

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	93
Program Memory Size	256KB (256K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	10K × 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	120-LQFP
Supplier Device Package	120-LQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90922ncspmc-gs-152e1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

16-bit Microcontroller

CMOS

F²MC-16LX MB90920 Series

MB90F922NC/F922NCS/922NCS/F923NC/F923NCS/ MB90F924NC/F924NCS/V920-101/V920-102

DESCRIPTION

The MB90920 series is a family of general-purpose FUJITSU SEMICONDUCTOR 16-bit microcontrollers designed for applications such as vehicle instrument panel control.

The instruction set retains the AT architecture from the F²MC-8L and F²MC-16LX families, with further refinements including high-level language instructions, extended addressing modes, improved multiplication and division operations (signed), and bit processing. In addition, long word processing is made possible by the inclusion of a built-in 32-bit accumulator.

Note : F²MC is the abbreviation of FUJITSU Flexible Microcontroller.

■ FEATURES

Clock

Built-in PLL clock frequency multiplication circuit.

Selection of machine clocks (PLL clocks) is allowed among frequency division by two on oscillation clock, and multiplication of 1 to 8 times of oscillation clock (for 4 MHz oscillation clock, 4 MHz to 32 MHz). Operation by sub clock (up to 50 kHz : 100 kHz oscillation clock divided by two) is allowed.

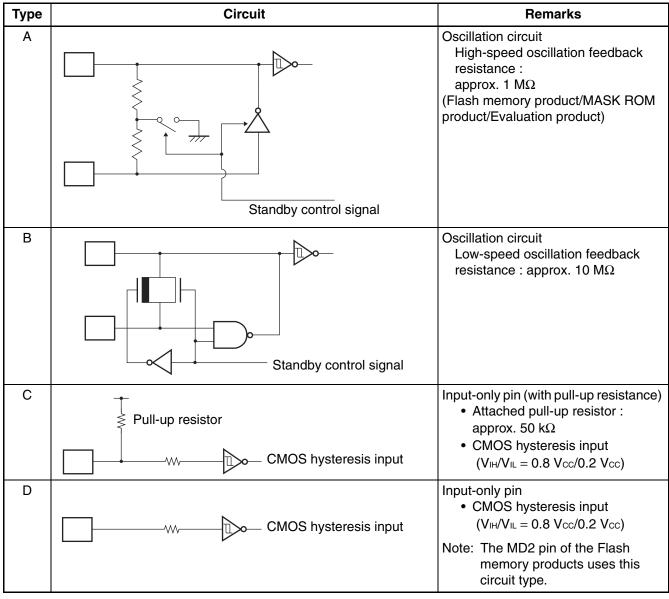
- 16-bit input capture (8 channels) Detects rising, falling, or both edges.
 - 16-bit capture register × 8

The value of a 16-bit free-run timer counter is latched upon detection of an edge input to pin and an interrupt request is generated.

(Continued)

For the information for microcontroller supports, see the following web site.

This web site includes the **"Customer Design Review Supplement"** which provides the latest cautions on system development and the minimal requirements to be checked to prevent problems before the system development.


