

Welcome to E-XFL.COM

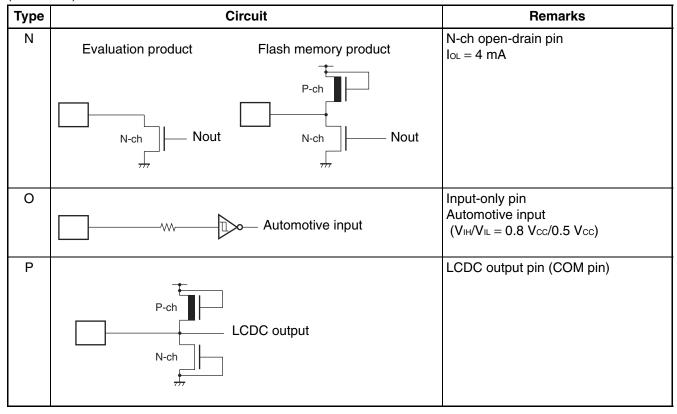
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl


Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	93
Program Memory Size	256KB (256K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	120-LQFP
Supplier Device Package	120-LQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90922ncspmc-gs-133e1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

■ PIN DESCRIPTIONS

Pin no.	Pin name	I/O circuit type*1	Function
108	X0	A	High-speed oscillation input pin
107	X1		High-speed oscillation output pin
13	X0A	В	Low-speed oscillation input pin
13	P92	I	General-purpose I/O port
14	X1A	В	Low-speed oscillation output pin
14	P93	I	General-purpose I/O port
90	RST	С	Reset input pin
02	P00	F	General-purpose I/O port
93	SEG24		LCD controller/driver segment output pin
04	P01		General-purpose I/O port
94	SEG25	F	LCD controller/driver segment output pin
05	P02	_	General-purpose I/O port
95	SEG26	F	LCD controller/driver segment output pin
00	P03	_	General-purpose I/O port
96	SEG27	F	LCD controller/driver segment output pin
07	P04	-	General-purpose I/O port
97	SEG28	F	LCD controller/driver segment output pin
00	P05	_	General-purpose I/O port
98	SEG29	F	LCD controller/driver segment output pin
00	P06	-	General-purpose I/O port
99	SEG30	F	LCD controller/driver segment output pin
100	P07	-	General-purpose I/O port
100	SEG31	F	LCD controller/driver segment output pin
	P10		General-purpose I/O port
101	PPG2		16-bit PPG ch.2 output pin
	IN5		Input capture ch.5 trigger input pin
	P11		General-purpose I/O port
100	TOT0	1.	16-bit reload timer ch.0 TOT output pin
102	PPG3	- 1	16-bit PPG ch.3 output pin
F	IN4	1	Input capture ch.4 trigger input pin
	P12		General-purpose I/O port
103	TIN0	1	16-bit reload timer ch.0 TIN input pin
F	PPG4	1	16-bit PPG ch.4 output pin

HANDLING DEVICES

• Strictly observe maximum rated voltages (preventing latch-up)

In CMOS IC devices, a condition known as latch-up may occur if voltages higher than V_{cc} or lower than V_{ss} are applied to input or output pins other than medium or high withstand voltage pins, or if the voltage applied between VCC and VSS pins exceeds the rated voltage level. If a latch-up occurs, the power supply current may increase dramatically and may destroy semiconductor elements. When using semiconductor devices, always take sufficient care to avoid exceeding maximum ratings.

When the analog system power supply is switched on or off, be careful not to apply the analog power supply (AV_{cc}, AVRH), the analog input voltages and the power supply voltage for the high current output buffer pins (DV_{cc}) in excess of the digital power supply voltage (V_{cc}).

Once the digital power supply voltage (Vcc) has been disconnected, the analog power supply (AVcc, AVRH) and the power supply voltage for the high current output buffer pins (DVcc) may be turned on in any sequence.

Supply voltage stabilization

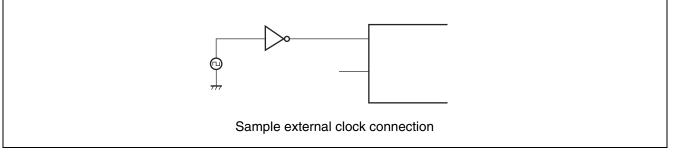
Rapid fluctuations in the power supply voltage can cause malfunctions even if the Vcc power supply voltage remains within the warranted operating range. It is recommended that the power supply be stabilized such that ripple fluctuations (P-P value) at commercial frequencies (50 Hz/60 Hz) be limited to within 10% of the standard Vcc value, and that transient fluctuations due to power supply switching, etc. be limited to a rate of 0.1 V/ms or less.

