

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	93
Program Memory Size	256KB (256K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	120-LQFP
Supplier Device Package	120-LQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90922ncspmc-gs-143e1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

■ PIN DESCRIPTIONS

Pin no.	Pin name	I/O circuit type*1	Function		
108	X0	^	High-speed oscillation input pin		
107	X1	A	High-speed oscillation output pin		
10	X0A	В	Low-speed oscillation input pin		
13	P92	I	General-purpose I/O port		
14	X1A	В	Low-speed oscillation output pin		
14	P93	I	General-purpose I/O port		
90	RST	С	Reset input pin		
02	P00	E	General-purpose I/O port		
93 SEG24			LCD controller/driver segment output pin		
04	P01	F	General-purpose I/O port		
94	SEG25		LCD controller/driver segment output pin		
05	P02	г	General-purpose I/O port		
95	SEG26		LCD controller/driver segment output pin		
06	P03	Е	General-purpose I/O port		
90	SEG27		LCD controller/driver segment output pin		
07	P04	E	General-purpose I/O port		
97	97 SEG28		LCD controller/driver segment output pin		
09	P05		General-purpose I/O port		
90	98 SEG29		LCD controller/driver segment output pin		
00	P06		General-purpose I/O port		
33	SEG30		LCD controller/driver segment output pin		
100	P07	E	General-purpose I/O port		
100	SEG31		LCD controller/driver segment output pin		
	P10		General-purpose I/O port		
101	PPG2		16-bit PPG ch.2 output pin		
	IN5		Input capture ch.5 trigger input pin		
	P11		General-purpose I/O port		
102	TOT0		16-bit reload timer ch.0 TOT output pin		
102	PPG3		16-bit PPG ch.3 output pin		
	IN4		Input capture ch.4 trigger input pin		
	P12		General-purpose I/O port		
103	TINO	I	16-bit reload timer ch.0 TIN input pin		
	PPG4]	16-bit PPG ch.4 output pin		

Pin no.	Pin name	I/O circuit type*1	Function		
70	P73	I	General-purpose output-only port		
70	PWM2M0		Stepping motor controller ch.0 output pin		
71	P74	1	General-purpose output-only port		
/1	PWM1P1		Stepping motor controller ch.1 output pin		
70	P75	1	General-purpose output-only port		
12	PWM1M1		Stepping motor controller ch.1 output pin		
70	P76	1	General-purpose output-only port		
73	73 PWM2P1		Stepping motor controller ch.1 output pin		
74	P77	1	General-purpose output-only port		
74	PWM2M1		Stepping motor controller ch.1 output pin		
77	P80	1	General-purpose output-only port		
11	PWM1P2		Stepping motor controller ch.2 output pin		
70	P81	1	General-purpose output-only port		
/0	PWM1M2		Stepping motor controller ch.2 output pin		
70	P82	1	General-purpose output-only port		
79	PWM2P2		Stepping motor controller ch.2 output pin		
80	P83	1	General-purpose output-only port		
00	PWM2M2		Stepping motor controller ch.2 output pin		
01	P84	1	General-purpose output-only port		
01	PWM1P3		Stepping motor controller ch.3 output pin		
00	P85	1	General-purpose output-only port		
02	PWM1M3		Stepping motor controller ch.3 output pin		
83	P86	1	General-purpose output-only port		
00	PWM2P3		Stepping motor controller ch.3 output pin		
84	P87	1	General-purpose output-only port		
04	PWM2M3		Stepping motor controller ch.3 output pin		
22	P90	E	General-purpose I/O port		
22	SEG22		LCD controller/driver segment output pin		
22	P91	F	General-purpose I/O port		
23	SEG23		LCD controller/driver segment output pin		
21	P94	G	General-purpose I/O port		
31	V0		LCD controller/driver reference power supply pin		
30	P95	G	General-purpose I/O port		
32	V1	<u> </u>	LCD controller/driver reference power supply pin		