http://edevice.fujitsu.com/micom/en-support/

(Continued) 16-bit reload timer (4 channels) 16-bit reload timer operation (select toggle output or one-shot output) Selectable event count function Real time watch timer (main clock) Operates directly from oscillator clock. Interrupt can be generated by second/minute/hour/date counter overflow. • PPG timer (6 channels) Output pins (3 channels), external trigger input pin (1 channel) Operation clock frequencies : fcp, fcp/2², fcp/2⁴, fcp/2⁶ Delay interrupt Generates interrupt for task switching. Interrupts to CPU can be generated/cleared by software setting. • External interrupts (8 channels) 8-channel independent operation Interrupt source setting available : "L" to "H" edge/ "H" to "L" edge/ "L" level/ "H" level. 8/10-bit A/D converter (8 channels) Conversion time : $3 \mu s$ (at $f_{CP} = 32 \text{ MHz}$) External trigger activation available (P50/INT0/ADTG) Internal timer activation available (16-bit reload timer 1) UART(LIN/SCI) (4 channels) Equipped with full duplex double buffer Clock-asynchronous or clock-synchronous serial transfer is available • CAN interface (4 channels : CAN0 and CAN2, and CAN1 and CAN3 share transmission and reception pins, and interrupt control registers). Conforms to CAN specifications version 2.0 Part A and B. Automatic resend in case of error. Automatic transfer in response to remote frame. 16 prioritized message buffers for data and ID Multiple message support Flexible configuration for receive filter : Full bit compare/full bit mask/two partial bit masks Supports up to 1 Mbps CAN wakeup function (RX connected to INT0 internally) • LCD controller/driver (32 segment x 4 common) Segment driver and command driver with direct LCD panel (display) drive capability Reset on detection of low voltage/program loop Automatic reset when low voltage is detected Program looping detection function Stepping motor controller (4 channels) High current output for each channel $\times 4$ Synchronized 8/10-bit PWM for each channel × 2 Sound generator (2 channels) 8-bit PWM signal mixed with tone frequency from 8-bit reload counter. PWM frequencies : 125 kHz, 62.5 kHz, 31.2 kHz, 15.6 kHz (at fcp = 32 MHz) Tone frequencies : PWM frequency $\frac{2}{2}$, divided by (reload frequency +1) Input/output ports General-purpose input/output port (CMOS output) 93 ports • Function for port input level selection Automotive/CMOS-Schmitt Flash memory security function Protects the contents of Flash memory (Flash memory product only)

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
K	P-ch P-ch Nout P-ch Nout Analog output CMOS hysteresis input Standby control signal or analog input enable signal or analog input enable signal or analog input enable signal CMOS hysteresis input Standby control signal or analog input enable signal CMOS input (SIN) Standby control signal or analog input enable signal CMOS input (SIN)	 A/D converter input common general- purpose port (serial input) CMOS output (IoH/IoL = ±4 mA) CMOS hysteresis input (VIH/VIL = 0.8 Vcc/0.2 Vcc) CMOS input (SIN) (VIH/VIL = 0.7 Vcc/0.3 Vcc) Automotive input (VIH/VIL = 0.8 Vcc/0.5 Vcc)
L	P-ch Pout High current N-ch Nout	High current output port (SMC pin) CMOS output (Io⊬/Io∟ = ± 30 mA)
M	P-ch P-ch P-ch P-ch P-ch Pout CMOS hysteresis input Standby control signal or LCDC output switching signal Automotive input Standby control signal or LCDC output switching signal CMOS input (SIN) Standby control signal or LCDC output switching signal CMOS input (SIN) Standby control signal or LCDC output switching signal	LCDC output common general- purpose port (serial input)) • CMOS output (IoH/IoL = ± 4 mA) • CMOS hysteresis input (VIH/VIL = 0.8 Vcc/0.2 Vcc) • CMOS input (SIN) (VIH/VIL = 0.7 Vcc/0.3 Vcc) • Automotive input (VIH/VIL = 0.8 Vcc/0.5 Vcc)

