

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

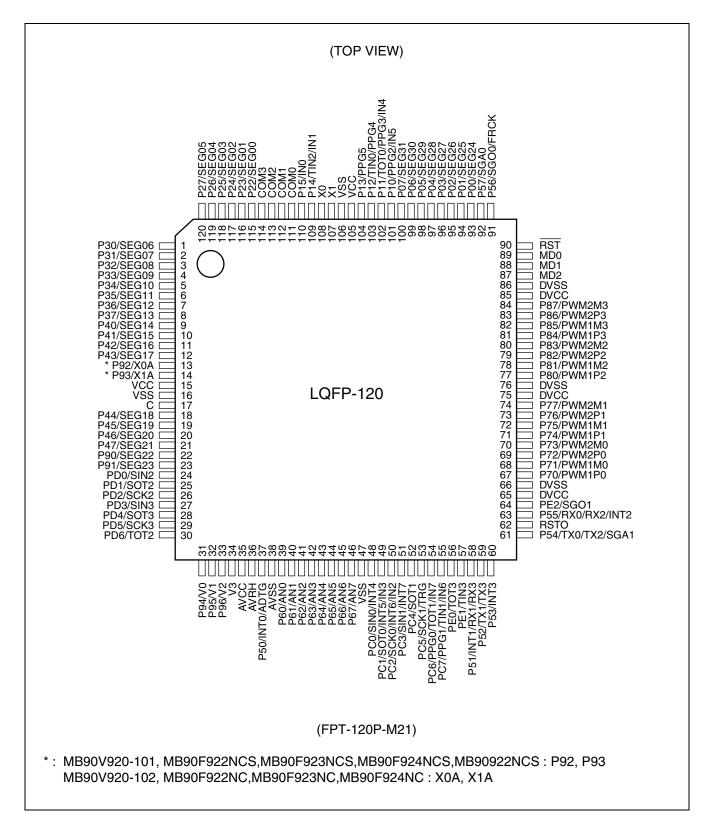
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	93
Program Memory Size	256KB (256K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	10K × 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	120-LQFP
Supplier Device Package	120-LQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90922ncspmc-gs-132e1


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(Continued) 16-bit reload timer (4 channels) 16-bit reload timer operation (select toggle output or one-shot output) Selectable event count function Real time watch timer (main clock) Operates directly from oscillator clock. Interrupt can be generated by second/minute/hour/date counter overflow. • PPG timer (6 channels) Output pins (3 channels), external trigger input pin (1 channel) Operation clock frequencies : fcp, fcp/2², fcp/2⁴, fcp/2⁶ Delay interrupt Generates interrupt for task switching. Interrupts to CPU can be generated/cleared by software setting. • External interrupts (8 channels) 8-channel independent operation Interrupt source setting available : "L" to "H" edge/ "H" to "L" edge/ "L" level/ "H" level. 8/10-bit A/D converter (8 channels) Conversion time : $3 \mu s$ (at $f_{CP} = 32 \text{ MHz}$) External trigger activation available (P50/INT0/ADTG) Internal timer activation available (16-bit reload timer 1) UART(LIN/SCI) (4 channels) Equipped with full duplex double buffer Clock-asynchronous or clock-synchronous serial transfer is available • CAN interface (4 channels : CAN0 and CAN2, and CAN1 and CAN3 share transmission and reception pins, and interrupt control registers). Conforms to CAN specifications version 2.0 Part A and B. Automatic resend in case of error. Automatic transfer in response to remote frame. 16 prioritized message buffers for data and ID Multiple message support Flexible configuration for receive filter : Full bit compare/full bit mask/two partial bit masks Supports up to 1 Mbps CAN wakeup function (RX connected to INT0 internally) • LCD controller/driver (32 segment x 4 common) Segment driver and command driver with direct LCD panel (display) drive capability Reset on detection of low voltage/program loop Automatic reset when low voltage is detected Program looping detection function Stepping motor controller (4 channels) High current output for each channel $\times 4$ Synchronized 8/10-bit PWM for each channel × 2 Sound generator (2 channels) 8-bit PWM signal mixed with tone frequency from 8-bit reload counter. PWM frequencies : 125 kHz, 62.5 kHz, 31.2 kHz, 15.6 kHz (at fcp = 32 MHz) Tone frequencies : PWM frequency $\frac{2}{2}$, divided by (reload frequency +1) Input/output ports General-purpose input/output port (CMOS output) 93 ports • Function for port input level selection Automotive/CMOS-Schmitt Flash memory security function Protects the contents of Flash memory (Flash memory product only)