Туре	Circuit	Remarks
E	Pull-down resistor	Input-only pin (with pull-down resistance) Attached pull-down resistance: approx. 50 kΩ CMOS hysteresis input (VIH/VIL = 0.8 Vcc/0.2 Vcc) Note: The MD2 pin of the evaluation products uses this circuit type.
F	P-ch P-ch P-ch P-ch P-ch Pout LCD input CMOS hysteresis input Standby control signal or LCD input enable signal Automotive input Standby control signal or LCD input enable signal	LCD output common general- purpose port • CMOS output (IoH/IoL = ± 4 mA) • Hysteresis input (VIH/VIL = 0.8 Vcc/0.2 Vcc) • Automotive input (VIH/VIL = 0.8 Vcc/0.5 Vcc)
G	P-ch N-ch N-ch N-ch N-ch N-ch Nout N-ch Nout N-ch Nout N-ch Nout N-ch Nout CMOS hysteresis input Standby control signal or LCD output switching signal Automotive input Standby control signal or LCD output switching signal	LCDC reference power supply com- mon general-purpose port • CMOS output (IoH/IoL = ±4 mA) • CMOS hysteresis input (VIH/VIL = 0.8 Vcc/0.2 Vcc) • Automotive input (VIH/VIL = 0.8 Vcc/0.5 Vcc)

Туре	Circuit	Remarks
Н	P-ch P-ch P-ch P-ch P-ch P-ch Pout Analog input CMOS hysteresis input Standby control signal or analog input enable signal Automotive input Standby control signal or analog input enable signal	A/D converter input common general-purpose port • CMOS output (IoH/IoL = ± 4 mA) • CMOS hysteresis input (VIH/VIL = 0.8 Vcc/0.2 Vcc) • Automotive input (VIH/VIL = 0.8 Vcc/0.5 Vcc)
1	P-ch Pout N-ch Nout N-ch Nout CMOS hysteresis input Standby control signal Automotive input Standby control signal	General-purpose port • CMOS output (Iон/IоL = ±4 mA) • CMOS hysteresis input (VIH/VIL = 0.8 Vcc/0.2 Vcc) • Automotive input (VIH/VIL = 0.8 Vcc/0.5 Vcc)
J	P-ch P-ch P-ch P-ch P-ch P-ut Nout	General-purpose port (serial input) • CMOS output (IoH/IoL = ± 4 mA) • CMOS hysteresis input (VIH/VIL = 0.8 Vcc/0.2 Vcc) • CMOS input (SIN) (VIH/VIL = 0.7 Vcc/0.3 Vcc) • Automotive input (VIH/VIL = 0.8 Vcc/0.5 Vcc)

Туре	Circuit	Remarks
K	P-ch Pout N-ch Nout Analog output CMOS hysteresis input Standby control signal or analog input enable signal	 A/D converter input common general- purpose port (serial input) CMOS output (IoH/IoL = ± 4 mA) CMOS hysteresis input (VIH/VIL = 0.8 Vcc/0.2 Vcc) CMOS input (SIN) (VIH/VIL = 0.7 Vcc/0.3 Vcc) Automotive input (VIH/VIL = 0.8 Vcc/0.5 Vcc)
L	P-ch Pout High current N-ch Nout	High current output port (SMC pin) CMOS output (Іон/Іо∟ = ± 30 mA)
Μ	P-ch P-ch Nout P-ch Nout CMOS hysteresis input CMOS hysteresis input Standby control signal or LCDC output switching signal Automotive input Standby control signal or LCDC output switching signal CMOS input (SIN) Standby control signal or LCDC output switching signal	LCDC output common general- purpose port (serial input)) • CMOS output (IoH/IoL = ± 4 mA) • CMOS hysteresis input (VIH/VIL = 0.8 Vcc/0.2 Vcc) • CMOS input (SIN) (VIH/VIL = 0.7 Vcc/0.3 Vcc) • Automotive input (VIH/VIL = 0.8 Vcc/0.5 Vcc)

• Notes on operating in PLL clock mode

On this microcontroller, if in case the crystal oscillator breaks off or an external reference clock input stops while the PLL clock mode is selected, a self-oscillator circuit contained in the PLL may continue its operation at its self-running frequency. However, FUJITSU SEMICONDUCTOR will not guarantee results of operations if such failure occurs.

