte data
 - Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask
 - 2 acceptance mask registers in either standard frame format or extended frame formats
- Bit rate programmable from 10 kbps to 2 Mbps (when input clock is at 16 MHz)

	Add	ress		Register	Abbreviation	Access	Initial Value
CAN0	CAN1	CAN2	CAN3	negister	Abbreviation	ALLESS	
003С00н	003D00н	003E00н	003F00н	Control status register CSR		R/W, R	00000в
003C01н	003D01н	003E01 н	003F01 н	Control Status register	0311	11/ VV, 11	00-1в
003C02н	003D02 _H	003E02н	003F02н	Last event indicator	LEIR	R/W	В
003C03н	003D03н	003E03н	003F03н	register			000-0000в
003C04н	003D04 _H	003E04 _H	003F04н	RX/TX error counter	RTEC	R	0000000в
003C05н	003D05н	003E05н	003F05н		meo	11	0000000в
003С06н	003D06н	003E06н	003F06н	Bit timing register	BTR	R/W	-1111111в
003C07н	003D07н	003E07 н	003F07 н		BIN	I 1/ V V	11111111 _В

List of Control Registers(1)

	Add	ress		Pagistor	Abbre-	Access	Initial Value
CAN0	CAN1	CAN2	CAN3	Register	viation	Access	initial value
003A40 н	003В40н	003740н	003840н				XXXXXXXXB
003A41 н	003B41 н	003741 н	003841 н	ID register 8	IDR8	R/W	XXXXXXXXB
003А42н	003В42н	003742н	003842н	i Diregister o	IDHO	n/ v v	XXXXXB
003А43н	003В43н	003743н	003843н				XXXXXXXXB
003A44н	003B44н	003744н	003844н				XXXXXXXXB
003A45 н	003В45н	003745н	003845н	ID register 9	IDR9	R/W	XXXXXXXXB
003A46 н	003В46н	003746н	003846н		10113	1 1/ V V	ХХХХХв
003А47 н	003B47 н	003747н	003847н				XXXXXXXXB
003A48н	003B48 н	003748н	003848н				XXXXXXXXB
003A49 н	003B49 н	003749н	003849н	ID register 10	IDR10	R/W	XXXXXXXXB
003А4Ан	003В4Ан	00374Ан	00384А н				XXXXXB
003A4Bн	003В4Вн	00374Вн	00384Вн				XXXXXXXXB
003A4Cн	003В4Сн	00374С н	00384Сн				XXXXXXXXB
003A4Dн	003B4Dн	00374Dн	00384Dн	ID register 11	IDR11	R/W	XXXXXXXXB
003A4Eн	003B4Eн	00374E н	00384E н			1 1/ V V	ХХХХХв
003A4Fн	003B4Fн	00374F н	00384F н				XXXXXXXXB
003А50 н	003В50н	003750н	003850н		IDR12		XXXXXXXX
003А51 н	003B51 н	003751 н	003851 н	ID register 12		R/W	XXXXXXXXB
003А52н	003В52н	003752н	003852н			11/ VV	XXXXXB
003А53н	003В53н	003753н	003853н				XXXXXXXXB
003А54 н	003В54н	003754н	003854н				XXXXXXXXB
003А55 н	003В55н	003755н	003855н	ID register 13	IDR13	R/W	XXXXXXXXB
003А56н	003В56н	003756н	003856н		IDITIO	11/ VV	XXXXXB
003А57 н	003В57н	003757н	003857н				XXXXXXXXB
003А58 н	003B58 н	003758н	003858н				XXXXXXXX
003А59 н	003В59 н	003759н	003859н	ID register 14	IDR14	R/W	XXXXXXXXB
003А5Ан	003В5Ан	00375Ан	00385Ан			I 1/ V V	XXXXXB
003А5Вн	003В5Вн	00375Вн	00385Вн				XXXXXXXXB
003А5Сн	003В5Сн	00375Сн	00385Сн				XXXXXXXX
003A5DH	003B5DH	00375Dн	00385Dн	ID register 15	IDR15	R/W	XXXXXXXXB
003А5Ен	003В5Ен	00375Ен	00385Ен			I 1/ V V	XXXXXB
003A5Fн	003B5Fн	00375F н	00385Fн				XXXXXXXXB