■ PIN ASSIGNMENT

Pin no.	Pin name	I/O circuit type*1	Function
70	P73	 - L	General-purpose output-only port
70	PWM2M0		Stepping motor controller ch.0 output pin
71	P74	- L	General-purpose output-only port
/ 1	PWM1P1		Stepping motor controller ch.1 output pin
72	P75	L	General-purpose output-only port
12	PWM1M1		Stepping motor controller ch.1 output pin
73	P76	 - L	General-purpose output-only port
73	PWM2P1		Stepping motor controller ch.1 output pin
74	P77	L	General-purpose output-only port
74	PWM2M1		Stepping motor controller ch.1 output pin
77	P80	L	General-purpose output-only port
11	PWM1P2		Stepping motor controller ch.2 output pin
78	P81	- L	General-purpose output-only port
70	PWM1M2		Stepping motor controller ch.2 output pin
79	P82	L	General-purpose output-only port
19	PWM2P2		Stepping motor controller ch.2 output pin
80	P83	L	General-purpose output-only port
00	PWM2M2		Stepping motor controller ch.2 output pin
81	P84	L	General-purpose output-only port
01	PWM1P3		Stepping motor controller ch.3 output pin
82	P85	L	General-purpose output-only port
02	PWM1M3		Stepping motor controller ch.3 output pin
83	P86		General-purpose output-only port
03	PWM2P3		Stepping motor controller ch.3 output pin
84	P87	1	General-purpose output-only port
04	PWM2M3	- L	Stepping motor controller ch.3 output pin
00	P90	Г	General-purpose I/O port
22	SEG22	F	LCD controller/driver segment output pin
00	P91	Г	General-purpose I/O port
23	SEG23	F	LCD controller/driver segment output pin
01	P94	<u> </u>	General-purpose I/O port
31	V0	G	LCD controller/driver reference power supply pin
20	P95	6	General-purpose I/O port
32	V1	G	LCD controller/driver reference power supply pin

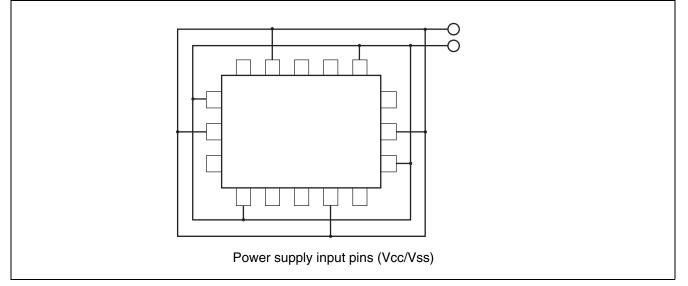
Pin no.	Pin name	I/O circuit type*1	Function			
33 -	P96	G	General-purpose I/O port			
	V2	G	LCD controller/driver reference power supply pin			
34	V3		LCD controller/driver reference power supply pin			
	PC0		General-purpose I/O port			
48	SIN0	J	UART ch.0 serial data input pin			
	INT4		INT4 external interrupt input pin			
	PC1		General-purpose I/O port			
49	SOT0		UART ch.0 serial data output pin			
49	INT5	Ι	INT5 external interrupt input pin			
	IN3		Input capture ch.3 trigger input pin			
	PC2		General-purpose I/O port			
50	SCK0	I	UART ch.0 serial clock I/O pin			
50	INT6	I	INT6 external interrupt input pin			
	IN2		Input capture ch.2 trigger input pin			
	PC3		General-purpose I/O port			
51	51 SIN1 INT7		UART ch.1 serial data input pin			
			INT7 external interrupt input pin			
52 -	PC4	I	General-purpose I/O port			
52	SOT1	I	UART ch.1 serial data output pin			
	PC5		General-purpose I/O port			
53	SCK1	I	UART ch.1 serial clock I/O pin			
	TRG		16-bit PPG ch.0 to ch.5 external trigger input pin			
	PC6		General-purpose I/O port			
54	PPG0	I	16-bit PPG ch.0 output pin			
54	TOT1	I	16-bit reload timer ch.1 TOT output pin			
	IN7		Input capture ch.7 trigger input pin			
	PC7		General-purpose I/O port			
FF	PPG1	I	16-bit PPG ch.1 output pin			
55 -	TIN1	I	16-bit reload timer ch.1 TIN input pin			
	IN6		Input capture ch.6 trigger input pin			
04	PD0		General-purpose I/O port			
24	SIN2	J	UART ch.2 serial data input pin			
0F	PD1	1	General-purpose I/O port			
25 -	SOT2	I	UART ch.2 serial data output pin			