Crystal oscillator circuit

Noise around the X0/X1, or X0A/X1A pins may cause this device to operate abnormally. In the interest of stable operation it is strongly recommended that printed circuit artwork places ground bypass capacitors as close as possible to the X0/X1, X0A/X1A and crystal oscillator (or ceramic oscillator) and that oscillator lines do not cross the lines of other circuits.

Please ask each crystal maker to evaluate the oscillational characteristics of the crystal and this device.

• Power supply pins

Devices including multiple VCC or VSS pins are designed such that pins that need to be at the same potential are interconnected internally to prevent malfunctions such as latch-up. To reduce unnecessary radiation, prevent malfunctioning of the strobe signal due to the rise of ground level, and observe the standard for total output current, be sure to connect the VCC and VSS pins to the power supply and ground externally.

Always connect all of the VCC pins to the same potential and all of the VSS pins to ground as shown in the following diagram. The device will not operate correctly if multiple VCC or VSS pins are connected to different voltages, even if those voltages are within the guaranteed operating ranges.

In addition, care must be given to connecting the VCC and VSS pins of this device to the current supply source with as low impedance as possible. It is recommended that a 1.0 μ F bypass capacitor be connected between the VCC and VSS pins as close to the pins as possible.

• Sequence for connecting the A/D converter power supply and analog inputs

The A/D converter power supply (AVcc, AVRH) and analog inputs (AN0 to AN7) must be applied after the digital power supply (Vcc) is switched on. When turning the power off, the A/D converter power supply and analog inputs must be disconnected before the digital power supply is switched off (Vcc). Ensure that AVRH does not exceed AVcc during either power-on or power-off. Even when pins which double as analog input pins are used as input ports, be sure that the input voltage does not exceed AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

• Handling the power supply for high-current output buffer pins (DVcc, DVss)

• Flash memory products and MASK ROM products (MB90F922NC/F922NCS/922NCS/F923NC/ F923NCS/F924NC/F924NCS)

In the Flash memory products and MASK ROM products, the power supply for the high-current output buffer pins (DVcc, DVss) is isolated from the digital power supply (Vcc).

Therefore, DVcc can therefore be set to a higher voltage than Vcc. If the power supply for the high-current output buffer pins (DVcc, DVss) is supplied before the digital power supply (Vcc), however, care needs to be taken because it is possible that the port 7 or port 8 stepping motor outputs may momentarily output an "H" or "L" level. In order to prevent this, connect the digital power supply (Vcc) prior to connecting the power supply for the high-current output buffer pins. Even when the high-current output buffer pins are used as general-purpose ports, power should be supplied to the power supply pins for the high-current output buffer pins (DVcc, DVss).

• Evaluation product (MB90V920-101/MB90V920-102)

In the evaluation products, the power supply for the high-current output buffer pins (DV_{cc}, DV_{ss}) is not isolated from the digital power supply (V_{cc}). Therefore, DV_{cc} must therefore be set to a lower voltage than Vcc. The power supply for the high-current output buffer pins (DV_{cc}, DV_{ss}) must always be applied after the digital power supply (V_{cc}) has been connected, and disconnected before the digital power supply (V_{cc}) is disconnected (the power supply for the high-current output buffer pins may also be connected and disconnected simultaneously with the digital power supply).

Even when the high-current output buffer pins are used as general-purpose ports, power should be supplied to the power supply pins for the high-current output buffer pins (DVcc, DVss).