	Add	ress		Deviator	Abbrevia-	A	
CAN0	CAN1	CAN2	CAN3	Register	tion	Access	Initial Value
003А60н	003В60н	003760н	003860н	DLC register 0	DLCR0	R/W	XXXX _B
003A61 н	003B61 н	003761 н	003861 н		DLONU		
003А62 н	003В62н	003762н	003862н	DLC register 1	DLCR1	R/W	XXXX _в
003А63н	003В63н	003763н	003863н		DEOITI	11/ VV	
003А64 н	003B64н	003764н	003864н	DLC register 2	DLCR2	R/W	XXXX _в
003А65н	003В65н	003765н	003865н		DECHZ	11/ VV	
003А66н	003В66н	003766н	003866н	DLC register 3	DLCR3	R/W	ХХХХв
003А67 н	003В67н	003767н	003867н		DLUNG		
003А68 н	003В68н	003768н	003868 н	DLC register 4	DLCR4	R/W	ХХХХв
003А69 н	003В69н	003769н	003869 н		DLCI14	11/ VV	
003А6А н	003B6Aн	00376Ан	00386А н	DLC register 5	DLCR5	R/W	ХХХХв
003A6Bн	003B6Bн	00376Вн	00386Вн		DECI15	11/ VV	
003A6Cн	003B6Cн	00376С н	00386Cн	DLC register 6	DLCR6	R/W	ХХХХв
003A6Dн	003B6Dн	00376Dн	00386Dн		DECITIO	10.00	
003A6Eн	003B6Eн	00376E н	00386Eн	DLC register 7	DLCR7	R/W	ХХХХв
003A6Fн	003B6Fн	00376F н	00386F н		BEOIN	11/ VV	
003А70н	003В70н	003770н	003870н	DLC register 8	DLCR8	R/W	ХХХХв
003A71 н	003B71 н	003771 н	003871 н		DECINO	11/ VV	
003А72н	003В72н	003772н	003872н	DLC register 9	DLCR9	R/W	ХХХХв
003А73н	003В73н	003773н	003873н		DECITO	11/11	
003A74н	003B74н	003774н	003874н	DLC register 10	DLCR10	R/W	ХХХХв
003А75н	003В75н	003775н	003875н		DEGITIO	10,00	
003А76н	003В76н	003776н	003876н	DLC register 11	DLCR11	R/W	XXXX _в
003А77 н	003B77 н	003777н	003877н		DEGITIT	10,00	
003A78 н	003B78 н	003778 н	003878 н	DLC register 12	DLCR12	R/W	ХХХХв
003А79 н	003B79 н	003779 н	003879 н		DEGITIZ	10,00	
003А7Ан	003В7Ан	00377Ан	00387А н	DLC register 13	DLCR13	R/W	ХХХХв
003A7Bн	003B7Bн	00377Вн	00387В н		DEGITIS	11/ VV	
003А7Сн	003В7Сн	00377Сн	00387Cн	DLC register 14	DLCR14	R/W	ХХХХв
003A7Dн	003B7Dн	00377Dн	00387Dн		DECITI4		
003A7Eн	003B7Eн	00377Ен	00387Eн	DLC register 15	DLCR15	R/W	XXXXB
003A7Fн	003B7Fн	00377Fн	00387Fн		DECITIS	I 1/ VV	

List of Message Buffers (DLC Registers)