Туре	Circuit	Remarks
E	CMOS hysteresis input	 Input-only pin (with pull-down resistance) Attached pull-down resistance: approx. 50 kΩ CMOS hysteresis input (VIH/VIL = 0.8 Vcc/0.2 Vcc)
	***	Note: The MD2 pin of the evaluation products uses this circuit type.
F	P-ch P-ch P-ch P-ch P-ch Pout LCD input CMOS hysteresis input Standby control signal or LCD input enable signal Automotive input Standby control signal or LCD input enable signal	LCD output common general- purpose port • CMOS output (IoH/IoL = ± 4 mA) • Hysteresis input (VIH/VIL = 0.8 Vcc/0.2 Vcc) • Automotive input (VIH/VIL = 0.8 Vcc/0.5 Vcc)
G	P-ch P-ch P-ch P-ch P-ch P-ch P-ch Pout LCDC reference power supply input CMOS hysteresis input Standby control signal or LCD output switching signal Automotive input Standby control signal or LCD output switching signal	LCDC reference power supply com- mon general-purpose port • CMOS output (IoH/IoL = ±4 mA) • CMOS hysteresis input (VIH/VIL = 0.8 Vcc/0.2 Vcc) • Automotive input (VIH/VIL = 0.8 Vcc/0.5 Vcc)

• Notes on operating in PLL clock mode

On this microcontroller, if in case the crystal oscillator breaks off or an external reference clock input stops while the PLL clock mode is selected, a self-oscillator circuit contained in the PLL may continue its operation at its self-running frequency. However, FUJITSU SEMICONDUCTOR will not guarantee results of operations if such failure occurs.

Crystal oscillator circuit


Noise around the X0/X1, or X0A/X1A pins may cause this device to operate abnormally. In the interest of stable operation it is strongly recommended that printed circuit artwork places ground bypass capacitors as close as possible to the X0/X1, X0A/X1A and crystal oscillator (or ceramic oscillator) and that oscillator lines do not cross the lines of other circuits.

Please ask each crystal maker to evaluate the oscillational characteristics of the crystal and this device.

• Power supply pins

Devices including multiple VCC or VSS pins are designed such that pins that need to be at the same potential are interconnected internally to prevent malfunctions such as latch-up. To reduce unnecessary radiation, prevent malfunctioning of the strobe signal due to the rise of ground level, and observe the standard for total output current, be sure to connect the VCC and VSS pins to the power supply and ground externally.

Always connect all of the VCC pins to the same potential and all of the VSS pins to ground as shown in the following diagram. The device will not operate correctly if multiple VCC or VSS pins are connected to different voltages, even if those voltages are within the guaranteed operating ranges.

In addition, care must be given to connecting the VCC and VSS pins of this device to the current supply source with as low impedance as possible. It is recommended that a 1.0 μ F bypass capacitor be connected between the VCC and VSS pins as close to the pins as possible.

• Sequence for connecting the A/D converter power supply and analog inputs

The A/D converter power supply (AVcc, AVRH) and analog inputs (AN0 to AN7) must be applied after the digital power supply (Vcc) is switched on. When turning the power off, the A/D converter power supply and analog inputs must be disconnected before the digital power supply is switched off (Vcc). Ensure that AVRH does not exceed AVcc during either power-on or power-off. Even when pins which double as analog input pins are used as input ports, be sure that the input voltage does not exceed AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

• Handling the power supply for high-current output buffer pins (DVcc, DVss)

• Flash memory products and MASK ROM products (MB90F922NC/F922NCS/922NCS/F923NC/ F923NCS/F924NC/F924NCS)

In the Flash memory products and MASK ROM products, the power supply for the high-current output buffer pins (DVcc, DVss) is isolated from the digital power supply (Vcc).

Therefore, DVcc can therefore be set to a higher voltage than Vcc. If the power supply for the high-current output buffer pins (DVcc, DVss) is supplied before the digital power supply (Vcc), however, care needs to be taken because it is possible that the port 7 or port 8 stepping motor outputs may momentarily output an "H" or "L" level. In order to prevent this, connect the digital power supply (Vcc) prior to connecting the power supply for the high-current output buffer pins. Even when the high-current output buffer pins are used as general-purpose ports, power should be supplied to the power supply pins for the high-current output buffer pins (DVcc, DVss).

• Evaluation product (MB90V920-101/MB90V920-102)

In the evaluation products, the power supply for the high-current output buffer pins (DV_{cc}, DV_{ss}) is not isolated from the digital power supply (V_{cc}). Therefore, DV_{cc} must therefore be set to a lower voltage than Vcc. The power supply for the high-current output buffer pins (DV_{cc}, DV_{ss}) must always be applied after the digital power supply (V_{cc}) has been connected, and disconnected before the digital power supply (V_{cc}) is disconnected (the power supply for the high-current output buffer pins may also be connected and disconnected simultaneously with the digital power supply).

Even when the high-current output buffer pins are used as general-purpose ports, power should be supplied to the power supply pins for the high-current output buffer pins (DVcc, DVss).

Pull-up/pull-down resistors

MB90920 series does not support internal pull-up/pull-down resistors. Use external components as necessary.

Precautions when not using a sub clock signal

If the X0A and X1A pins are not connected to an oscillator, apply a pull-down resistance to the X0A pin and leave the X1A pin open.

Notes on operating when the external clock is stopped

The MB90920 series is not guaranteed to operate correctly using the internal oscillator circuit when there is no external oscillator or the external clock input is stopped.