Pull-up/pull-down resistors

MB90920 series does not support internal pull-up/pull-down resistors. Use external components as necessary.

Precautions when not using a sub clock signal

If the X0A and X1A pins are not connected to an oscillator, apply a pull-down resistance to the X0A pin and leave the X1A pin open.

Notes on operating when the external clock is stopped

The MB90920 series is not guaranteed to operate correctly using the internal oscillator circuit when there is no external oscillator or the external clock input is stopped.

Flash memory security function

A security bit is located within the Flash memory region. The security function is activated by writing the protection code 01_{H} to the security bit.

Do not write the value 01_{H} to this address if you are not using the security function.

Please refer to following table for the address of the security bit.

	Flash memory size	Address for security bit
MB90F922NC MB90F922NCS	Built-in 2 Mbits Flash Memory	FC0001н
MB90F923NCS	Built-in 3 Mbits Flash Memory	F80001н
MB90F924NCS	Built-in 4 Mbits Flash Memory	F80001 н

Address	Register name	Symbol	Read/write	Resource name	Initial value			
000083н	(Disabled)							
000084н	PWM control register 2	PWC2	R/W	Stepping motor controller 2	000000Х0в			
000085н	(Disabled)							
000086н	PWM control register 3	PWC3	R/W	Stepping motor controller 3	000000Х0в			
000087н		(Disab	led)					
000088н	LCD output control register 3	LOCR3	R/W	LCDC	XXXXX111 _B			
000089н		(Disab	led)					
00008Ан	A/D setting register 0 ADSR0 R/W			A/D converter	0000000в			
00008Bн	A/D setting register 1	ADSR1	R/W	AB conventer	0000000в			
00008CH	Port input level select 0	PIL0	R/W	Deut immed level	0000000в			
00008DH	Port input level select 1	PIL1	R/W	Port input level select	XXXX0000 _B			
00008Eн	Port input level select 2	PIL2	R/W		XXXX0000 _B			
00008Fн to 00009Dн	(Disabled)							
00009Eн	Program address detection control register	PACSR	R/W	Address match detection	XXXX0X0X _B			
00009Fн	Delayed Interrupt/Release Register	DIRR	R/W	Delay interrupt	$XXXXXXX0_B$			
0000A0H	Power saving mode control register	LPMCR	R/W	Power saving	00011000в			
0000A1 н	Clock select register	CKSCR	R/W, R	control circuit	11111100в			
0000A2н to 0000A7н	(Disabled)							
0000А8 н	Watchdog timer control register	WDTC	R, W	Watchdog timer	XXXXX111 _B			
0000А9 н	Time-base timer control register	TBTC	R/W, W	Time-base timer	1XX00100 _B			
0000ААн	Watch timer control register	WTC	R/W, W, R	Watch timer (sub clock)	10001000в			
0000ABн to 0000ADн		(Disab	led)					
0000АЕн	Flash memory control status register	FMCS	R/W	Flash interface	000Х0000в			
0000AF _H		(Disab	led)					