■ I/O MAP

Address	Register name	Symbol	Read/write	Resource name	Initial value
00000н	Port 0 data register	PDR0	R/W	Port 0	XXXXXXXXB
000001н	Port 1 data register	PDR1	R/W	Port 1	XXXXXXXX
000002н	Port 2 data register	PDR2	R/W	Port 2	XXXXXXXAB
00003н	Port 3 data register	PDR3	R/W	Port 3	XXXXXXXAB
000004н	Port 4 data register	PDR4	R/W	Port 4	XXXXXXXAB
000005н	Port 5 data register	PDR5	R/W	Port 5	XXXXXXXAB
00006н	Port 6 data register	PDR6	R/W	Port 6	XXXXXXXAB
000007н	Port 7 data register	PDR7	R/W	Port 7	XXXXXXXAB
00008н	Port 8 data register	PDR8	R/W	Port 8	XXXXXXXXB
000009н	Port 9 data register	PDR9	R/W	Port 9	XXXXXXXXB
00000Ан, 00000Вн		(Disab	led)		
00000Сн	Port C data register	PDRC	R/W	Port C	XXXXXXXXB
00000DH	Port D data register	PDRD	R/W	Port D	XXXXXXXXB
00000EH	Port E data register	PDRE	R/W	Port E	XXXXXXXXB
00000Fн		(Disab	led)		
000010н	Port 0 direction register	DDR0	R/W	Port 0	0000000в
000011н	Port 1 direction register	DDR1	R/W	Port 1	ХХ00000в
000012н	Port 2 direction register	DDR2	R/W	Port 2	000000XXB
000013н	Port 3 direction register	DDR3	R/W	Port 3	0000000в
000014н	Port 4 direction register	DDR4	R/W	Port 4	0000000в
000015н	Port 5 direction register	DDR5	R/W	Port 5	0000000в
000016н	Port 6 direction register	DDR6	R/W	Port 6	0000000в
000017н	Port 7 direction register	DDR7	R/W	Port 7	0000000в
000018н	Port 8 direction register	DDR8	R/W	Port 8	0000000в
000019н	Port 9 direction register	DDR9	R/W	Port 9	Х000000в
00001Ан	Analog input enable	ADER6	R/W	Port 6, A/D	11111111в
00001Bн		(Disab	led)		·
00001CH	Port C direction register	DDRC	R/W	Port C	0000000в
00001Dн	Port D direction register	DDRD	R/W	Port D	Х000000в
00001EH	Port E direction register	DDRE	R/W	Port E	XXXXX000B
00001Fн		(Disab	led)		
000020н	Lower A/D control status register	ADCS0	R/W		000XXXX0 _B
000021н	Higher A/D control status register	ADCS1	R/W	A/D converter	000000Хв
000022н	Lower A/D control status register	ADCR0	R	A/D converter	0000000в
000023н	Higher A/D data register	ADCR1	R		XXXXXX00 _B

Address	Register name	Symbol	Read/write	Resource name	Initial value			
000083н	(Disabled)							
000084н	PWM control register 2	PWC2	R/W	Stepping motor controller 2	00000Х0в			
000085н		(Disab	led)					
000086н	PWM control register 3	PWC3	R/W	Stepping motor controller 3	000000Х0в			
000087н		(Disab	led)					
000088н	LCD output control register 3	LOCR3	R/W	LCDC	XXXXX111 _B			
000089н		(Disab	led)					
00008A _H	A/D setting register 0	ADSR0	R/W		0000000В			
00008BH	A/D setting register 1	ADSR1	R/W	A/D converter	0000000в			
00008Сн	Port input level select 0	PIL0	R/W		0000000В			
00008DH	Port input level select 1	PIL1	R/W	Port input level select	XXXX0000 _B			
00008EH	Port input level select 2	PIL2	R/W	301001	XXXX0000 _B			
00008Fн to 00009Dн		(Disab	led)					
00009E н	Program address detection control register	PACSR	R/W	Address match detection	XXXX0X0X _B			
00009Fн	Delayed Interrupt/Release Register	DIRR	R/W	Delay interrupt	XXXXXXX0B			
0000А0н	Power saving mode control register	LPMCR	R/W	Power saving	00011000в			
0000A1 н	Clock select register	CKSCR	R/W, R	control circuit	11111100в			
0000A2н to 0000A7н		(Disab	led)					
0000A8H	Watchdog timer control register	WDTC	R, W	Watchdog timer	XXXXX111 _B			
0000А9н	Time-base timer control register	TBTC	R/W, W	Time-base timer	1XX00100 _B			
0000ААн	Watch timer control register	WTC	R/W, W, R	Watch timer (sub clock)	10001000 _B			
0000ABн to 0000ADн		(Disabled)						
0000AEH	Flash memory control status register	FMCS	R/W	Flash interface	000X0000B			
0000AFн	(Disabled)							