■ INTERRUPT SOURCES, INTERRUPT VECTORS, AND INTERRUPT CONTROL REGISTERS

Interrupt source	EI²OS "	Int	terrupt	vector	Interru re	Priority	
	corresponding	Nun	nber	Address	ICR	Address	*2
Reset	×	#08	08н	FFFFDC H			High
INT9 instruction	×	#09	09н	FFFFD8 _H		—	
Exception processing	×	#10	0Ан	FFFFD4 _H		—	1 1
CAN0 received/CAN2 received	×	#11	0Вн	FFFFD0H			
CAN0 transmitted/node status/ CAN2 transmitted/node status	×	#12	0Сн	FFFFCCH	ICR00	0000B0н*1	
CAN1 received/CAN3 received	×	#13	0Dн	FFFFC8 _H			
CAN1 transmitted/node status/ CAN3 transmitted/node status/SIO	×	#14	0Ен	FFFFC4H	ICR01	0000B1н*1	
Input capture 0	Δ	#15	0 Fн	FFFFC0H			1
DTP/ external interrupt - ch.0/ch.1 detected	Δ	#16	10н	FFFFBCH	ICR02	0000B2н*1	
Reload timer 0	\bigtriangleup	#17	11 н	FFFFB8H		0000000 *1	
Reload timer 2	\bigtriangleup	#18	1 2н	FFFFB4H	ICR03	0000B3 _H *1	
Input capture 1	\bigtriangleup	#19	13 н	FFFFB0H		0000B4H*1	
DTP/ external interrupt - ch.2/ch.3 detected	Δ	#20	14н	FFFFACH	ICR04		
Input capture 2	\triangle	#21	1 5н	FFFFA8H		0000B5H*1	
Reload timer 3	\bigtriangleup	#22	16 н	FFFFA4H	ICR05		
Input capture 3/4/5/6/7	\bigtriangleup	#23	17 н	FFFFA0H			
DTP/ external interrupt - ch.4/ ch.5 detected UART3 RX	Δ	#24	18 н	FFFF9CH	ICR06	0000B6н*1	
PPG timer 0	Δ	#25	19 н	FFFF98 _H			
DTP/ external interrupt - ch.6/ ch.7 detected UART3 TX	Δ	#26	1Ан	FFFF94 _H	ICR07	0000B7н*1	
PPG timer 1	Δ	#27	1 Вн	FFFF90H		0000000.*1	
Reload timer 1	\bigtriangleup	#28	1Cн	FFFF8CH	ICR08	0000B8 _H *1	
PPG timer 2/3/4/5	0	#29	1Dн	FFFF88H			
Real time watch timer watch timer (sub clock)	×	#30	1Ен	FFFF84 _H	ICR09	0000B9н*1	
Free-run timer overflow/clear	×	#31	1Fн	FFFF80H			1
A/D converter conversion complete	0	#32	20н	FFFF7CH	ICR10	0000BAн *1	
Sound generator 0/1	×	#33	21н	FFFF78н			1
Time-base timer	×	#34	22н	FFFF74 _H	ICR11	0000BB _H *1	
UART2 RX	0	#35	23н	FFFF70H		000000 *1	1 🕴
UART2 TX	\bigtriangleup	#36	24н	FFFF6CH	ICR12	0000BCH*1	Low

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Devementer	Cumhal	Rat	ing	Unit	Demorika
Parameter	Symbol	Min	Max	Unit	Remarks
	Vcc	Vss - 0.3	Vss + 6.0	V	
Dowor oupply voltogo*1	AVcc	Vss - 0.3	Vss + 6.0	V	$AVcc = Vcc^{*2}$
Power supply voltage*1	AVRH	Vss - 0.3	Vss + 6.0	V	AVcc ≥ AVRH*2
	DVcc	Vss - 0.3	Vss + 6.0	V	$DVcc = Vcc^{*2}$
Input voltage*1	Vı	Vss - 0.3	Vcc + 0.3	V	*3
Output voltage*1	Vo	Vss - 0.3	Vcc + 0.3	V	
Maximum clamp current	CLAMP	- 4	+ 4	mA	*7
Total maximum clamp current	Σ Iclamp		40	mA	*7
"L" level maximum	OL1		15	mA	Except P70 to P77 and P80 to P87
output current*4		_	40	mA	P70 to P77 and P80 to P87
"L" level average output	OLAV1		4	mA	Except P70 to P77 and P80 to P87
current*5	OLAV2		30	mA	P70 to P77 and P80 to P87
"L" level maximum	Σ IOL1	_	100	mA	Except P70 to P77 and P80 to P87
total output current	Σ Iol2	_	330	mA	P70 to P77 and P80 to P87
"L" level average total	Σ IOLAV1		50	mA	Except P70 to P77 and P80 to P87
output current	Σ Iolav2	_	250	mA	P70 to P77 and P80 to P87
"H" level maximum	Он1*4	_	-15	mA	Except P70 to P77 and P80 to P87
output current	он2*4		-40	mA	P70 to P77 and P80 to P87
"H" level average	OHAV1*5	_	-4	mA	Except P70 to P77 and P80 to P87
output current	OHAV2 ^{*5}	_	-30	mA	P70 to P77 and P80 to P87
"H" level maximum	Σ Іон1		-100	mA	Except P70 to P77 and P80 to P87
total output current	Σ Іон2	_	-330	mA	P70 to P77 and P80 to P87
"H" level average total	Σ IOHAV1 ^{*6}		-50	mA	Except P70 to P77 and P80 to P87
output current	Σ Iohav2 ^{*6}		-250	mA	P70 to P77 and P80 to P87
Power consumption	PD		625	mW	
Operating temperature	TA	- 40	+ 105	°C	
Storage temperature	Тѕтс	- 55	+ 150	°C	