• Precautions when turning the power on

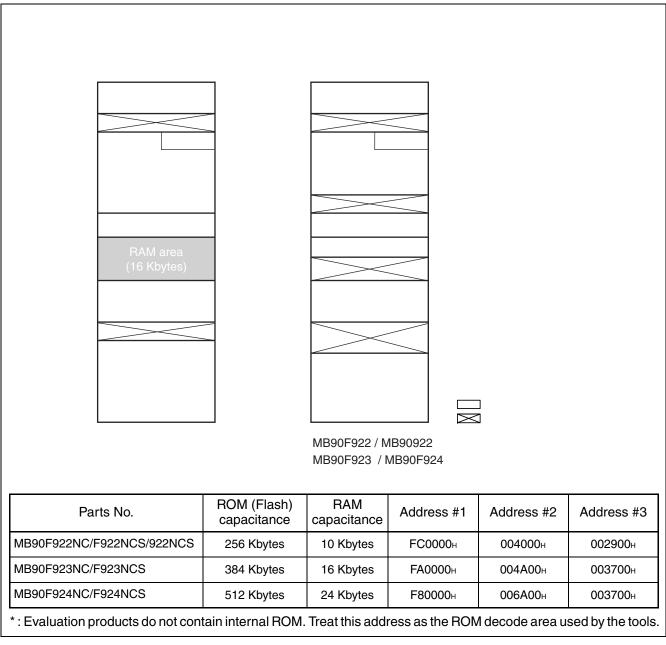
In order to prevent the built-in step-down circuits from malfunctioning, the time taken for the voltage to rise (0.2 V to 2.7 V) during power-on should be less than 50 μ s.

• Handling unused pins

If unused input pins are left open, they may cause malfunctions or latch-up which may lead to permanent damage to the semiconductor. Unused input pins should therefore be pulled up or pulled down through a resistor of at least 2 k Ω .


Unused input/output pins may be set to the output state and left open, or set to the input state and connected to a pull-up or pull-down resistance of 2 k Ω or more.

• Handling A/D converter power supply pins


Even if the A/D converter is not used, the power supply pins should be connected such as $AV_{CC} = V_{CC}$, and $AV_{SS} = AVRH = V_{SS}$.

• Notes on using an external clock

Even when an external clock is used, an oscillation stabilization wait time is required following power-on reset or release from sub clock mode or stop mode. Furthermore, only the X0A pin should be driven when an external clock is used, with the X1A pin open as shown in the following diagram. Do not use high-speed oscillation pins (X0 and X1) for external clock input.

MEMORY MAP

Note: To select models without the ROM mirror function, refer to the "ROM Mirror Function Selection Module" in Hardware Manual. The image of the ROM data in the FF bank appears at the top of the 00 bank, in order to enable efficient use of small C compiler models. The lower 16-bits of the FF bank addresses are allocated to the same addresses as the lower 16-bits of the 00 bank, making it possible to reference tables in ROM without declaring the "far" modifier with the pointers. For example, when an access is made to the address 00C000_H, the actual address to be accessed is FFC000_H in ROM. Because the size of the FF bank ROM area exceeds 32 Kbytes, it is not possible to view the entire region in the 00 bank image. Therefore because the ROM data from FF8000_H to FFFFF_H appears in the image from 008000_H to 00FFFF_H, it is recommended that ROM data tables be stored in the area from FF8000_H to FFFFF_H.

Address	Register name	Symbol	Read/write	Resource name	Initial value
000054н	Lower timer control status register 1	TMCSR1L	R/W		0000000в
000055н	Higher timer control status register 1	TMCSR1H	R/W	16-bit reload timer	XXX10000 _B
000056н	Timer register 1/relead register 1	TMR1/		1	XXXXXXXXB
000057н	Timer register 1/reload register 1	TMRLR1	R/W		XXXXXXXXB
000058н	LCD output control register 1	LOCR1	R/W	LCDC	11111111в
000059н	LCD output control register 2	LOCR2	R/W	LODU	0000000в
00005Ан	Lower sound control register 0	SGCRL0	R/W		0000000в
00005Вн	Higher sound control register 0	SGCRH0	R/W		0XXXX100 _B
00005Сн	Frequency data register 0	SGFR0	R/W	Sound constant O	XXXXXXXXB
00005Dн	Amplitude data register 0	SGAR0	R/W	Sound generator 0	0000000в
00005Eн	Decrement grade register 0	SGDR0	R/W		XXXXXXXXB
00005F н	Tone count register 0	SGTR0	R/W		XXXXXXXXB
000060н	Input capture register 0	IPCP0	D		XXXXXXXXB
000061н	input capture register o	IPCPU	R	Input conturo 0/1	XXXXXXXXB
000062н	Input capture register 1	IPCP1	R	Input capture 0/1	XXXXXXXXB
000063н	input capture register i	IPCPT	n		XXXXXXXXB
000064н			P		XXXXXXXXB
000065н	Input capture register 2	IPCP2	R	Incut conture 0/0	XXXXXXXXB
000066н	Input conturo register 2	IPCP3	R	Input capture 2/3	XXXXXXXXB
000067н	Input capture register 3	IFCF3	n		XXXXXXXXB
000068н	Input capture control status 0/1	ICS01	R/W	Input conturo 0/1	0000000в
000069н	Input capture edge register 0/1	ICE01	R/W	Input capture 0/1	XXX0X0XX _B
00006Ан	Input capture control status 2/3	ICS23	R/W	Input capture 2/3	0000000в
00006Вн	Input capture edge register 2/3	ICE23	R/W	input capture 2/3	XXXXXXXXB
00006Сн	Lower LCD control register	LCRL	R/W	LCD controller/	00010000в
00006Dн	Higher LCD control register	LCRH	R/W	driver	0000000в
00006Ен	Low voltage/CPU operation detection reset control register	LVRC	R/W	Low voltage/CPU operation detection reset	00111000 _B
00006Fн	ROM mirror	ROMM	W	ROM mirror	XXXXXXX1 _B
000070н to 00007Fн	Area reserved for CAN C	ontroller 1. R	efer to " ∎ CA	N CONTROLLERS"	
000080н	PWM control register 0	PWC0	R/W	Stepping motor controller 0	000000X0 _B
000081 н		(Disabl	ed)		
000082н	PWM control register 1	PWC1	R/W	Stepping motor controller 1	000000Х0в

