

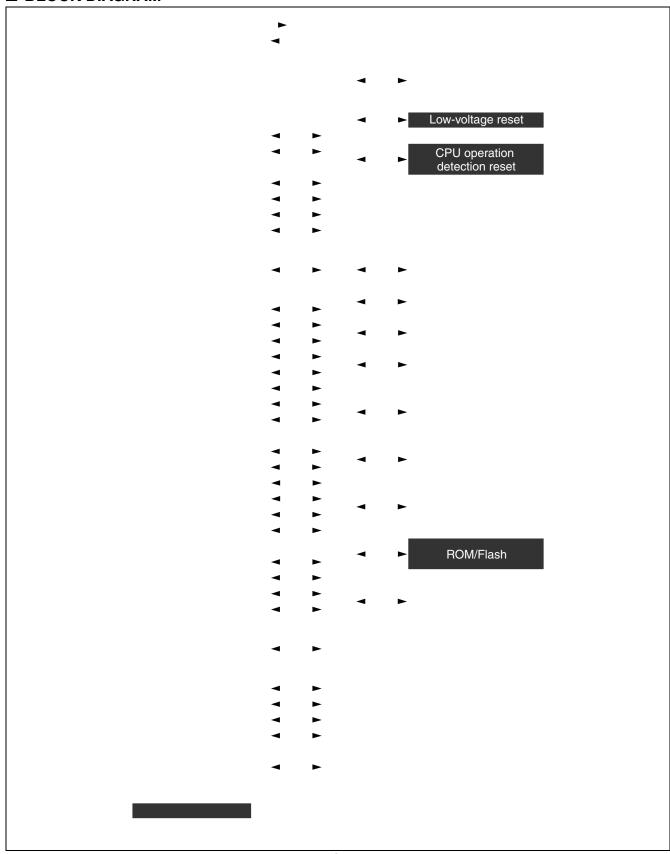
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

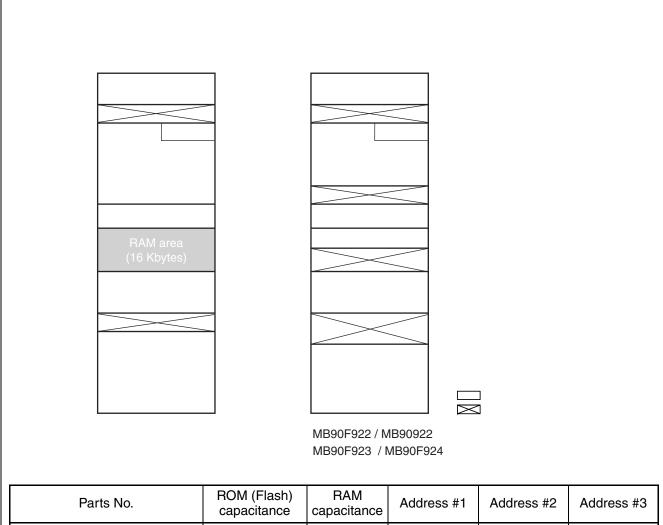
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	93
Program Memory Size	256KB (256K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	120-LQFP
Supplier Device Package	120-LQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90922ncspmc-gs-150e1


Pin no.	Pin name	I/O circuit type*1	Function
104	P13		General-purpose I/O port
104	PPG5	- 	16-bit PPG ch.5 output pin
	P14		General-purpose I/O port
109	TIN2	- 	16-bit reload timer ch.2 TIN input pin
	IN1		Input capture ch.1 trigger input pin
110	P15		General-purpose I/O port
110	IN0	- I	Input capture ch.0 trigger input pin
111	COM0	Р	LCD controller/driver common output pin
112	COM1	Р	LCD controller/driver common output pin
113	COM2	Р	LCD controller/driver common output pin
114	COM3	Р	LCD controller/driver common output pin
445	P22	_	General-purpose I/O port
115	SEG00	- F	LCD controller/driver segment output pin
440	P23	_	General-purpose I/O port
116	SEG01	F	LCD controller/driver segment output pin
447	P24	_	General-purpose I/O port
117	SEG02	F	LCD controller/driver segment output pin
440	P25	_	General-purpose I/O port
118	SEG03	F	LCD controller/driver segment output pin
440	P26	_	General-purpose I/O port
119	SEG04	F	LCD controller/driver segment output pin
100	P27	_	General-purpose I/O port
120	SEG05	F	LCD controller/driver segment output pin
_	P30	_	General-purpose I/O port
1	SEG06	F	LCD controller/driver segment output pin
0	P31	_	General-purpose I/O port
2	SEG07	- F	LCD controller/driver segment output pin
	P32	_	General-purpose I/O port
3	SEG08	F	LCD controller/driver segment output pin
4	P33	_	General-purpose I/O port
4	SEG09	- F	LCD controller/driver segment output pin
_	P34	_	General-purpose I/O port
5	SEG10	F	LCD controller/driver segment output pin
_	P35	-	General-purpose I/O port
6	SEG11	- F	LCD controller/driver segment output pin