Address	Register name	Symbol	Read/write	Resource name	Initial value
0000В0н	Interrupt control register 00	ICR00	R/W		00000111в
0000B1 н	Interrupt control register 01	ICR01	R/W		00000111в
0000В2н	Interrupt control register 02	ICR02	R/W		00000111в
0000ВЗн	Interrupt control register 03	ICR03	R/W		00000111в
0000B4н	Interrupt control register 04	ICR04	R/W		00000111в
0000В5н	Interrupt control register 05	ICR05	R/W		00000111в
0000В6н	Interrupt control register 06	ICR06	R/W		00000111в
0000В7 н	Interrupt control register 07	ICR07	R/W	Interrupt controller	00000111в
0000В8н	Interrupt control register 08	ICR08	R/W	Interrupt controller	00000111в
0000В9н	Interrupt control register 09	ICR09	R/W		00000111в
0000ВАн	Interrupt control register 10	ICR10	R/W		00000111в
0000BBн	Interrupt control register 11	ICR11	R/W		00000111в
0000BCH	Interrupt control register 12	ICR12	R/W		00000111в
0000BDн	Interrupt control register 13	ICR13	R/W		00000111в
0000BEH	Interrupt control register 14	ICR14	R/W		00000111в
0000BFн	Interrupt control register 15	ICR15	R/W		00000111в
0000C0н to 0000C3н		(Disabl	ed)		
0000C4н	Serial mode register 1	SMR1	R/W, W		0000000в
0000C5н	Serial control register 1	SCR1	R/W, W		0000000в
0000C6н	Reception/transmission data register 1	RDR1/ TDR1	R/W		0000000в
0000C7н	Serial status register 1	SSR1	R/W, R	UART	00001000в
0000C8⊦	Extended communication control register 1	ECCR1	R/W, R	(LIN/SCI) 1	000000XX _B
0000C9H	Extended status control register 1	ESCR1	R/W		00000100в
0000CAH	Baud rate generator register 10	BGR10	R/W		0000000в
0000CBH	Baud rate generator register 11	BGR11	R/W, R		0000000в
0000ССн	Lower watch timer control register	WTCRL	R/W	Dealling	000XXXX0 _B
0000CDH	Middle watch timer control register	iddle watch timer control register WTCRM R/W watch timer		watch timer	0000000в
0000CEH	Higher watch timer control register	WTCRH	R/W		XXXXXX00 _B
0000CFH	Sub clock control register	PSCCR	W	Sub clock	XXXX0000 _B
0000D0н	Input capture control status 4/5	ICS45	R/W	Input capture 4/5	0000000в
0000D1 н	Input capture edge register 4/5	ICE45	R/W, R		XXXXXXXXB
0000D2H	Input capture control status 6/7	ICS67	R/W	Input capture 6/7	0000000в
0000D3н	Input capture edge register 6/7	ICE67	R/W, R		XXX0X0XX _B

Address	Register name	Symbol	Read/write	Resource name	Initial value				
003970н to 003973н		(Disabled)							
003974н	Frequency data register 1	SGFR1	R/W		XXXXXXXXB				
003975н	Amplitude data register 1	SGAR1	R/W	Sound concretor 1	0000000в				
003976н	Decrement grade register 1	SGDR1	R/W	Sound generator 1	XXXXXXXXB				
003977н	Tone count register 1	SGTR1	R/W		XXXXXXXXB				
003978н to 00397Fн		(Disab	led)						
003980н	DWM1 compare register 0	PWC10	R/W		XXXXXXXXB				
003981 н	PWM1 compare register 0	FWCIU	U/ M		XXXXXXXXB				
003982н	BWW compare register 0	PWC20	R/W	Stepping motor	XXXXXXXXB				
003983н	PWM2 compare register 0	F WC20	U/ M	controller 0	XXXXXXXXB				
003984н	PWM1 select register 0	PWS10	R/W		0000000в				
003985н	PWM2 select register 0	PWS20	R/W		Х000000в				
003986н, 003987н		(Disab	led)						
003988н	DWM1 compare register 1	PWC11	R/W		XXXXXXXXB				
003989н	PWM1 compare register 1	PWCII	H/ VV		XXXXXXXXB				
00398Ан	DWM2 compare register 1	PWC21	R/W	Stepping motor	XXXXXXXXB				
00398Вн	PWM2 compare register 1	PWC21	H/ VV	controller 1	XXXXXXXXB				
00398Сн	PWM1 select register 1	PWS11	R/W		0000000в				
00398Dн	PWM2 select register 1	PWS21	R/W		Х000000в				
00398Eн, 00398Fн		(Disab	led)						
003990н					XXXXXXXXB				
003991 н	PWM1 compare register 2	PWC12	R/W		XXXXXXXXB				
003992н	DW/M2 compare register 2			Stepping motor	XXXXXXXXB				
003993н	PWM2 compare register 2	PWC22	R/W	controller 2	XXXXXXXXB				
003994н	PWM1 select register 2	PWS12	R/W		0000000в				
003995н	PWM2 select register 2	PWS22	R/W		Х000000в				
003996н, 003997н	(Disabled) (Continued)								