Address		Pogistor	Abbre-	A00055	Initial Value		
CAN0	CAN1	CAN2	CAN3	negister	viation	Access	
003А40н	003B40 н	003740н	003840н				XXXXXXXX
003A41 н	003B41 н	003741 н	003841 н	ID register 8		D/M	XXXXXXXXB
003А42н	003В42н	003742н	003842н		10110	11/ VV	XXXXXB
003А43н	003B43н	003743н	003843н				XXXXXXXXB
003А44н	003B44н	003744н	003844н				XXXXXXXXB
003A45 н	003B45н	003745н	003845н	ID register 9		R/W	XXXXXXXXB
003А46н	003B46н	003746н	003846н		10110	11/ VV	XXXXXB
003A47 н	003B47 н	003747н	003847н				XXXXXXXXB
003A48 н	003B48н	003748н	003848н				XXXXXXXXB
003A49н	003B49н	003749н	003849н	ID register 10	IDR10	R/M	XXXXXXXXB
003А4Ан	003В4Ан	00374Ан	00384Ан			11/ VV	XXXXXB
003A4Bн	003В4Вн	00374Вн	00384Bн				XXXXXXXXB
003A4Cн	003В4Сн	00374Сн	00384Сн	H H H H	IDR11	PR11 R/W	XXXXXXXXB
003A4Dн	003B4Dн	00374D н	00384Dн				XXXXXXXXB
003А4Ен	003B4E н	00374E н	00384E н				XXXXXB
003A4F н	003B4Fн	00374F н	00384F н				XXXXXXXXB
003А50 н	003В50н	003750н	003850н		IDR12	2 R/W	XXXXXXXXB
003А51 н	003B51 н	003751 н	003851 н	ID register 12			XXXXXXXXB
003А52н	003В52н	003752н	003852н				XXXXXB
003А53н	003В53н	003753н	003853н				XXXXXXXXB
003А54 н	003B54 н	003754н	003854н				XXXXXXXXB
003А55н	003B55 н	003755н	003855н	ID register 13		R/M	XXXXXXXXB
003А56н	003В56н	003756н	003856н		IBITIO	11/ VV	XXXXXB
003А57 н	003B57 н	003757 н	003857н				XXXXXXXXB
003А58 н	003B58 н	003758 н	003858н				XXXXXXXXB
003А59 н	003B59 н	003759н	003859 н	ID register 14	IDR14	R/W	XXXXXXXXB
003А5Ан	003В5Ан	00375Ан	00385Ан		101114	10,00	XXXXXB
003A5Bн	003B5Bн	00375Вн	00385В н				XXXXXXXXB
003A5Cн	003B5Cн	00375Cн	00385Cн				XXXXXXXX
003А5Dн	003B5Dн	00375Dн	00385Dн	ID register 15	IDB15	R/W	XXXXXXXXB
003A5Eн	003B5Eн	00375E н	00385Eн			1.7.44	ХХХХХв
003A5Fн	003B5Fн	00375Fн	00385Fн				XXXXXXXXB

Doromotor	Symbol	Pin name Conditions		Value			Unit	Pomarka
Parameter	Symbol	Pin name	Conditions	Min	Тур	Max	Unit	Remarks
Input leakage current	Iı.	All input pins	Vcc = DVcc = AVcc = 5.5 V, Vss < V ₁ < Vcc	_		10	μA	
Input capacitance 1	Cini	All pins except VCC, VSS, DVCC, DVSS, AVCC, AVSS, C, P70 to P77, P80 to P87	_	_		15	pF	
Input capacitance 2	CIN2	P70 to P77, P80 to P87		_		45	pF	
Pull-up resistance	Rup	RST	_	25	50	100	kΩ	
Pull-down resistance	Rdown	MD2	_			100	kΩ	Excluding Flash memory product
General-purpose output "H" voltage	Voh1	All pins except P70 to P77, P80 to P87	Vcc = 4.5 V, Іон = -4.0 mA	Vcc - 0.5		_	v	
Stepping motor output "H" voltage	V _{OH2}	P70 to P77, P80 to P87	Vcc = 4.5 V, Іон = -30.0 mA	V cc - 0.5			۷	
General-purpose output "L" voltage	Vol1	All pins except P70 to P77, P80 to P87	$V_{CC} = 4.5 \text{ V},$ $I_{OL} = 4.0 \text{ mA}$			0.4	V	
Stepping motor output "L" voltage	Vol2	P70 to P77, P80 to P87	Vcc = 4.5 V, Io∟ = 30.0 mA		_	0.55	۷	
Stepping motor output phase variation "H"	ΔVон	PWM1Pn, PWM1Mn, PWM2Pn, PWM2Mn, n = 0 to 3	$\label{eq:Vcc} \begin{array}{l} V_{\rm Cc} = 4.5 \ V, \\ I_{\rm OH} = -30.0 \ mA, \\ maximum \ deviation \\ V_{\rm OH2} \end{array}$			90	mV	
Stepping motor output phase variation "L"	ΔV ol	PWM1Pn, PWM1Mn, PWM2Pn, PWM2Mn, n = 0 to 3	$V_{CC} = 4.5 \text{ V},$ $I_{OL} = 30.0 \text{ mA},$ maximum deviation V_{OH2}			90	mV	
		Between V0 and V1,		50	100	200	kΩ	Evaluation product
divider resistance	Rlcd	and V2, Between V2 and V3	_	8.75	12.5	17.0	kΩ	Flash memory product