■ I/O CIRCUIT TYPE


Туре	Circuit	Remarks
A	Standby control signal	Oscillation circuit High-speed oscillation feedback resistance: approx. 1 MΩ (Flash memory product/MASK ROM product/Evaluation product)
В	Standby control signal	Oscillation circuit Low-speed oscillation feedback resistance : approx. 10 MΩ
С	Pull-up resistor CMOS hysteresis input	 Input-only pin (with pull-up resistance) Attached pull-up resistor: approx. 50 kΩ CMOS hysteresis input (VIH/VIL = 0.8 Vcc/0.2 Vcc)
D	CMOS hysteresis input	Input-only pin • CMOS hysteresis input (VIH/VIL = 0.8 Vcc/0.2 Vcc) Note: The MD2 pin of the Flash memory products uses this circuit type.

Туре	Circuit	Remarks
N	Evaluation product P-ch N-ch Nout Nout Nout	N-ch open-drain pin IoL = 4 mA
0	Automotive input	Input-only pin Automotive input (VIH/VIL = 0.8 Vcc/0.5 Vcc)
P	P-ch LCDC output	LCDC output pin (COM pin)

■ BLOCK DIAGRAM

■ MEMORY MAP

Parts No.	ROM (Flash) capacitance	RAM capacitance	Address #1	Address #2	Address #3
MB90F922NC/F922NCS/922NCS	256 Kbytes	10 Kbytes	FC0000н	004000н	002900н
MB90F923NC/F923NCS	384 Kbytes	16 Kbytes	FA0000 _H	004А00н	003700н
MB90F924NC/F924NCS	512 Kbytes	24 Kbytes	F80000н	006А00н	003700н

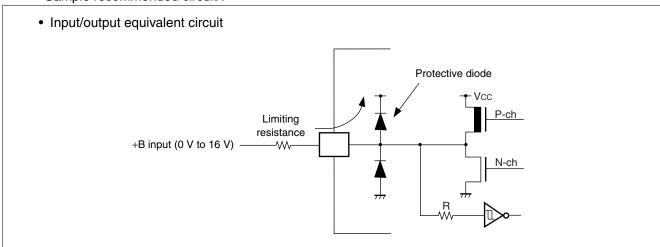
^{*:} Evaluation products do not contain internal ROM. Treat this address as the ROM decode area used by the tools.

Note: To select models without the ROM mirror function, refer to the "ROM Mirror Function Selection Module" in Hardware Manual. The image of the ROM data in the FF bank appears at the top of the 00 bank, in order to enable efficient use of small C compiler models. The lower 16-bits of the FF bank addresses are allocated to the same addresses as the lower 16-bits of the 00 bank, making it possible to reference tables in ROM without declaring the "far" modifier with the pointers. For example, when an access is made to the address 00C000H, the actual address to be accessed is FFC000H in ROM. Because the size of the FF bank ROM area exceeds 32 Kbytes, it is not possible to view the entire region in the 00 bank image. Therefore because the ROM data from FF8000H to FFFFFFH appears in the image from 008000H to 00FFFFH, it is recommended that ROM data tables be stored in the area from FF8000H to FFFFFFH.