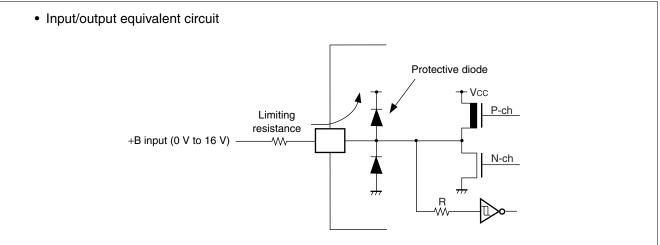
Address	Register name	Symbol	Read/write	Resource name	Initial value	
003998н		DWO10			XXXXXXXXB	
003999н	PWM1 compare register 3	PWC13	R/W		XXXXXXXXB	
00399Ан	State St		Stepping motor	XXXXXXXXB		
00399Вн	PWM2 compare register 3	PWC23	R/W	controller 3	XXXXXXXXB	
00399Сн	PWM1 select register 3	PWS13	R/W		0000000в	
00399Dн	PWM2 select register 3	PWS23	R/W		Х000000в	
00399Ен to 0039А5н		(Disab	led)			
0039А6н	Flash write control register 0	FWR0	R/W	Elech I/E	0000000в	
0039А7 н	Flash write control register 1	FWR1	- N/VV	Flash I/F	0000000в	
0039А8н to 0039BFн		(Disab	led)			
0039C0н to 0039DFн	Area reserved for CAN Controller 2. Refer to "■ CAN CONTROLLERS"					
0039E0н to 0039FFн	Area reserved for CAN Controller 3. Refer to "■ CAN CONTROLLERS"					
003A00н to 003AFFн	Area reserved for CAN C	ontroller 0. F	lefer to " ∎ CA	N CONTROLLERS	,	
003B00н to 003BFFн	Area reserved for CAN C	ontroller 1. F	lefer to " ■ CA	N CONTROLLERS"	,	
003C00н to 003CFFн	Area reserved for CAN Controller 0. Refer to "■ CAN CONTROLLERS"					
003D00н to 003DFFн	Area reserved for CAN Controller 1. Refer to "■ CAN CONTROLLERS"					
003E00н to 003EFFн	Area reserved for CAN Controller 2. Refer to "■ CAN CONTROLLERS"					
003F00н to 003FFFн	Area reserved for CAN Controller 3. Refer to "■ CAN CONTROLLERS"					

CAN CONTROLLERS

The CAN controller has the following features :

- Conforms to CAN Specification Version 2.0 Part A and B
 - Supports transmission/reception in standard frame and extended frame formats
- Supports transmission of data frames by receiving remote frames
- 16 transmission/reception message buffers
 - 29-bit ID and 8-byte data
 - Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask
 - 2 acceptance mask registers in either standard frame format or extended frame formats
- Bit rate programmable from 10 kbps to 2 Mbps (when input clock is at 16 MHz)