• Flash memory security function

A security bit is located within the Flash memory region. The security function is activated by writing the protection code 01_{H} to the security bit.

Do not write the value 01_{H} to this address if you are not using the security function.

Please refer to following table for the address of the security bit.

	Flash memory size	Address for security bit
MB90F922NC MB90F922NCS	Built-in 2 Mbits Flash Memory	FC0001н
MB90F923NCS	Built-in 3 Mbits Flash Memory	F80001 н
MB90F924NCS	Built-in 4 Mbits Flash Memory	F80001 н

• Serial communication

In serial communication, reception of wrong data may occur due to noise or other causes. Therefore, design a printed circuit board to prevent noise from occurring. Taking account of the reception of wrong data, detect errors by measures such as adding a checksum to the end of data. If an error is detected, retransmit the data.

• Characteristic difference between flash device and MASK ROM device

In the flash device and the MASK ROM device, the electrical characteristic including current consumption, ESD, latch-up, the noise characteristic, and oscillation characteristic, etc. is different according to the difference between the chip layout and the memory structure.

Reconfirm the electrical characteristic when the product is replaced by another product of the same series.

Address	Register name	Symbol	Read/write	Resource name	Initial value
000024н			R/W		XXXXXXXXB
000025н	Compare clear register	CPCLR	R/W		XXXXXXXXB
000026н	Timor doto registor	TCDT	R/W	16-bit	0000000в
000027н	Timer data register	ICDI	R/W	free-run timer	0000000в
000028н	Lower timer control status register	TCCSL	R/W		0000000в
000029н	Higher timer control status register	TCCSH	R/W		01-00000в
00002Ан	Lower PPG0 control status register	PCNTL0	R/W	16-bit PPG0	0000000в
00002Вн	Higher PPG0 control status register	PCNTH0	R/W		0000001в
00002Сн	Lower PPG1 control status register	PCNTL1	R/W	16-bit PPG1	0000000в
00002Dн	Higher PPG1 control status register	PCNTH1	R/W		0000001в
00002Eн	Lower PPG2 control status register	PCNTL2	R/W	16-bit PPG2	0000000в
00002Fн	Higher PPG2 control status register	PCNTH2	R/W		0000001в
000030н	External interrupt enable	ENIR	R/W		0000000в
000031н	External interrupt request	EIRR	R/W	External interrupt	0000000в
000032н	Lower external interrupt level	ELVRL	R/W	External interrupt	0000000в
000033н	Higher external interrupt level	ELVRH	R/W		0000000в
000034н	Serial mode register 0	SMR0	R/W, W		0000000в
000035н	Serial control register 0	SCR0	R/W, W		0000000в
000036н	Reception/transmission data register 1	RDR0/ TDR0	R/W		0000000в
000037н	Serial status register 0	SSR0	R/W, R	UART	00001000в
000038н	Extended communication control register 0	ECCR0	R/W, R	(LIN/SCI) 0	000000XX _B
000039н	Extended status control register 0	ESCR0	R/W		00000100в
00003Ан	Baud rate generator register 00	BGR00	R/W		0000000в
00003Вн	Baud rate generator register 01	BGR01	R/W, R		0000000в
00003Cн to 00003Fн		(Disab	led)		
000040н to 00004Fн	Area reserved for CAN C	ontroller 0. R	efer to " ∎ CA	N CONTROLLERS"	
000050н	Lower timer control status register 0	TMCSR0L	R/W		0000000в
000051н	Higher timer control status register 0	TMCSR0H	R/W	16-bit reload timer	XXX10000 _B
000052н		TMR0/		0	XXXXXXXXB
000053н	Timer register 0/reload register 0	TMRLR0	R/W		XXXXXXXXB

Address	Register name	Symbol	Read/write	Resource name	Initial value			
000083н		(Disab	led)					
000084н	PWM control register 2	Stepping motor controller 2	00000Х0в					
000085н		(Disab	led)					
000086н	PWM control register 3	WM control register 3 PWC3 R/W Stepping motor controller 3						
000087н		(Disab	led)					
000088н	LCD output control register 3	LOCR3	R/W	LCDC	XXXXX111 _B			
000089н		(Disab	led)					
00008A _H	A/D setting register 0	ADSR0	R/W		0000000В			
00008BH	A/D setting register 1	ADSR1	R/W	A/D converter	0000000в			
00008Сн	Port input level select 0	PIL0	R/W		0000000В			
00008DH	Port input level select 1	PIL1	R/W	Port input level select	XXXX0000 _B			
00008EH	Port input level select 2	PIL2	R/W	301001	XXXX0000 _B			
00008Fн to 00009Dн		(Disab	led)					
00009E н	Program address detection control register	PACSR	R/W	Address match detection	XXXX0X0X _B			
00009Fн	Delayed Interrupt/Release Register	DIRR	R/W	Delay interrupt	XXXXXXX0B			
0000А0н	Power saving mode control register	LPMCR	R/W	Power saving	00011000в			
0000A1 н	Clock select register	CKSCR	R/W, R	control circuit	11111100в			
0000A2н to 0000A7н		(Disab	led)					
0000A8H	Watchdog timer control register	WDTC	R, W	Watchdog timer	XXXXX111 _B			
0000А9н	Time-base timer control register	TBTC	R/W, W	Time-base timer	1XX00100 _B			
0000ААн	Watch timer control register	WTC	R/W, W, R	Watch timer (sub clock)	10001000 _B			
0000ABн to 0000ADн		(Disab	led)		•			
0000AEH	Flash memory control status register	FMCS	R/W	Flash interface	000X0000B			
0000AFн		(Disab	lod)					