Address	Register name	Symbol	Read/write	Resource name	Initial value
003970н		,			•
to 003973⊦		(Disab	iled)		
003974н	Frequency data register 1	SGFR1	R/W		XXXXXXXX
003975н	Amplitude data register 1	SGAR1	R/W		0000000
003976н	Decrement grade register 1	SGDR1	R/W	Sound generator 1	XXXXXXXX
003977н	Tone count register 1	SGTR1	R/W		XXXXXXXX
003978н		-	•		•
to 00397Fн		(Disab	led)		
003980н	DWM1 compare register 0	PWC10	R/W		XXXXXXX
003981н	PWM1 compare register 0	PWCIO	IT/VV		XXXXXXX
003982н	PWM2 compare register 0	PWC20	R/W	Stepping motor	XXXXXXX
003983н	1 P WWW.2 Compare register 0	FWC20	Π/ ۷۷	controller 0	XXXXXXX
003984н	PWM1 select register 0	PWS10	R/W		0000000В
003985н	PWM2 select register 0	PWS20	R/W		Х0000000в
003986н, 003987н		(Disab	led)		
003988н	DWM1 compare register 1	PWC11	R/W		XXXXXXX
003989н	PWM1 compare register 1	PWCII	III/ VV		XXXXXXX
00398Ан	PWM2 compare register 1	PWC21	R/W	Stepping motor	XXXXXXXXB
00398Вн	1 WW. Compare register 1	1 WOZ1	1 1/ V V	controller 1	XXXXXXXXB
00398Сн	PWM1 select register 1	PWS11	R/W		0000000В
00398Dн	PWM2 select register 1	PWS21	R/W		Х0000000в
00398Ен, 00398Fн		(Disab	led)		
003990н	PWM1 compare register 2	PWC12	R/W		XXXXXXX
003991н	PWWIT compare register 2	PWC12	IT/VV		XXXXXXX
003992н	PWM2 compare register 2	PWC22	R/W	Stepping motor	XXXXXXX
003993н	r Wiviz Compare register z	FWCZZ	I	controller 2	XXXXXXXXB
003994н	PWM1 select register 2	PWS12	R/W		0000000В
003995н	PWM2 select register 2	PWS22	R/W		Х000000В
003996н, 003997н		(Disab	led)		

List of Control Registers(2)

Address				List of Control Registers(2)	Abbre-	_		
CAN0	CAN1	CAN2	CAN3	Register	viation	Access	Initial Value	
000040н	000070н	0039С0н	0039D0н	Manager In Constant	D) (ALD	DAM	0000000в	
000041н	000071н	0039С1н	0039D1н	Message buffer valid register	BVALR	R/W	0000000В	
000042н	000072н	0039С2н	0039D2н	Transmit request register	TREQR	R/W	0000000В	
000043н	000073н	0039С3н	0039D3н	Transmit request register	INEQN	□/ VV	0000000В	
000044н	000074н	0039С4н	0039D4н	Transmit cancel register	TCANR	W	0000000в	
000045н	000075н	0039С5н	0039D5н	Transmit cancer register	TOANT	VV	0000000В	
000046н	000076н	0039С6н	0039D6н	Transmit complete register	TCR	R/W	0000000В	
000047н	000077н	0039С7н	0039D7н	Transmit complete register	1011	1 1/ V V	0000000в	
000048н	000078н	0039С8н	0039D8н	Receive complete register	RCR	R/W	0000000В	
000049н	000079н	0039С9н	0039D9н	Trocorvo comprete register	11011	1000	0000000В	
00004Ан	00007Ан	0039САн	0039DАн	Remote request receive	RRTRR	R/W	0000000В	
00004Вн	00007Вн	0039СВн	0039DВн	register		1000	0000000в	
00004Сн	00007Сн	0039ССн	0039DСн	Receive overrun register	ROVRR	R/W	0000000В	
00004Dн	00007Dн	0039СDн	0039DDн	Tieceive overruit register Tioviti			0000000в	
00004Ен	00007Ен	0039СЕн	0039DЕн	Receive interrupt enable	RIER	R/W	0000000в	
00004Fн	00007Fн	0039СFн	0039DFн	register			0000000В	
003С08н	003D08н	003Е08н	003F08н	IDE register	IDER	R/W	XXXXXXXX	
003С09н	003D09н	003Е09н	003F09н				XXXXXXXX	
003С0Ан	003D0Ан	003Е0Ан	003F0Ан	Transmit RTR register	TRTRR	R/W	0000000в	
003С0Вн	003D0Вн	003Е0Вн	003F0Вн				0000000В	
003С0Сн	003D0Сн	003Е0Сн	003F0Сн	Remote frame receive wait	RFWTR	R/W	XXXXXXXX	
003С0Дн	003D0Dн	003Е0Дн	003F0Dн	register			XXXXXXX	
003С0Ен	003D0Ен	003Е0Ен	003F0Eн	Transmit interrupt enable	TIER	TIER	R/W	0000000в
003С0Fн	003D0Fн	003Е0Гн	003F0Fн	register			0000000В	
003С10н	003D10н	003Е10н	003F10н				XXXXXXXX	
003С11н	003D11н	003Е11н	003F11н	Acceptance mask select	AMSR	R/W	XXXXXXXXB	
003С12н	003D12н	003E12н	003F12н	register			XXXXXXXXB	
003С13н	003D13н	003Е13н	003F13н				XXXXXXX	
003С14н	003D14н	003E14н	003F14н				XXXXXXXXB XXXXXXXXB	
003С15н	003D15н	003E15н	003F15н	Acceptance mask register 0	AMR0	R/W		
003С16н	003D16н	003E16н	003F16н				XXXXXB XXXXXXXXB	
003С17н	003D17н	003E17н	003F17н					
003С18н	003D18н	003E18н	003F18н				XXXXXXXXB XXXXXXXXB	
003С19н	003D19н	003E19н	003F19н	Acceptance mask register 1	AMR1	R/W		
003С1Ан	003D1Aн	003E1Aн	003F1Aн				XXXXXB XXXXXXXXB	
003С1Вн	003D1Bн	003Е1Вн	003F1Bн				AAAAAAAAB	