	Address			Register	Abbreviation	Access	Initial Value
CAN0	CAN1	CAN2	CAN3	negister	Abbreviation	ALLESS	
003С00н	003D00н	003E00н	003F00н	Control status register	CSR	R/W, R	00000в
003C01н	003D01н	003E01 н	003F01 н	Control Status register	0311	ח/ ٧٧, ח	00-1в
003C02н	003D02 _H	003E02н	003F02н	Last event indicator	LEIR	R/W	В
003C03н	003D03н	003E03н	003F03н	register			000-0000в
003C04н	003D04 _H	003E04 _H	003F04н	RX/TX error counter	RTEC	R	0000000в
003C05н	003D05н	003E05н	003F05н		meo	11	0000000в
003C06н	003D06н	003E06н	003F06н	Bit timing register	BTR	R/W	-1111111в
003C07н	003D07н	003E07 н	003F07 н		BIN	I 1/ V V	11111111 _В


List of Control Registers(1)

List of Control Registers(2)

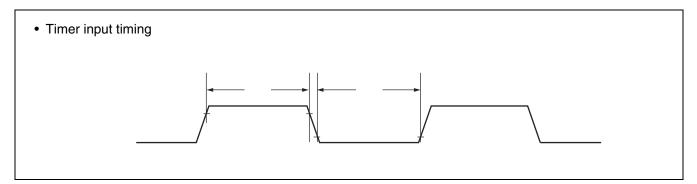
	Add	ress		List of Control Registers(2)	Abbre-	-	
CAN0	CAN1	CAN2	CAN3	Register	viation	Access	Initial Value
000040н	000070н	0039C0 н	0039D0н	Maaaaa kuffan oo lid na siatan			0000000в
000041н	000071 н	0039C1 н	0039D1 н	Message buffer valid register	BVALR	R/W	0000000в
000042н	000072н	0039С2н	0039D2н			R/W	0000000в
000043н	000073н	0039С3н	0039D3н	Transmit request register	TREQR	H/VV	0000000в
000044н	000074н	0039C4н	0039D4н	Transmit cancel register	TCANR	W	0000000в
000045н	000075н	0039С5н	0039D5н	Transmit cancer register	ICANN	vv	0000000в
000046н	000076н	0039С6н	0039D6н	Transmit complete register	TCR	R/W	0000000в
000047н	000077н	0039C7 н	0039D7н		ICh		0000000в
000048н	000078н	0039C8н	0039D8н	Receive complete register	RCR	R/W	0000000в
000049н	000079н	0039С9н	0039D9н		non		0000000в
00004Ан	00007Ан	0039САн	0039DAн	Remote request receive	RRTRR	R/W	0000000в
00004Вн	00007Вн	0039СВн	0039DBн	register	nninn		0000000в
00004Сн	00007Сн	0039ССн	0039DCн	Receive overrun register	ROVRR	R/W	0000000в
00004DH	00007Dн	0039CDH	0039DDн		novnin	1 1/ V V	0000000в
00004Eн	00007Eн	0039CEH	0039DEH	Receive interrupt enable	RIFR	RIER R/W	0000000в
00004Fн	00007F н	0039CFн	0039DFн	register			0000000в
003C08н	003D08н	003E08н	003F08н	IDE register	IDER	IDER R/W	XXXXXXXXB
003С09н	003D09н	003E09н	003F09н			11/ VV	XXXXXXXXB
003С0Ан	003D0Aн	003Е0Ан	003F0Aн	Transmit RTR register	тртрр	TRTRR R/W	0000000в
003С0Вн	003D0Bн	003E0Bн	003F0Bн			10,00	0000000в
003С0Сн	003D0Cн	003E0CH	003F0Cн	Remote frame receive wait	RFWTR	R/W	XXXXXXXXB
003C0Dн	003D0Dн	003E0Dн	003F0Dн	register			XXXXXXXXB
003C0Eн	003D0Eн	003E0E н	003F0Eн	Transmit interrupt enable	TIER	R/W	0000000в
003C0Fн	003D0Fн	003E0Fн	003F0Fн	register		10,00	0000000в
003C10н	003D10 н	003E10н	003F10н				XXXXXXXXB
003C11н	003D11 н	003E11н	003F11н	Acceptance mask select	AMSR	R/W	XXXXXXXXB
003C12н	003D12н	003E12н	003F12н	register		1000	XXXXXXXXB
003C13н	003D13н	003E13н	003F13⊦				XXXXXXXXB
003C14н	003D14н	003E14н	003F14н				XXXXXXXXB
003C15н	003D15н	003E15н	003F15⊦	Acceptance mask register 0	AMR0	R/W	XXXXXXXXB
003C16н	003D16н	003E16н	003F16н		/		XXXXXB
003C17н	003D17н	003E17н	003F17н				XXXXXXXXB
003C18н	003D18н	003E18⊦	003F18⊦				XXXXXXXXB
003C19н	003D19н	003E19н	003F19⊦	Acceptance mask register 1	AMR1	R/W	XXXXXXXXB
003C1Aн	003D1Aн	003E1Aн	003F1Aн				XXXXXB
003C1BH	003D1Bн	003E1Bн	003F1Bн				XXXXXXXXB