	Add	ress		Pagistor	Abbre-	Access	Initial Value
CAN0	CAN1	CAN2	CAN3	Register	viation	Access	initial value
003A40 н	003В40н	003740н	003840н				XXXXXXXXB
003A41 н	003B41 н	003741 н	003841 н	ID register 8	IDR8	R/W	XXXXXXXXB
003А42н	003В42н	003742н	003842н	i Diregister o	IDHO	n/ v v	XXXXXB
003А43н	003В43н	003743н	003843н				XXXXXXXXB
003A44н	003B44н	003744н	003844н				XXXXXXXXB
003A45 н	003В45н	003745н	003845н	ID register 9	IDR9	R/W	XXXXXXXXB
003A46 н	003В46н	003746н	003846н		10113	1 1/ V V	ХХХХХв
003А47 н	003B47 н	003747н	003847н				XXXXXXXXB
003A48н	003B48 н	003748н	003848н				XXXXXXXXB
003A49 н	003B49 н	003749н	003849н	ID register 10	IDR10	R/W	XXXXXXXXB
003А4Ан	003В4Ан	00374А н	00384А н				XXXXXB
003A4Bн	003В4Вн	00374Вн	00384Вн				XXXXXXXXB
003A4Cн	003В4Сн	00374С н	00384Сн				XXXXXXXXB
003A4Dн	003B4Dн	00374Dн	00384Dн	ID register 11	IDR11	R/W	XXXXXXXXB
003A4Eн	003B4Eн	00374E н	00384E н			I 1/ V V	ХХХХХв
003A4Fн	003B4Fн	00374F н	00384F н				XXXXXXXXB
003А50 н	003В50н	003750н	003850н				XXXXXXXX
003А51 н	003B51 н	003751 н	003851 н	ID register 12	IDR12	R/W	XXXXXXXXB
003А52н	003В52н	003752н	003852н			11/ VV	XXXXXB
003А53н	003В53н	003753н	003853н				XXXXXXXXB
003А54 н	003В54н	003754н	003854н				XXXXXXXXB
003А55 н	003В55н	003755н	003855н	ID register 13	IDR13	R/W	XXXXXXXXB
003А56н	003В56н	003756н	003856н		IDITIO	11/ VV	XXXXXB
003А57 н	003В57н	003757н	003857н				XXXXXXXXB
003А58 н	003B58 н	003758н	003858н				XXXXXXXX
003А59 н	003В59 н	003759н	003859н	ID register 14	IDR14	R/W	XXXXXXXXB
003А5Ан	003В5Ан	00375Ан	00385Ан			I 1/ V V	XXXXXB
003А5Вн	003В5Вн	00375Вн	00385Вн				XXXXXXXXB
003А5Сн	003В5Сн	00375Сн	00385Сн				XXXXXXXX
003A5DH	003B5DH	00375Dн	00385Dн	ID register 15	IDR15	R/W	XXXXXXXXB
003А5Ен	003В5Ен	00375Ен	00385Ен			I 1/ V V	XXXXXB
003A5Fн	003B5Fн	00375F н	00385Fн				XXXXXXXXB

(Continued)

Interrupt source	El ² OS	In	terrup	t vector	Interre re	Priority	
	corresponding	Number		Address	ICR	Address	
UART 1 RX	0	#37	25н	FFFF68⊦	ICR13	0000BD _H *1	High
UART 1 TX	\bigtriangleup	#38	26н	FFFF64н	101113	UUUUDDH	A
UART 0 RX	0	#39	27н	FFFF60⊦	ICR14	0000BEн*1	
UART 0 TX	\bigtriangleup	#40	28н	FFFF5CH		UUUUDEH -	
Flash memory status	×	#41	29н	FFFF58⊦	ICR15	0000BF _H *1	1
Delay interrupt generator module	×	#42	2Ан	FFFF54H	101115	UUUUDFH '	Low

© : Usable, and has expanded intelligent I/O services (EI²OS) stop function

 \bigcirc : Usable

 \bigtriangleup : Usable when interrupt sources sharing ICR are not in use

- \times : Unusable
- *1 : Peripheral functions that share the ICR register have the same interrupt level.