Address	Register name	Symbol	Read/write	Resource name	Initial value
003998н		DWO10			XXXXXXXXB
003999н	PWM1 compare register 3	PWC13	R/W		XXXXXXXXB
00399Ан				Stepping motor	XXXXXXXXB
00399Вн	PWM2 compare register 3	PWC23	R/W	controller 3	XXXXXXXXB
00399Сн	PWM1 select register 3	PWS13	R/W		0000000в
00399Dн	PWM2 select register 3	PWS23	R/W		Х000000в
00399Ен to 0039А5н		(Disab	led)		
0039А6н	Flash write control register 0	FWR0	R/W	Elech I/E	0000000в
0039А7 н	Flash write control register 1	FWR1	- N/VV	Flash I/F	0000000в
0039А8н to 0039BFн		(Disab	led)		
0039C0н to 0039DFн	Area reserved for CAN C	ontroller 2. F	lefer to "∎ CA	N CONTROLLERS"	,
0039E0н to 0039FFн	Area reserved for CAN C	ontroller 3. F	lefer to "∎ CA	N CONTROLLERS"	
003A00н to 003AFFн	Area reserved for CAN C	ontroller 0. F	lefer to " ∎ CA	N CONTROLLERS	,
003B00н to 003BFFн	Area reserved for CAN C	ontroller 1. F	lefer to " ■ CA	N CONTROLLERS"	,
003C00н to 003CFFн	Area reserved for CAN C	ontroller 0. F	lefer to "∎ CA	N CONTROLLERS"	
003D00н to 003DFFн	Area reserved for CAN C	ontroller 1. F	lefer to "∎ CA	N CONTROLLERS"	
003E00н to 003EFFн	Area reserved for CAN C	ontroller 2. F	lefer to " ■ CA	N CONTROLLERS"	,
003F00н to 003FFFн	Area reserved for CAN C	ontroller 3. F	lefer to " ■ CA	N CONTROLLERS"	,

	Add	ress		Deviator	Ábbre-		Initial Value
CAN0	CAN1	CAN2	CAN3	Register	viation	Access	Initial Value
003A00н to 003A1Fн	003B00н to 003B1Fн	003700н to 00371Fн	003800н to 00381Fн	General-purpose RAM	_	R/W	XXXXXXXXB to XXXXXXXB
003А20н 003А21н	003B20н 003B21н	003720н 003721н	003820н 003821н				XXXXXXXXB XXXXXXXB
003А22н 003А23н	003B22н 003B23н	003722н 003723н	003822н 003823н	ID register 0	IDR0	R/W	XXXXXB XXXXXXXXB
003А24н 003А25н	003B24н 003B25н	003724н 003725н	003824н 003825н	ID register 1	IDR1	R/W	XXXXXXXXXB XXXXXXXXB
003А26н 003А27н	003B26н 003B27н	003726н 003727н	003826н 003827н				XXXXXB XXXXXXXXB
003А28н 003А29н	003B28н 003B29н	003728н 003729н	003828н 003829н	ID register 2	IDR2	R/W	XXXXXXXXXB XXXXXXXXB
003А2Ан 003А2Вн	003B2Aн 003B2Bн	00372Ан 00372Вн	00382Ан 00382Вн				XXXXXB XXXXXXXXB
003А2Сн 003А2Dн	003B2Cн 003B2Dн	00372Cн 00372Dн	00382Cн 00382Dн	ID register 3	IDR3	R/W	XXXXXXXXXB XXXXXXXXB
003А2Ен 003А2Fн	003B2Eн 003B2Fн	00372Eн 00372Fн	00382Eн 00382Fн				XXXXXB XXXXXXXXB
003А30н 003А31н	003B30н 003B31н	003730н 003731н	003830н 003831н	ID register 4	IDR4	R/W	XXXXXXXXAB XXXXXXXXAB
003А32н 003А33н	003B32н 003B33н	003732н 003733н	003832н 003833н				XXXXXB XXXXXXXXB
003А34н 003А35н	003B34н 003B35н	003734н 003735н	003834н 003835н	ID register 5	IDR5	R/W	XXXXXXXXAB XXXXXXXXB
003А36н 003А37н	003B36н 003B37н	003736н 003737н	003836н 003837н			10,00	XXXXXB XXXXXXXXB
003А38н 003А39н	003B38н 003B39н	003738н 003739н	003838н 003839н	ID register 6	IDR6	R/W	XXXXXXXXAB XXXXXXXXB
003АЗАн 003АЗВн	003ВЗАн 003ВЗВн	00373Ан 00373Вн	00383Ан 00383Вн			N/ VV	XXXXXB XXXXXXXXB
003А3Сн 003А3Dн	003B3Cн 003B3Dн	00373Cн 00373Dн	00383Cн 00383Dн	ID register 7	1007		XXXXXXXXB XXXXXXXB
003АЗЕн 003АЗFн	003B3Eн 003B3Fн	00373Eн 00373Fн	00383Eн 00383Fн	ID register 7	IDR7	R/W	XXXXXB XXXXXXXXB