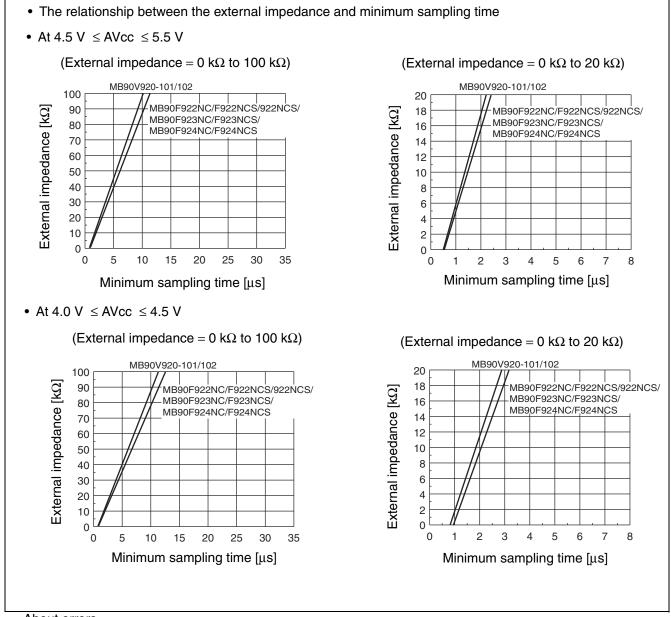
(Continued)

- *5 : Average output current is defined as the average value of the current flowing through any one of the corresponding pins within a period of 100 ms. The "average value" can be calculated by multiplying the "operating current" by the "operating factor".
- *6 : Average total output current is defined as the average value of the current flowing through all of the corresponding pins within a period of 100 ms. The "average value" can be calculated by multiplying the "operating current" by the "operating factor".
- *7 : Applicable to pins: P10 to P15,P50 to P57,P60 to P67,P70 to P77,P80 to P87,PC0 to PC7,PD0 to PD6, PE0 to PE2
 - Use within recommended operating conditions.
 - Use at DC voltage (current).
 - The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied, the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
 - Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the microcontroller may partially malfunction on power supplied through the +B signal pin.
 - Note that if the +B input is applied during power-on, the power supply voltage may reach a level such that the power-on reset does not function due to the power supplied from the +B signal.
 - Care must be taken not to leave +B input pins open.
 - Note that analog system input/output pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal inputs.
 - Sample recommended circuit :