• If the expanded intelligent I/O service (EI²OS) is used with peripheral functions that share the ICR register, only one of the peripheral functions that share the register can be used.

• When the expanded intelligent I/O service (EI²OS) is specified for one of the peripheral functions that shares the ICR register, interrupts cannot be used from the other peripheral functions that share the register.

*2 : Priority applies when interrupts of the same level are generated.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Devementer	Cumhal	Rat	ing	Unit	Remarks		
Parameter	Symbol	Min	Max	Unit	nemarks		
	Vcc	Vss Š 0.3	Vss + 6.0	V			
Device curphy velto se *1	AVcc	Vss Š 0.3	Vss + 6.0	V	$AVcc = Vcc^{*2}$		
Power supply voltage*1	AVRH	Vss Š 0.3	Vss + 6.0	V	AVcc AVRH* 2		
	DVcc	Vss Š 0.3	Vss + 6.0	V	$DVcc = Vcc^{*2}$		
Input voltage*1	Vi	Vss Š 0.3	Vcc + 0.3	V	*3		
Output voltage*1	Vo	Vss Š 0.3	Vcc + 0.3	V			
Maximum clamp current		Š4	+ 4	mA	*7		
Total maximum clamp current			40	mA	*7		
"L" level maximum	IOL1		15	mA	Except P70 to P77 and P80 to P87		
output current*4			40	mA	P70 to P77 and P80 to P87		
"L" level average output	OLAV1		4	mA	Except P70 to P77 and P80 to P87		
current*5	OLAV2		30	mA	P70 to P77 and P80 to P87		
"L" level maximum	OL1		100	mA	Except P70 to P77 and P80 to P87		
total output current	OL2		330	mA	P70 to P77 and P80 to P87		
"L" level average total	OLAV1		50	mA	Except P70 to P77 and P80 to P87		
output current	OLAV2		250	mA	P70 to P77 and P80 to P87		
"H" level maximum	О Н1 ^{*4}		Š 15	mA	Except P70 to P77 and P80 to P87		
output current	О Н2 ^{*4}		Š 40	mA	P70 to P77 and P80 to P87		
"H" level average	OHAV1*5		Š 4	mA	Except P70 to P77 and P80 to P87		
output current	OHAV2*5		Š 30	mA	P70 to P77 and P80 to P87		
"H" level maximum	OH1		Š 100	mA	Except P70 to P77 and P80 to P87		
total output current	OH2		Š 330	mA	P70 to P77 and P80 to P87		
"H" level average total	OHAV1 ^{*6}		Š 50	mA	Except P70 to P77 and P80 to P87		
output current	OHAV2*6		Š 250	mA	P70 to P77 and P80 to P87		
Power consumption	PD		625	mW			
Operating temperature	TA	Š40	+ 105	°C			
Storage temperature	Тѕтс	Š 55	+ 150	°C			

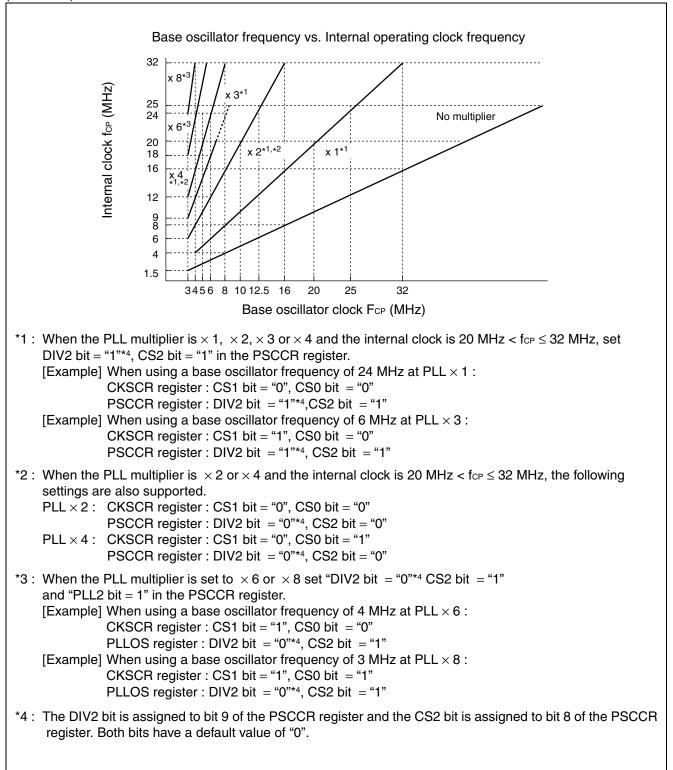
*1 : The parameter is based on $V_{SS} = AV_{SS} = DV_{SS} = 0.0 V.$

*2 : AVcc, AVRH must not exceed Vcc, and AVRH must not exceed AVcc. When using an evaluation product, DVcc must not exceed Vcc (however, DVcc can be set to a higher voltage than Vcc when using a Flash memory product).