(Vcc = 5.0 V $\pm 10\%$, Vss = DVss = AVss = 0.0 V, T_A = -40 °C to +105 °C)

• Bit setting: ESCR0/1/2/3:SCES=1, ECCR0/1/2/3:SCDE=1

(Vcc = 5.0 V \pm 10%, Vss = AVss = 0.0 V, T_A = -40 °C to +105 °C)

Baramotor	Symbol	Din nomo	Conditions	Va	Unit		
Faiaillelei	Symbol	Fill lidine	Conditions	Min	Max	Unit	
Serial clock cycle time	tscyc	SCK0 to SCK3		5 tcp	_	ns	
SCK $\downarrow \rightarrow$ SOT delay time	ts∟ovi	SCK0 to SCK3, SOT0 to SOT3	Internal shift clock	- 50	+ 50	ns	
Valid SIN $ ightarrow$ SCK \downarrow	tivshi	SCK0 to SCK3,	mode output pin $C_{L} = 80 \text{ pF} + 1\text{TTL}$	t _{CP} + 80		ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tshixi	SIN0 to SIN3		0	_	ns	
$SOT o SCK \uparrow delay$ time	tsovнı	SCK0 to SCK3, SOT0 to SOT3		3 tcp - 70		ns	

Notes : • Depending on the machine clock frequency to be used, the maximum baud rate may be limited by some parameters. These parameters are shown in "MB90920 series hardware manual".

• CL is the load capacitance connected to the pin during testing.

• tcp is the internal operating clock cycle time. Refer to " (1) Clock timing".

(7) Low voltage detection

(Vss = AVss = 0.0 V, $T_{\text{A}} = -40 \ ^{\circ}\text{C}$ to +105 $^{\circ}\text{C}$	C)
---	----

Parameter	Symbol	Pin name	Conditions ·	Value			Unit	Pomarka
				Min	Тур	Max	Unit	nemarks
Detection voltage	Vdl	VCC		4.0	4.2	4.4	V	Flash memory product, during voltage drop
				3.7	4.0	4.3	V	Evaluation product, during voltage drop
Hysteresis width	Vhys	VCC		190			mV	Flash memory product, during voltage rise
				0.1			V	Evaluation product, during voltage rise
Power supply voltage change rate	dV/dt	VCC		- 0.1		+ 0.1	V/µs	Flash memory product, dV/dt at low voltage reset
				-0.004		+ 0.004	V/µs	Flash memory product, dV/dt at standard value of low voltage detection/release voltage
				- 0.1	_	+ 0.02	V/µs	Evaluation product
Detection delay time	td	_	_			3.2	μs	Flash memory product, when $dV/dt \le 0.004 V/\mu s$
						35	μs	Evaluation product