*1 : The parameter is based on $V_{SS} = AV_{SS} = DV_{SS} = 0.0 V.$

*2 : AVcc, AVRH must not exceed Vcc, and AVRH must not exceed AVcc. When using an evaluation product, DVcc must not exceed Vcc (however, DVcc can be set to a higher voltage than Vcc when using a Flash memory product).

*3 : If the input current or the maximum input current is limited using external components, ICLAMP is the applicable rating instead of VI.

*4 : Maximum output current is defined as the peak value of current through any one of the corresponding pins.

• Bit setting: ESCR0/1/2/3:SCES=0, ECCR0/1/2/3:SCDE=1

(Vcc = 5.0 V \pm 10%, Vss = AVss = 0.0 V, T_A = -40 °C to +105 °C)

Parameter	Symbol	Pin name	Conditions	Val	Unit	
Falameter	Symbol	Fill lidille	Conditions	Min	Max	Unit
Serial clock cycle time	tscyc	SCK0 to SCK3		5 tcp	_	ns
SCK $\uparrow \rightarrow$ SOT delay time	tsнovi	SCK0 to SCK3, SOT0 to SOT3	Internal shift clock	- 50	+ 50	ns
$Valid\ SIN \to SCK \downarrow$	tivsli	SCK0 to SCK3,	mode output pin $C_L = 80 \text{ pF} + 1\text{TTL}$	tcp + 80		ns
$SCK \downarrow \to valid \; SIN \; hold \; time$	tslixi	SIN0 to SIN3		0		ns
$SOT \to SCK \downarrow delay time$	ime t _{SOVLI} SCK0 to SCK3, SOT0 to SOT3			3 tcp - 70		ns

Notes : • Depending on the machine clock frequency to be used, the maximum baud rate may be limited by some parameters. These parameters are shown in "MB90920 series hardware manual".

 \bullet CL is the load capacitance connected to the pin during testing.

• tcp is the internal operating clock cycle time. Refer to "(1) Clock timing".

• Notes on the external impedance and sampling time of analog inputs

A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. If the sampling time is still not sufficient, connect a capacitor of about 0.1 μ F to the analog input pin.

(2) Definition of terms	
Resolution	: Analog changes that are identifiable by the A/D converter.
Non-Linear error	: The deviation of the straight line connecting the zero transition point ("00 0000 0000" \leftrightarrow → "00 0000 0001") with the full-scale transition point ("11 1111 1110" \leftrightarrow "11 1111 1111") from actual conversion characteristics.
Differential linear error	: The deviation from the ideal value of the input voltage needed to change the output code by 1 LSB.
Total error	: The total error is the difference between the actual value and the theoretical value, and includes zero-transition error/full-scale transition error and linear error.

■ PACKAGE DIMENSION

Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

FUJITSU SEMICONDUCTOR LIMITED

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome, Kohoku-ku Yokohama Kanagawa 222-0033, Japan Tel: +81-45-415-5858 http://jp.fujitsu.com/fsl/en/

For further information please contact:

North and South America

FUJITSU SEMICONDUCTOR AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://us.fujitsu.com/micro/

Europe

FUJITSU SEMICONDUCTOR EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/semiconductor/

Korea

FUJITSU SEMICONDUCTOR KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

Asia Pacific

FUJITSU SEMICONDUCTOR ASIA PTE. LTD. 151 Lorong Chuan, #05-08 New Tech Park 556741 Singapore Tel : +65-6281-0770 Fax : +65-6281-0220 http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China Tel : +86-21-6146-3688 Fax : +86-21-6335-1605 http://cn.fujitsu.com/fss/

FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel : +852-2377-0226 Fax : +852-2376-3269 http://cn.fujitsu.com/fsp/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or other rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.