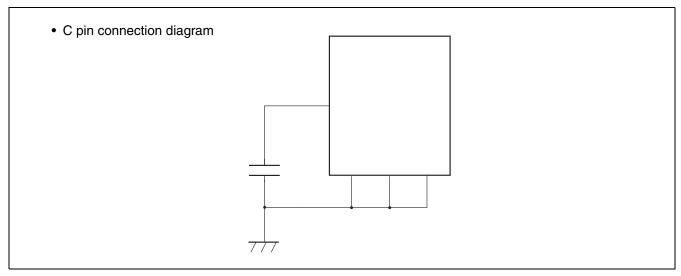

	Address			Register	Abbre-	Access	Initial Value					
CAN0	CAN1	CAN2	CAN3	viation		ACCESS	miliai value					
003А40н	003В40н	003740н	003840н				XXXXXXXXB					
003А41н	003В41н	003741н	003841н	ID register 8	IDR8	R/W	XXXXXXX					
003А42н	003В42н	003742н	003842н	To register o	IDITO	1 1/ V V	XXXXX _B					
003А43н	003В43н	003743н	003843н				XXXXXXX					
003А44н	003В44н	003744н	003844н				XXXXXXXXB					
003А45н	003В45н	003745н	003845н	ID register 9	IDR9	R/W	XXXXXXXXB					
003А46н	003В46н	003746н	003846н	Tib Togistor o	15110	1000	XXXXX _B					
003А47н	003В47н	003747н	003847н				XXXXXXX					
003А48н	003В48н	003748н	003848н				XXXXXXXXB					
003А49н	003В49н	003749н	003849н	ID register 10	IDR10	R/W	XXXXXXX					
003А4Ан	003В4Ан	00374Ан	00384Ан	Tib regioter re	IBITIO	IDITIO	IBITIO	151110	IDITIO	Togistor To	1000	XXXXXB
003А4Вн	003В4Вн	00374Вн	00384Вн				XXXXXXX					
003А4Сн	003В4Сн	00374Сн	00384Сн				XXXXXXXXB					
003А4Dн	003В4Он	00374Dн	00384Dн	ID register 11	IDR11	R11 R/W	XXXXXXX					
003А4Ен	003В4Ен	00374Ен	00384Ен				ХХХХХв					
003А4Гн	003В4Гн	00374Fн	00384Fн				XXXXXXX					
003А50н	003В50н	003750н	003850н		IDR12 R/W		XXXXXXXXB					
003А51н	003В51н	003751н	003851н	ID register 12		XXXXXXX						
003А52н	003В52н	003752н	003852н				XXXXXB					
003А5Зн	003В53н	003753н	003853н				XXXXXXX					
003А54н	003В54н	003754н	003854н				XXXXXXXXB					
003А55н	003В55н	003755н	003855н	ID register 13	IDR13	R/W	XXXXXXX					
003А56н	003В56н	003756н	003856н				XXXXXB					
003А57н	003В57н	003757н	003857н				XXXXXXX					
003А58н	003В58н	003758н	003858н				XXXXXXXXB					
003А59н	003В59н	003759н	003859н	ID register 14	IDR14	R/W	XXXXXXX					
003А5Ан	003В5Ан	00375Ан	00385Ан	. Jogiotoi I I			XXXXXB					
003А5Вн	003В5Вн	00375Вн	00385Вн				XXXXXXX					
003А5Сн	003В5Сн	00375Сн	00385Сн				XXXXXXXX _B					
003А5Дн	003B5Dн	00375Dн	00385Dн	ID register 15	IDR15	R/W	XXXXXXX					
003А5Ен	003В5Ен	00375Ен	00385Ен				XXXXXB					
003А5Гн	003В5Гн	00375Fн	00385Fн				XXXXXXX					