List of Message	Buffers (ID	Registers)
	= = = = = = = = = = = = = = = = = = = =	

(Continued)

■ INTERRUPT SOURCES, INTERRUPT VECTORS, AND INTERRUPT CONTROL REGISTERS

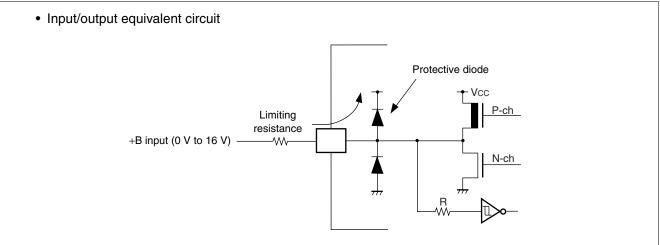
Interrupt source	EI²OS "	Int	terrupt	vector	Interru re	Priority	
	corresponding	Number		Address	ICR	Address	*2
Reset	×	#08	08н	FFFFDC H			High
INT9 instruction	×	#09	09н	FFFFD8 _H			
Exception processing	×	#10	0Ан	FFFFD4H			11
CAN0 received/CAN2 received	×	#11	0Вн	FFFFD0H			
CAN0 transmitted/node status/ CAN2 transmitted/node status	×	#12	0Сн	FFFFCCH	ICR00	0000B0н*1	
CAN1 received/CAN3 received	×	#13	0Dн	FFFFC8 _H			
CAN1 transmitted/node status/ CAN3 transmitted/node status/SIO	×	#14	0Ен	FFFFC4 _H	ICR01	0000B1н*1	
Input capture 0	\triangle	#15	0 Fн	FFFFC0H			
DTP/ external interrupt - ch.0/ch.1 detected	Δ	#16	10н	FFFFBCH	ICR02	0000B2 _H *1	
Reload timer 0	\bigtriangleup	#17	11 н	FFFFB8H	10000		
Reload timer 2	\bigtriangleup	#18	12 н	FFFFB4H	ICR03	0000B3н*1	
Input capture 1	\triangle	#19	13 н	FFFFB0H			
DTP/ external interrupt - ch.2/ch.3 detected	Δ	#20	14н	FFFFACH	ICR04	0000B4 _H *1	
Input capture 2	\triangle	#21	15 н	FFFFA8H	10005	0000B5н*1	
Reload timer 3	\bigtriangleup	#22	16 н	FFFFA4H	ICR05		
Input capture 3/4/5/6/7	\bigtriangleup	#23	17 н	FFFFA0H			
DTP/ external interrupt - ch.4/ ch.5 detected UART3 RX	Δ	#24	18 н	FFFF9CH	ICR06	0000B6н*1	
PPG timer 0	Δ	#25	19 н	FFFF98 _H			
DTP/ external interrupt - ch.6/ ch.7 detected UART3 TX	Δ	#26	1Ан	FFFF94 _H	ICR07	0000B7н*1	
PPG timer 1	\triangle	#27	1 Вн	FFFF90H		000000 *1	
Reload timer 1	\bigtriangleup	#28	1Cн	FFFF8CH	ICR08	0000B8 ^{H*1}	
PPG timer 2/3/4/5	0	#29	1Dн	FFFF88 _H			
Real time watch timer watch timer (sub clock)	×	#30	1Ен	FFFF84⊦	ICR09	0000B9н*1	
Free-run timer overflow/clear	×	#31	1Fн	FFFF80H		00000 4 *1	
A/D converter conversion complete	0	#32	20н	FFFF7CH	ICR10	0000BAн *1	
Sound generator 0/1	×	#33	21н	FFFF78 _H		000000 *1	
Time-base timer	×	#34	22н	FFFF74 _H	ICR11	0000BBH*1	
UART2 RX	0	#35	23н	FFFF70H		000000 *1	🕇
UART2 TX	\triangle	#36	24н	FFFF6CH	ICR12	0000BCH*1	Low

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Devementer	Cumhal	Rat	ing	Unit	Demerke
Parameter	Symbol	Min	Max	Unit	Remarks
	Vcc	Vss - 0.3	Vss + 6.0	V	
Dowor oupply voltogo*1	AVcc	$V_{\text{SS}} - 0.3$	Vss + 6.0	V	$AVcc = Vcc^{*2}$
Power supply voltage*1	AVRH	Vss - 0.3	Vss + 6.0	V	AVcc ≥ AVRH*2
	DVcc	$V_{\text{SS}} - 0.3$	Vss + 6.0	V	$DVcc = Vcc^{*2}$
Input voltage*1	Vı	Vss - 0.3	Vcc + 0.3	V	*3
Output voltage*1	Vo	$V_{\text{SS}}-0.3$	Vcc + 0.3	V	
Maximum clamp current		- 4	+ 4	mA	*7
Total maximum clamp current	Σ CLAMP	_	40	mA	*7
"L" level maximum	OL1	_	15	mA	Except P70 to P77 and P80 to P87
output current*4			40	mA	P70 to P77 and P80 to P87
"L" level average output	OLAV1	_	4	mA	Except P70 to P77 and P80 to P87
current*5	OLAV2	_	30	mA	P70 to P77 and P80 to P87
"L" level maximum	Σ IOL1	_	100	mA	Except P70 to P77 and P80 to P87
total output current	Σ IOL2		330	mA	P70 to P77 and P80 to P87
"L" level average total	Σ IOLAV1		50	mA	Except P70 to P77 and P80 to P87
output current	Σ Iolav2	_	250	mA	P70 to P77 and P80 to P87
"H" level maximum	О Н1 ^{*4}	_	–15	mA	Except P70 to P77 and P80 to P87
output current	О Н2 ^{*4}		-40	mA	P70 to P77 and P80 to P87
"H" level average	OHAV1*5	_	-4	mA	Except P70 to P77 and P80 to P87
output current	OHAV2 ^{*5}	_	-30	mA	P70 to P77 and P80 to P87
"H" level maximum	Σ IOH1		-100	mA	Except P70 to P77 and P80 to P87
total output current	Σloh2	_	-330	mA	P70 to P77 and P80 to P87
"H" level average total	Σ IOHAV1 ^{*6}		-50	mA	Except P70 to P77 and P80 to P87
output current	Σ IOHAV2 ^{*6}		-250	mA	P70 to P77 and P80 to P87
Power consumption	PD	_	625	mW	
Operating temperature	TA	- 40	+ 105	°C	
Storage temperature	Тѕтс	- 55	+ 150	°C	