5. A/D Converter

(1) Electrical Characteristics

$(V_{CC} = AV_{CC} = AV_{RH} = 4.0 \text{ V to } 5.5 \text{ V}, \text{ Vss} = AV_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 ^{\circ}\text{C} \text{ to } +105 ^{\circ}\text{C})$								
Devementer	Cumhal	Din nomo		Value	11	Demode		
Parameter	Symbol	Pin name	Min	Тур	Max	Unit	Remarks	
Resolution					10	bit		
Total error			- 3.0		+ 3.0	LSB		
Non-linear error			- 2.5		+ 2.5	LSB		
Differential linear error			– 1.9		+ 1.9	LSB		
Zero transition voltage	Vот	AN0 to AN7	AVss – 1.5 LSB	AV _{ss} + 0.5 LSB	AV _{SS} + 2.5 LSB	v	1 LSB = (A)(BH = A)(AB) (AB)	
Full scale transition voltage	VFST	AN0 to AN7	AVRH – 3.5 LSB	AVRH – 1.5 LSB	AVRH + 0.5 LSB	V	1024	
Sampling time	tsmp		0.4		16500	μs	$4.5~V \le AVcc \le 5.5~V$	
			1.0				$4.0~V \leq AVcc \leq 4.5~V$	
Compare time	tсмр		0.66			μs	$4.5~V \le AVcc \le 5.5~V$	
			2.2				$4.0~V \leq AVcc \leq 4.5~V$	
A/D conversion time	tcnv		1.44			μs	*1	
Analog port input current	Iain	AN0 to AN7	- 0.3		+ 10	μA		
Analog input voltage	VAIN	AN0 to AN7	0		AVRH	V		
Reference voltage	AV+	AVRH	AVss + 2.7		AVcc	v		
Power supply current	la	A\/	_	2.3	6.0	mA		
	Іан	AVCC	_		5	μA	*2	
Reference voltage supply current	IR			520	900	μA	$V_{\text{AVRH}} = 5.0 \text{ V}$	
	IRH	AVND			5	μA	*2	
Inter-channel variation	—	AN0 to AN7			4	LSB		

*1 : The time per channel (4.5 V \leq AVcc \leq 5.5 V, and internal operating frequency = 32 MHz) .

*2 : Defined as supply current (when $V_{CC} = AV_{CC} = AVRH = 5.0 V$) with A/D converter not operating, and CPU in stop mode.

FUÏTSU

• Notes on the external impedance and sampling time of analog inputs

A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. If the sampling time is still not sufficient, connect a capacitor of about 0.1 μ F to the analog input pin.

About errors

As |AVRH - AVss| becomes smaller, the relative errors grow larger.

(2) Definition of t	erms
Resolution	: Analog changes that are identifiable by the A/D converter.
Non-Linear error	: The deviation of the straight line connecting the zero transition point ("00 0000 0000" $\leftrightarrow \rightarrow$ "00 0000 0001") with the full-scale transition point ("11 1111 1110" $\leftrightarrow \rightarrow$ "11 1111 1111") from actual conversion characteristics.
Differential linear error	: The deviation from the ideal value of the input voltage needed to change the output code by 1 LSB.
Total error	: The total error is the difference between the actual value and the theoretical value, and includes zero-transition error/full-scale transition error and linear error.

FUJITSU SEMICONDUCTOR LIMITED

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome, Kohoku-ku Yokohama Kanagawa 222-0033, Japan Tel: +81-45-415-5858 http://jp.fujitsu.com/fsl/en/

For further information please contact:

North and South America

FUJITSU SEMICONDUCTOR AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://us.fujitsu.com/micro/

Europe

FUJITSU SEMICONDUCTOR EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/semiconductor/

Korea

FUJITSU SEMICONDUCTOR KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

Asia Pacific

FUJITSU SEMICONDUCTOR ASIA PTE. LTD. 151 Lorong Chuan, #05-08 New Tech Park 556741 Singapore Tel : +65-6281-0770 Fax : +65-6281-0220 http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China Tel : +86-21-6146-3688 Fax : +86-21-6335-1605 http://cn.fujitsu.com/fss/

FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel : +852-2377-0226 Fax : +852-2376-3269 http://cn.fujitsu.com/fsp/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or other rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.