List of Message Buffers (Data register)

	Add	ress	LISUUI	Message Buffers (Data regis	Abbre-		
CAN0	CAN1	CAN2	CAN3	Register	viation	Access	Initial Value
003A80н to 003A87н	003B80н to 003B87н	003780н to 003787н	003880н to 003887н	Data register 0 (8 bytes)	DTR0	R/W	XXXXXXXXB to XXXXXXXXB
003A88н to 003A8Fн	003B88н to 003B8Fн	003788н to 00378Fн	003888н to 00388Fн	Data register 1 (8 bytes)	DTR1	R/W	XXXXXXXXB to XXXXXXXXB
003A90н to 003A97н	003В90н to 003В97н	003790н to 003797н	003890н to 003897н	Data register 2 (8 bytes)	DTR2	R/W	XXXXXXXXB to XXXXXXXXB
003A98н to 003A9Fн	003В98н to 003В9Fн	003798н to 00379Fн	003898н to 00389Fн	Data register 3 (8 bytes)	DTR3	R/W	XXXXXXXXB to XXXXXXXXB
003AA0н to 003AA7н	003BA0н to 003BA7н	0037A0н to 0037A7н	0038A0н to 0038A7н	Data register 4 (8 bytes)	DTR4	R/W	XXXXXXXXB to XXXXXXXXB
003AA8н to 003AAFн	003BA8н to 003BAFн	0037A8н to 0037AFн	0038A8н to 0038AFн	Data register 5 (8 bytes)	DTR5	R/W	XXXXXXXXB to XXXXXXXXXB
003AB0н to 003AB7н	003BB0н to 003BB7н	0037B0н to 0037B7н	0038В0н to 0038В7н	Data register 6 (8 bytes)	DTR6	R/W	XXXXXXXXB to XXXXXXXXXB
003AB8н to 003ABFн	003BB8н to 003BBFн	0037В8н to 0037ВFн	0038В8н to 0038ВFн	Data register 7 (8 bytes)	DTR7	R/W	XXXXXXXXB to XXXXXXXXXB
003AC0н to 003AC7н	003BC0н to 003BC7н	0037C0н to 0037C7н	0038C0н to 0038C7н	Data register 8 (8 bytes)	DTR8	R/W	XXXXXXXXB to XXXXXXXXB
003AC8н to 003ACFн	003BC8н to 003BCFн	0037С8н to 0037СFн	0038С8н to 0038СFн	Data register 9 (8 bytes)	DTR9	R/W	XXXXXXXXB to XXXXXXXXB
003AD0н to 003AD7н	003BD0н to 003BD7н	0037D0н to 0037D7н	0038D0н to 0038D7н	Data register 10 (8 bytes)	DTR10	R/W	XXXXXXXXB to XXXXXXXXXB
003AD8н to 003ADFн	003BD8н to 003BDFн	0037D8н to 0037DFн	0038D8н to 0038DFн	Data register 11 (8 bytes)	DTR11	R/W	XXXXXXXXB to XXXXXXXXXB
003AE0н to 003AE7н	003BE0н to 003BE7н	0037E0н to 0037E7н	0038E0н to 0038E7н	Data register 12 (8 bytes)	DTR12	R/W	XXXXXXXXB to XXXXXXXXXB
003AE8н to 003AEFн	003BE8н to 003BEFн	0037E8н to 0037EFн	0038E8н to 0038EFн	Data register 13 (8 bytes)	DTR13	R/W	XXXXXXXXB to XXXXXXXXB
003AF0н to 003AF7н	003BF0н to 003BF7н	0037F0н to 0037F7н	0038F0н to 0038F7н	Data register 14 (8 bytes)	DTR14	R/W	XXXXXXXXB to XXXXXXXXB
003AF8н to 003AFFн	003BF8н to 003BFFн	0037F8н to 0037FFн	0038F8н to 0038FFн	Data register 15 (8 bytes)	DTR15	R/W	XXXXXXXXB to XXXXXXXXB

(Continued)