*1 : The parameter is based on $V_{SS} = AV_{SS} = DV_{SS} = 0.0 V.$


*2 : AVcc, AVRH must not exceed Vcc, and AVRH must not exceed AVcc. When using an evaluation product, DVcc must not exceed Vcc (however, DVcc can be set to a higher voltage than Vcc when using a Flash memory product).

*3 : If the input current or the maximum input current is limited using external components, ICLAMP is the applicable rating instead of VI.

*4 : Maximum output current is defined as the peak value of current through any one of the corresponding pins.

(Continued)

- *5 : Average output current is defined as the average value of the current flowing through any one of the corresponding pins within a period of 100 ms. The "average value" can be calculated by multiplying the "operating current" by the "operating factor".
- *6 : Average total output current is defined as the average value of the current flowing through all of the corresponding pins within a period of 100 ms. The "average value" can be calculated by multiplying the "operating current" by the "operating factor".
- *7 : Applicable to pins: P10 to P15,P50 to P57,P60 to P67,P70 to P77,P80 to P87,PC0 to PC7,PD0 to PD6, PE0 to PE2
 - Use within recommended operating conditions.
 - Use at DC voltage (current).
 - The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied, the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
 - Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the microcontroller may partially malfunction on power supplied through the +B signal pin.
 - Note that if the +B input is applied during power-on, the power supply voltage may reach a level such that the power-on reset does not function due to the power supplied from the +B signal.
 - Care must be taken not to leave +B input pins open.
 - Note that analog system input/output pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal inputs.
 - Sample recommended circuit :

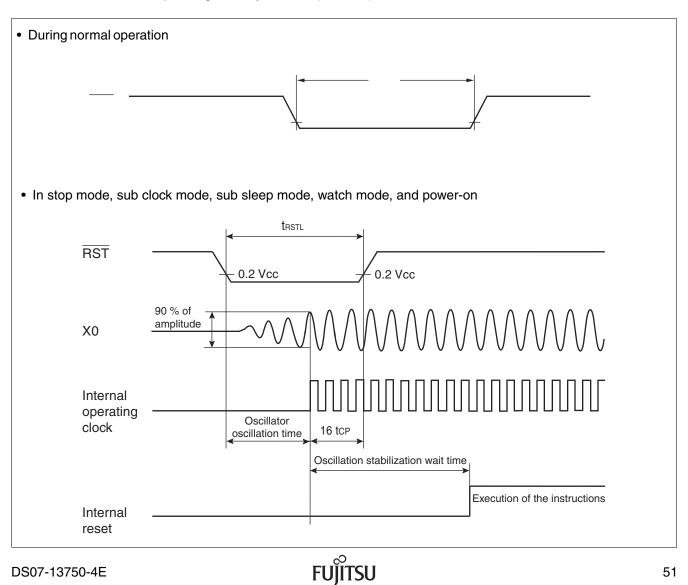
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

3. DC Characteristics

Parameter	Cumhal	Pin	Conditions		Value		Unit	Demode				
Parameter Symbol		name	Conditions	Min	Тур	Max	Unit	Remarks				
	VIHA		_	0.8 Vcc			V	Pin inputs if Automotive input levels are selected				
"H" level input voltage	Vihs		_	0.8 Vcc			V	Pin inputs if CMOS hysteresis input levels are selected				
	VIHC		_	0.7 Vcc	_		V	RST input pin (CMOS hysteresis)				
	Vila		_	_		0.5 Vcc	V	Pin inputs if Automotive input levels are selected				
"L" level input voltage	Vils	_	_	_	_	0.2 Vcc	V	Pin inputs if CMOS hysteresis input levels are selected				
	VILR					0.3 Vcc	V	RST input pin (CMOS hysteresis)				
	lcc		Maximum operating frequency $F_{CP} = 32$ MHz, normal operation		35	45	mA					
			Maximum operating frequency Fcp = 32 MHz, writing Flash memory		55	65	mA					
	Iccs						Operating frequency $F_{CP} = 32 \text{ MHz},$ sleep mode		13	20	mA	
	Істѕ		Operating frequency $F_{CP} = 2 MHz$, time-base timer mode		0.6	1.0	mA					
Power supply current*	ICTSPLL	Vcc	Operating frequency F _{CP} = 32 MHz, PLL timer mode, External frequency = 4 MHz		2.5	4	mA					
	lcc∟		Operating frequency $F_{CP} = 8 \text{ kHz}, T_A = +25 \text{ °C},$ sub clock operation		120	270	μA					
	Iccls		Operating frequency $F_{CP} = 8 \text{ kHz}, T_A = +25 \text{ °C},$ sub sleep operation		100	200	μA					
	Ісст		Operating frequency $F_{CP} = 8 \text{ kHz}, T_A = +25 \text{ °C},$ watch mode		90	180	μA					
	T _A = + 25 °C, stop mode		80	170	μA							