*3 : If the input current or the maximum input current is limited using external components, ICLAMP is the applicable rating instead of VI.

*4 : Maximum output current is defined as the peak value of current through any one of the corresponding pins.

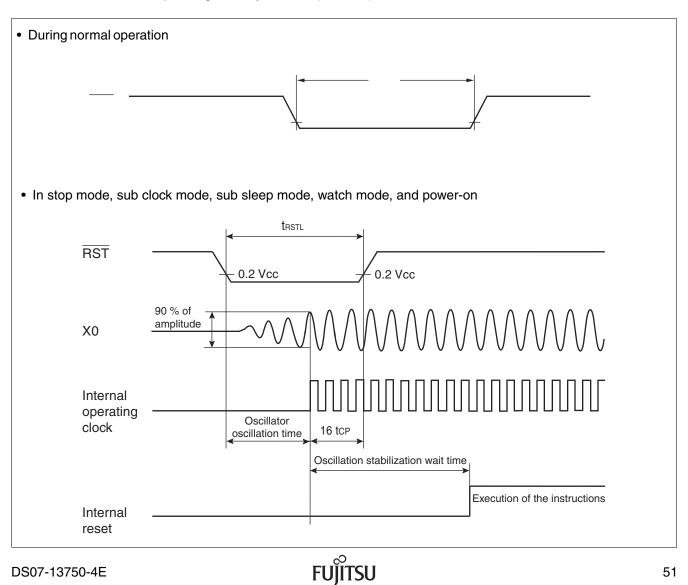
Parameter	Symbol	Pin name	Conditions	V	ue Un		Remarks	
Farameter	Symbol	Fin name	Conditions	Min	Тур	Тур Мах		nemarks
Input leakage current	lı.	All input pins	$V_{CC} = DV_{CC} = AV_{CC} = 5.5 V,$ $V_{SS} < V_{I} < V_{CC}$	_		10	μA	
Input capacitance 1	CIN1	All pins except VCC, VSS, DVCC, DVSS, AVCC, AVSS, C, P70 to P77, P80 to P87				15	pF	
Input capacitance 2	CIN2	P70 to P77, P80 to P87	_		_	45	pF	
Pull-up resistance	Rup	RST	—	25	50	100	kΩ	
Pull-down resistance	Rdown	MD2	_			100	kΩ	Excluding Flash memory product
General-purpose output "H" voltage	V _{OH1}	All pins except P70 to P77, P80 to P87	Vcc = 4.5 V, Іон = -4.0 mA	Vcc - 0.5	_	_	v	
Stepping motor output "H" voltage	Vон2	P70 to P77, P80 to P87	Vcc = 4.5 V, Іон = -30.0 mA	Vcc-0.5			V	
General-purpose output "L" voltage	V _{OL1}	All pins except P70 to P77, P80 to P87	$V_{CC} = 4.5 \text{ V},$ $I_{OL} = 4.0 \text{ mA}$	_		0.4	v	
Stepping motor output "L" voltage	Vol2	P70 to P77, P80 to P87	Vcc = 4.5 V, loL = 30.0 mA			0.55	V	
Stepping motor output phase variation "H"	ΔVон	PWM1Pn, PWM1Mn, PWM2Pn, PWM2Mn, n = 0 to 3	$V_{CC} = 4.5 V,$ $I_{OH} = -30.0 mA,$ maximum deviation V_{OH2}			90	mV	
Stepping motor output phase variation "L"	ΔVol	PWM1Pn, PWM1Mn, PWM2Pn, PWM2Mn, n = 0 to 3	$V_{CC} = 4.5 V,$ $I_{OL} = 30.0 mA,$ maximum deviation V_{OH2}			90	mV	
		Between V0 and V1,		50	100	200	kΩ	Evaluation product
LCD internal divider resistance	Rlcd	Between V1 and V2, Between V2 and V3		8.75	12.5	17.0	kΩ	Flash memory product


(Vcc = 5.0 V $\pm 10\%$, Vss = DVss = AVss = 0.0 V, T_A = -40 °C to +105 °C)

4. AC Characteristics

(1) Clock timing

Deveneter	Cumhal		Condi-	,	Value			, 1A = -40 C t0 + 105 C)
Parameter	Symbol	Pin name	tions	Min	Тур	Max	Unit	Remarks
				3	_	16	MHz	1/2 (PLL stopped) When using the oscillator circuit
				3	—	32	MHz	1/2 (PLL stopped) When using an external clock
	Fc	X0, X1		4	—	32	MHz	PLL multiplied by 1
Clock frequency				3		16	MHz	PLL multiplied by 2
				3		10.7	MHz	PLL multiplied by 3
				3		8	MHz	PLL multiplied by 4
				3		5.33	MHz	PLL multiplied by 6
				3		4	MHz	PLL multiplied by 8
	FLC	X0A, X1A		_	32.768		kHz	
	t cy∟	X0, X1	—	62.5		333	ns	When using an oscillator
Clock cycle time				31.25		333	ns	External clock input
	t LCYL	X0A, X1A			30.5		μs	
Input clock pulse width	Pwн, Pwl	X0		5		_	ns	Use duty ratio of $50\% \pm 3\%$ as a guideline
Width	Pwlh, Pwll	X0A			15.2		μs	
Input clock rise and fall time	tcr, tcf	X0		_		5	ns	When using an external clock signal
Internal operating clock frequency	Fcp	_		1.5		32	MHz	Using main clock (PLL clock)
	FLCP				8.192		kHz	Using sub clock
Internal operating clock cycle time	tcp	_		31.25	—	666	ns	Using main clock (PLL clock)
	t LCP				122.1		μs	Using sub clock