- *5 : Average output current is defined as the average value of the current flowing through any one of the corresponding pins within a period of 100 ms. The "average value" can be calculated by multiplying the "operating current" by the "operating factor".
- *6 : Average total output current is defined as the average value of the current flowing through all of the corresponding pins within a period of 100 ms. The "average value" can be calculated by multiplying the "operating current" by the "operating factor".
- *7: Applicable to pins: P10 to P15,P50 to P57,P60 to P67,P70 to P77,P80 to P87,PC0 to PC7,PD0 to PD6, PE0 to PE2
 - Use within recommended operating conditions.
 - Use at DC voltage (current) .
 - The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied, the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
 - Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the microcontroller may partially malfunction on power supplied through the +B signal pin.
 - Note that if the +B input is applied during power-on, the power supply voltage may reach a level such that the power-on reset does not function due to the power supplied from the +B signal.
 - Care must be taken not to leave +B input pins open.
 - Note that analog system input/output pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal inputs.
 - Sample recommended circuit :


WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(Vss = DVss = AVss = 0.0 V)

Parameter	Symbol	Val	ue	Unit	Remarks
Farameter	Syllibol	Min	Max	Oilit	nemarks
Power supply	Vcc	4.0	5.5	V	The low voltage detection reset operates when the power supply voltage reaches 4.2 V \pm 0.2 V.
voltage	AVcc DVcc	4.4	5.5	V	Maintain stop operation status The low voltage detection reset operates when the power supply voltage reaches 4.2 V \pm 0.2 V.
Smoothing capacitor*	Cs	0.1	1.0	μF	Use a ceramic capacitor or other capacitor of equivalent frequency characteristics. Use a capacitor with a capacitance greater than this capacitor as the bypass capacitor for the Vcc pin.
Operating temperature	Та	- 40	+ 105	°C	

^{*:} Refer to the following diagram for details on the connection of the smoothing capacitor Cs.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

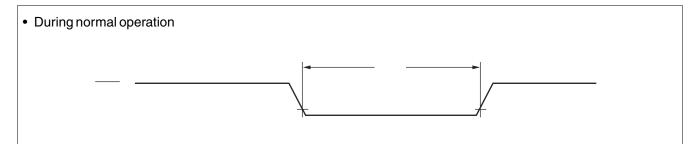
> Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

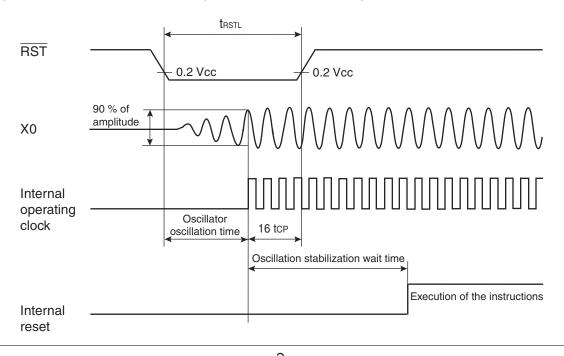
$$(Vcc = 5.0 \text{ V} \pm 10\%, Vss = DVss = AVss = 0.0 \text{ V}, T_A = -40 \,^{\circ}\text{C to} + 105 \,^{\circ}\text{C})$$

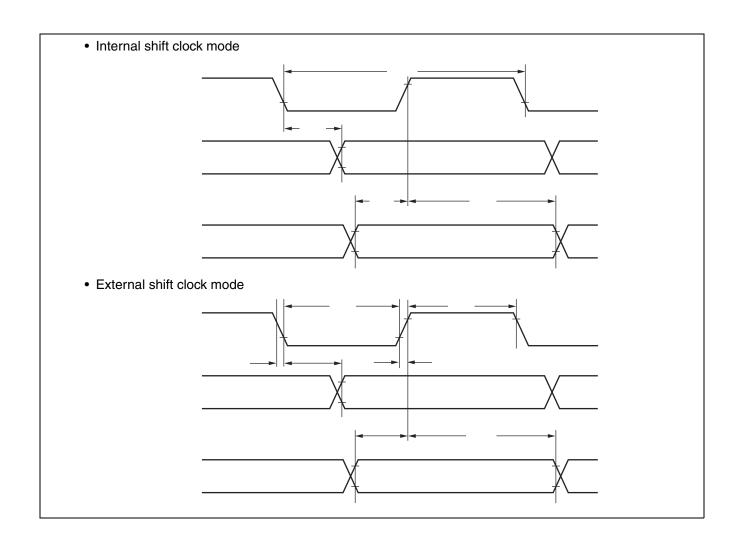
Parameter	Symbol	Pin name Conditions		Value			Unit	Remarks
raiailletei	Symbol			Min	Тур	Max	Oiiit	Heiliaiks
LCDC leakage current	ILCDC	V0 to V3, COMm (m = 0 to 3), SEGn, (n = 00 to 31)			_	5.0	μΑ	
LCD output impedance	Rvcom	COMn (n = 0 to 3)	_	_		4.5	kΩ	
	Rvseg	SEGn (n = 00 to 31)	_	_		17	kΩ	