(Vcc = 5.0 V $\pm 10\%$, Vss = DVss = AVss = 0.0 V, T_A = -40 °C to +105 °C)

Parameter	Symbol	Pin name	Conditions	V	/alue		Unit	Remarks
Farameter	Symbol	Fin name	Conditions	Min	Тур	Max	Unit	nemarks
Input leakage current	In.	All input pins	$V_{CC} = DV_{CC} = AV_{CC} = 5.5 V,$ $V_{SS} < V_{I} < V_{CC}$	_		10	μA	
Input capacitance 1	CIN1	All pins except VCC, VSS, DVCC, DVSS, AVCC, AVSS, C, P70 to P77, P80 to P87				15	pF	
Input capacitance 2	CIN2	P70 to P77, P80 to P87	_		_	45	pF	
Pull-up resistance	Rup	RST	—	25	50	100	kΩ	
Pull-down resistance	Rdown	MD2	_			100	kΩ	Excluding Flash memory product
General-purpose output "H" voltage	V _{OH1}	All pins except P70 to P77, P80 to P87	Vcc = 4.5 V, Іон = -4.0 mA	Vcc - 0.5	_	_	v	
Stepping motor output "H" voltage	Vон2	P70 to P77, P80 to P87	Vcc = 4.5 V, Іон = -30.0 mA	Vcc-0.5			V	
General-purpose output "L" voltage	V _{OL1}	All pins except P70 to P77, P80 to P87	$V_{CC} = 4.5 \text{ V},$ $I_{OL} = 4.0 \text{ mA}$	_		0.4	v	
Stepping motor output "L" voltage	Vol2	P70 to P77, P80 to P87	Vcc = 4.5 V, loL = 30.0 mA			0.55	V	
Stepping motor output phase variation "H"	ΔVон	PWM1Pn, PWM1Mn, PWM2Pn, PWM2Mn, n = 0 to 3	$V_{CC} = 4.5 V,$ $I_{OH} = -30.0 mA,$ maximum deviation V_{OH2}			90	mV	
Stepping motor output phase variation "L"	ΔVol	PWM1Pn, PWM1Mn, PWM2Pn, PWM2Mn, n = 0 to 3	$V_{CC} = 4.5 V,$ $I_{OL} = 30.0 mA,$ maximum deviation V_{OH2}			90	mV	
		Between V0 and V1,		50	100	200	kΩ	Evaluation product
LCD internal divider resistance	Rlcd	Between V1 and V2, Between V2 and V3		8.75	12.5	17.0	kΩ	Flash memory product

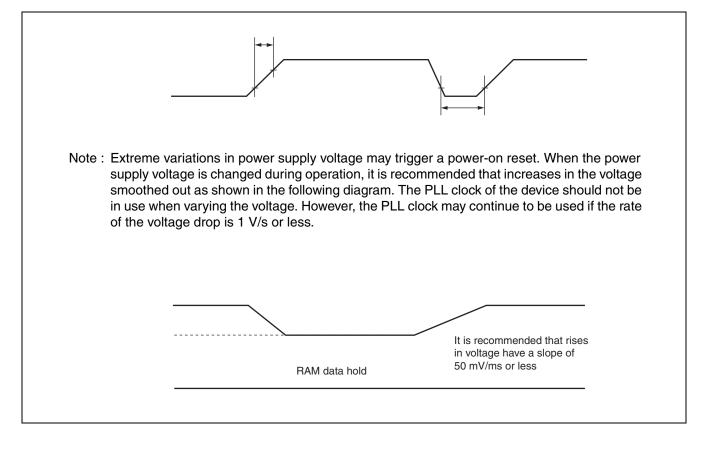

(Vcc = 5.0 V $\pm 10\%$, Vss = DVss = AVss = 0.0 V, T_A = -40 °C to +105 °C)

(2) Reset input

()		$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to} +105 ^{\circ}\text{C}$							
Parameter	Symbol	Pin name	Value	Unit	Remarks				
Falametei	ameter Symbol P		Min	Max			Unit		
			500	_	ns	During normal operation			
Reset input time	trstl	RST	Oscillator oscillation time* + 16 tcp	_	ms	In stop mode, sub clock mode, sub sleep mode, and watch mode			
			100		μs	In time-base timer mode			

*: The oscillation time of the oscillator is the time taken to reach 90% of the amplitude. The oscillation time of a crystal oscillator is between several ms and tens of ms. The oscillation time of a ceramic oscillator is between hundreds of μ s and several ms. The oscillation time of an external clock is 0 ms.