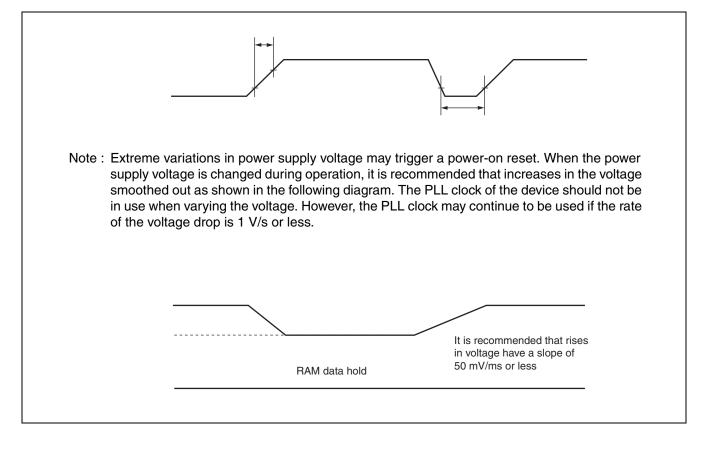


(2) Reset input

()	$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 ^{\circ}\text{C} \text{ to} +105 ^{\circ}\text{C})$						
Parameter	Symbol	Pin name	Value			Remarks	
Falametei	Symbol	Finnanie	Min	Max	Unit	nemarks	
Reset input time	trst∟		500		ns	During normal operation	
		RST	Oscillator oscillation time* + 16 tcp	_	ms	In stop mode, sub clock mode, sub sleep mode, and watch mode	
			100		μs	In time-base timer mode	

*: The oscillation time of the oscillator is the time taken to reach 90% of the amplitude. The oscillation time of a crystal oscillator is between several ms and tens of ms. The oscillation time of a ceramic oscillator is between hundreds of μ s and several ms. The oscillation time of an external clock is 0 ms.

Note : tcp is the internal operating clock cycle time. (Unit : ns)

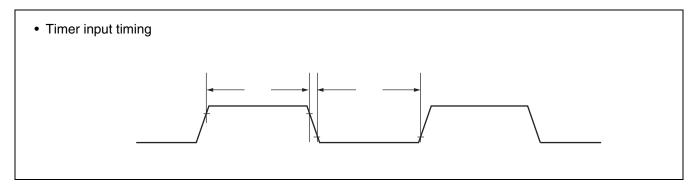


FU

(3) Power-on reset

$(\sqrt{10} - 2.7 \sqrt{10} - 3.0 \sqrt{10} - 40 \sqrt{10} $						= +0 0 to +100 0)	
Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
Falameter				Min	Max	Unit	nemarka
Power supply rise time	tR			0.05	30	ms	
Power off time	toff	VCC	—	1		ms	Waiting time until power-on

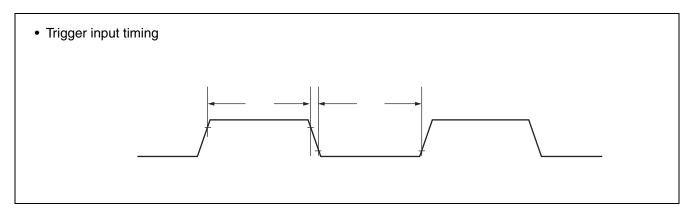
(Vcc = 2.7 V to 3.6 V, Vss = 0.0 V, T_A = $-40 \degree C$ to $+105 \degree C$)



(5) Timer input timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to} + 105 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Pin name	Conditions	Va	Unit	
			Conditions	Min	Мах	Onit
Input pulse width	t⊤iwн t⊤iw∟	TIN0, TIN1, IN0 to IN3		4 tcp	_	ns


Note : tcp is the internal operating clock cycle time. Refer to " (1) Clock timing".

(6) Trigger input timing

$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ °C to } +105 \text{ °C})$							
Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max	Unit	nema KS
Input pulse width	tтrgн, tтrg∟	INT0 to INT7		200	_	ns	During normal operation
		ADTG		t _{CP} + 200		ns	

Note : tcp is the internal operating clock cycle time. Refer to " (1) Clock timing".