^{*:} Power supply current values assume an external clock supplied to the X1 pin and X1A pin. Users must be aware that power supply current levels differ depending on whether an external clock or oscillator is used.


(2) Reset input

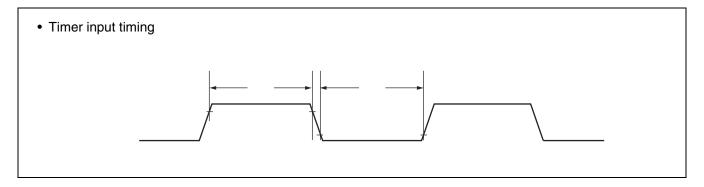
$$(Vcc = 5.0 \text{ V} \pm 10\%, Vss = AVss = 0.0 \text{ V}, T_A = -40 ^{\circ}\text{C} \text{ to} +105 ^{\circ}\text{C})$$


Parameter	Symbol	Pin name	Value		Unit	Remarks	
Farameter	Syllibol	Fili Hallie	Min	Max	Oilit	nemarks	
Reset input time				500	_	ns	During normal operation
	t RSTL	RST	Oscillator oscillation time* + 16 tcp		ms	In stop mode, sub clock mode, sub sleep mode, and watch mode	
			100		μs	In time-base timer mode	


^{*:} The oscillation time of the oscillator is the time taken to reach 90% of the amplitude. The oscillation time of a crystal oscillator is between several ms and tens of ms. The oscillation time of a ceramic oscillator is between hundreds of μ s and several ms. The oscillation time of an external clock is 0 ms.

Note: tcp is the internal operating clock cycle time. (Unit: ns)

• In stop mode, sub clock mode, sub sleep mode, watch mode, and power-on



(5) Timer input timing

 $(Vcc = 5.0 V\pm 10\%, Vss = AVss = 0.0 V, T_A = -40 °C to +105 °C)$

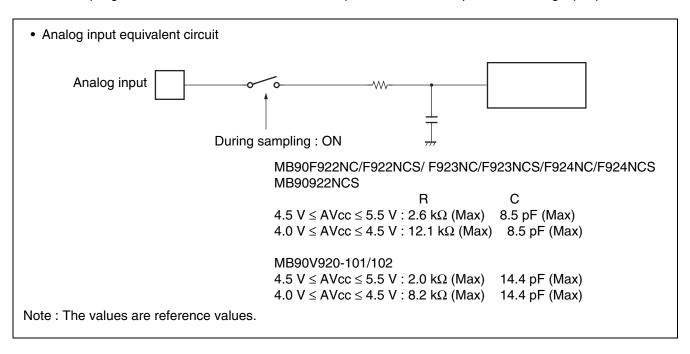
Parameter	Symbol	Pin name	Conditions	Value		Unit
		i ili ilalile	Conditions	Min	Max	
Input pulse width	tтıwн tтıwL	TIN0, TIN1, IN0 to IN3	_	4 tcp	_	ns

Note: tcp is the internal operating clock cycle time. Refer to "(1) Clock timing".

5. A/D Converter

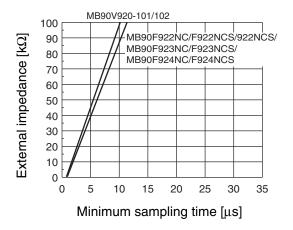
(1) Electrical Characteristics

(Vcc = AVcc = AVRH = 4.0 V to 5.5 V, Vss = AVss = 0.0 V, $T_A = -40$ °C to +105 °C)