Note : tcp is the internal operating clock cycle time. (Unit : ns)



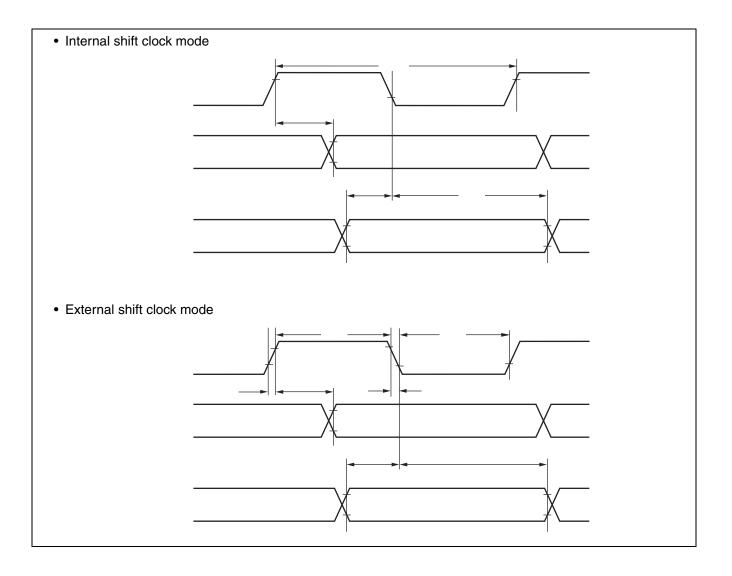
FU

(3) Power-on reset

$(v_{cc} - 2.7, v_{10}, 0.0, v_{10}, v_{ss} - 0.0, v_{10}, v_{ac} - 40, v_{10}, v_{10})$										
Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks			
Falameter	Symbol	name	Conditions	Min	Max	Unit	nemarks			
Power supply rise time	tR			0.05	30	ms				
Power off time	toff	vcc —				1		ms	Waiting time until power-on	

(Vcc = 2.7 V to 3.6 V, Vss = 0.0 V, T_A = $-40 \degree C$ to $+105 \degree C$)

(4) UART0/1/2/3 (LIN/SCI)

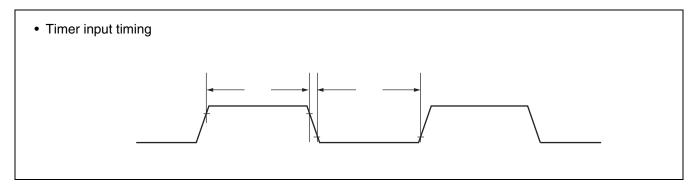

• Bit setting: ESCR0/1/2/3:SCES=0, ECCR0/1/2/3:SCDE=0

Parameter	Symbol	Pin name	Conditions	Value		Unit
Farameter	Symbol	Pin name	Conditions	Min	Max	Unit
Serial clock cycle time	tscyc	SCK0 to SCK3		5 tcp	—	ns
$SCK \downarrow \to SOT \text{ delay time}$	tslovi	SCK0 to SCK3, SOT0 to SOT3	Internal shift clock mode output pin	- 50	+ 50	ns
$Valid\ SIN \to SCK\ \uparrow$	tivshi	SCK0 to SCK3,	$C_L = 80 \text{ pF} + 1 \text{TTL}$	tcp + 80	—	ns
$SCK \uparrow \to valid SIN hold time$	tshixi	SIN0 to SIN3	SIN0 to SIN3		—	ns
Serial clock "L" pulse width	t slsh	SCK0 to SCK3		3 tcp – tr	—	ns
Serial clock "H" pulse width	tshsl	3000 10 3003		tcp + 10	—	ns
$SCK \downarrow \to SOT \text{ delay time}$	tslove	SCK0 to SCK3, SOT0 to SOT3	External shift clock	—	2 tcp + 60	ns
$Valid\ SIN \to SCK\ \uparrow$	tivshe	SCK0 to SCK3,	mode output pin C∟ = 80 pF + 1TTL	30	—	ns
$SCK \uparrow \to valid SIN hold time$	tshixe	SIN0 to SIN3		tcp + 30	—	ns
SCK ↓ time	t⊧	SCK0 to SCK3			10	ns
SCK ↑ time	tR				10	ns

Notes : • Depending on the machine clock frequency to be used, the maximum baud rate may be limited by some parameters. These parameters are shown in "MB90920 series hardware manual".

• C_{L} is the load capacitance connected to the pin during testing.

• tcp is the internal operating clock cycle time. Refer to "(1) Clock timing".



(5) Timer input timing

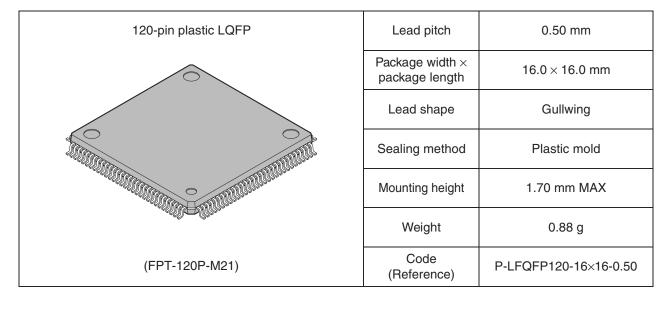
 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to} + 105 \text{ }^{\circ}\text{C})$