Parameter	Symbol	Pin name	Value			Heit	Domostro	
			Min	Тур	Max	Unit	Remarks	
Resolution				_	10	bit		
Total error	_	_	- 3.0	_	+ 3.0	LSB		
Non-linear error	_	_	- 2.5	_	+ 2.5	LSB		
Differential linear error	_	_	– 1.9	_	+ 1.9	LSB		
Zero transition voltage	Vот	AN0 to AN7	AVss – 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	V	1 LSB = - (AVRH – AVss) / 1024	
Full scale transition voltage	VFST	AN0 to AN7	AVRH – 3.5 LSB	AVRH – 1.5 LSB	AVRH + 0.5 LSB	V		
Sampling time	t smp	_	0.4		16500	μs	4.5 V ≤ AVcc ≤ 5.5 V	
			1.0				4.0 V ≤ AVcc ≤ 4.5 V	
Compare time	tcmp	_	0.66		_	μs	4.5 V ≤ AVcc ≤ 5.5 V	
			2.2				4.0 V ≤ AVcc ≤ 4.5 V	
A/D conversion time	tcnv	_	1.44		_	μs	*1	
Analog port input current	lain	AN0 to AN7	- 0.3	_	+ 10	μА		
Analog input voltage	Vain	AN0 to AN7	0	_	AVRH	V		
Reference voltage	AV+	AVRH	AVss + 2.7	_	AVcc	V		
Power supply current	lΑ	AVcc	_	2.3	6.0	mA		
	Іан	AVCC	_	_	5	μΑ	*2	
Reference voltage	IR	AVRH	_	520	900	μΑ	Vavrh = 5.0 V	
supply current	IRH	AVIIII			5	μΑ	*2	
Inter-channel variation		AN0 to AN7			4	LSB		

^{*1 :} The time per channel (4.5 V \leq AVcc \leq 5.5 V, and internal operating frequency = 32 MHz) .

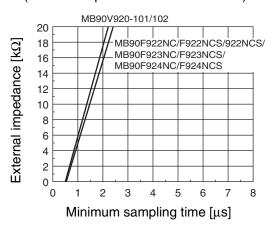
^{*2 :} Defined as supply current (when $V_{CC} = AV_{CC} = AV_{CC}$


• Notes on the external impedance and sampling time of analog inputs

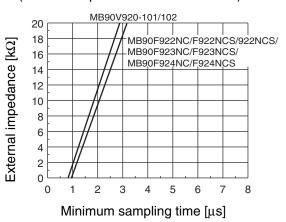
A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. If the sampling time is still not sufficient, connect a capacitor of about 0.1 μ F to the analog input pin.

- The relationship between the external impedance and minimum sampling time
- At 4.5 V ≤ AVcc ≤ 5.5 V

(External impedance = $0 \text{ k}\Omega$ to $100 \text{ k}\Omega$)



• At $4.0 \text{ V} \leq \text{AVcc} \leq 4.5 \text{ V}$


(External impedance = $0 \text{ k}\Omega$ to $100 \text{ k}\Omega$)

(External impedance = $0 \text{ k}\Omega$ to $20 \text{ k}\Omega$)

(External impedance = $0 \text{ k}\Omega$ to $20 \text{ k}\Omega$)

About errors

As |AVRH - AVss| becomes smaller, the relative errors grow larger.

■ ORDERING INFORMATION

Part number	Package	Remarks		
MB90F922NCPMC MB90F922NCSPMC MB90922NCSPMC MB90F923NCPMC MB90F923NCSPMC MB90F924NCPMC MB90F924NCPMC	120-pin plastic LQFP (FPT-120P-M21)			
MB90V920-101CR MB90V920-102CR	299-pin ceramic PGA (PGA-299C-A01)	For evaluation		

FUJITSU SEMICONDUCTOR LIMITED

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome, Kohoku-ku Yokohama Kanagawa 222-0033, Japan

Tel: +81-45-415-5858 http://jp.fujitsu.com/fsl/en/

For further information please contact:

North and South America

FUJITSU SEMICONDUCTOR AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://us.fujitsu.com/micro/

Europe

FUJITSU SEMICONDUCTOR EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/semiconductor/

Korea

FUJITSU SEMICONDUCTOR KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

Asia Pacific

FUJITSU SEMICONDUCTOR ASIA PTE. LTD.
151 Lorong Chuan,
#05-08 New Tech Park 556741 Singapore
Tel: +65-6281-0770 Fax: +65-6281-0220
http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China
Tel: +86-21-6146-3688 Fax: +86-21-6335-1605
http://cn.fujitsu.com/fss/

FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: +852-2377-0226 Fax: +852-2376-3269

http://cn.fujitsu.com/fsp/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited: Sales Promotion Department