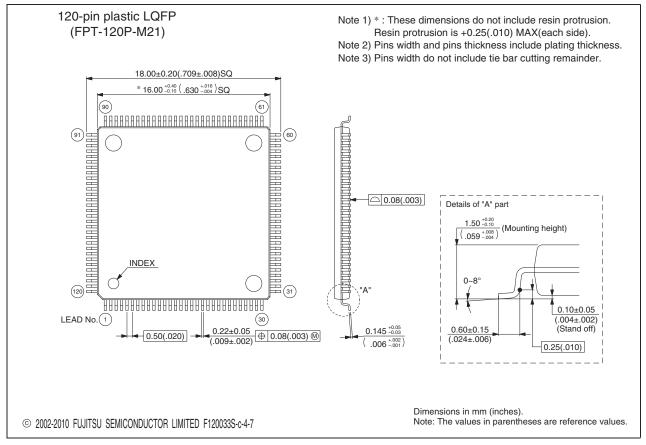
Parameter	Symbol Pin n	Pin name	me Conditions	Va	Unit	
rarameter		r in name		Min	Мах	Onit
Input pulse width	t⊤iwн t⊤iw∟	TIN0, TIN1, IN0 to IN3		4 tcp	_	ns

Note : tcp is the internal operating clock cycle time. Refer to " (1) Clock timing".

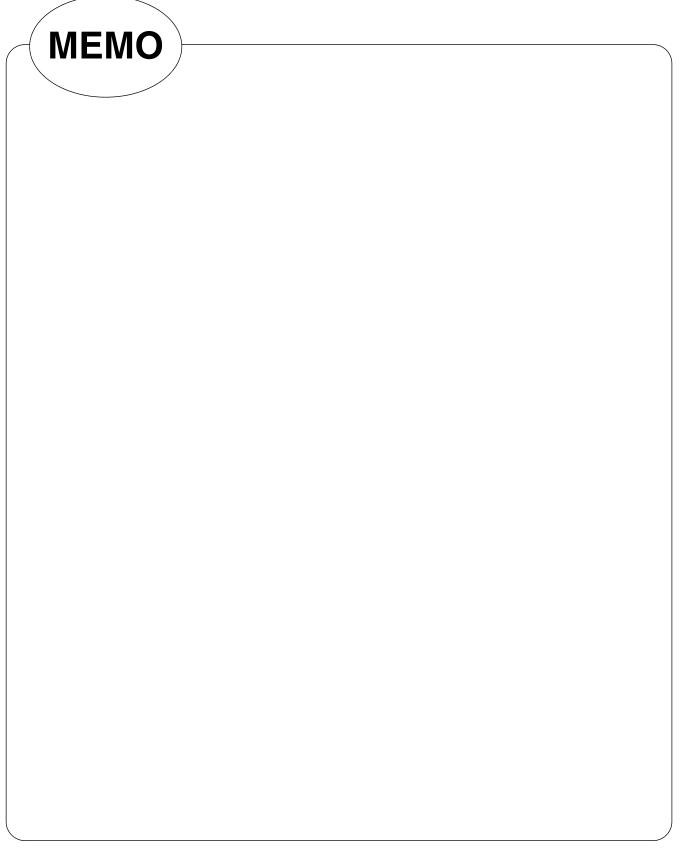
5. A/D Converter

(1) Electrical Characteristics


Parameter	Ourseland	Din manua	Value			11	Domoriko	
	Symbol	Pin name	Min	Тур	Max	Unit	Remarks	
Resolution	_				10	bit		
Total error			- 3.0		+ 3.0	LSB		
Non-linear error			- 2.5		+ 2.5	LSB		
Differential linear error			– 1.9		+ 1.9	LSB		
Zero transition voltage	Vот	AN0 to AN7	AV _{ss} – 1.5 LSB	AV _{ss} + 0.5 LSB	AV _{ss} + 2.5 LSB	V	1 LSB =	
Full scale transition voltage	VFST	AN0 to AN7	AVRH – 3.5 LSB	AVRH – 1.5 LSB	AVRH + 0.5 LSB	v	(AVRH – AVss) / 1024	
Sampling time	tsмp		0.4		16500	μs	$4.5 V \le AVcc \le 5.5 V$	
			1.0				$4.0 \text{ V} \le \text{AVcc} \le 4.5 \text{ V}$	
Compare time	tсмр		0.66			μs	$4.5 V \le AVcc \le 5.5 V$	
			2.2	_			$4.0 \text{ V} \le \text{AVcc} \le 4.5 \text{ V}$	
A/D conversion time	t CNV		1.44	_		μs	*1	
Analog port input current	Iain	AN0 to AN7	- 0.3		+ 10	μA		
Analog input voltage	VAIN	AN0 to AN7	0	_	AVRH	V		
Reference voltage	AV+	AVRH	AVss + 2.7		AVcc	V		
Power supply current	la	A) (2.3	6.0	mA		
	Іан	AVcc			5	μA	*2	
Reference voltage supply current	IR	AVRH		520	900	μA	$V_{\text{AVRH}} = 5.0 \text{ V}$	
	IRH	AVND			5	μA	*2	
Inter-channel variation	—	AN0 to AN7			4	LSB		


*1 : The time per channel (4.5 V \leq AVcc \leq 5.5 V, and internal operating frequency = 32 MHz) .

*2 : Defined as supply current (when $V_{CC} = AV_{CC} = AVRH = 5.0 V$) with A/D converter not operating, and CPU in stop mode.


FUÏTSU

■ PACKAGE DIMENSION

Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