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

Parameter	Symbol	Pin name	name Conditions		/alue		Unit	Remarks
Farameter			Min	Тур	Max	Unit	nemarks	
Input leakage current	In.	All input pins	Vcc = DVcc = AVcc = 5.5 V, Vss < Vi < Vcc	_		10	μA	
Input capacitance 1	CIN1	All pins except VCC, VSS, DVCC, DVSS, AVCC, AVSS, C, P70 to P77, P80 to P87				15	pF	
Input capacitance 2	CIN2	P70 to P77, P80 to P87	_		_	45	pF	
Pull-up resistance	Rup	RST	—	25	50	100	kΩ	
Pull-down resistance	Rdown	MD2	_			100	kΩ	Excluding Flash memory product
General-purpose output "H" voltage	V _{OH1}	All pins except P70 to P77, P80 to P87	Vcc = 4.5 V, Іон = -4.0 mA	Vcc - 0.5	_	_	v	
Stepping motor output "H" voltage	Vон2	P70 to P77, P80 to P87	Vcc = 4.5 V, Іон = -30.0 mA	Vcc-0.5			V	
General-purpose output "L" voltage	V _{OL1}	All pins except P70 to P77, P80 to P87	$V_{CC} = 4.5 \text{ V},$ $I_{OL} = 4.0 \text{ mA}$	_		0.4	v	
Stepping motor output "L" voltage	Vol2	P70 to P77, P80 to P87	Vcc = 4.5 V, loL = 30.0 mA			0.55	V	
Stepping motor output phase variation "H"	ΔVон	PWM1Pn, PWM1Mn, PWM2Pn, PWM2Mn, n = 0 to 3	$V_{CC} = 4.5 V,$ $I_{OH} = -30.0 mA,$ maximum deviation V_{OH2}			90	mV	
Stepping motor output phase variation "L"	ΔVol	PWM1Pn, PWM1Mn, PWM2Pn, PWM2Mn, n = 0 to 3	$V_{CC} = 4.5 V,$ $I_{OL} = 30.0 mA,$ maximum deviation V_{OH2}			90	mV	
		Between V0 and V1,		50	100	200	kΩ	Evaluation product
LCD internal divider resistance	Rlcd	Between V1 and V2, Between V2 and V3		8.75	12.5	17.0	kΩ	Flash memory product

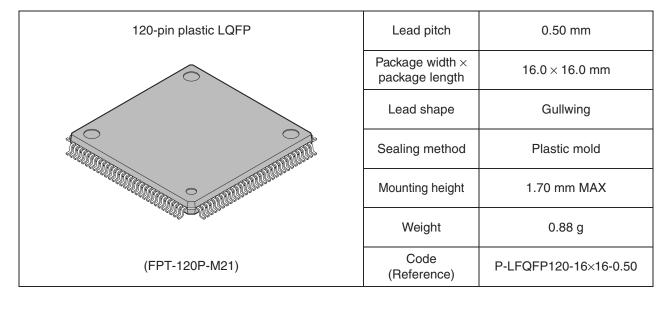

(Vcc = 5.0 V $\pm 10\%$, Vss = DVss = AVss = 0.0 V, T_A = -40 °C to +105 °C)

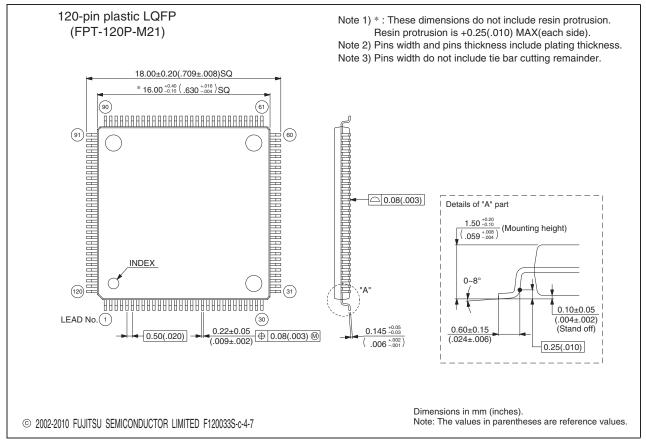

(5) Timer input timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to} + 105 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Pin name	Conditions	Va	lue	Unit
rarameter	Symbol	Pin name	Conditions	Min	Мах	Onit
Input pulse width	t⊤iwн t⊤iw∟	TIN0, TIN1, IN0 to IN3		4 tcp	_	ns

Note : tcp is the internal operating clock cycle time. Refer to " (1) Clock timing".

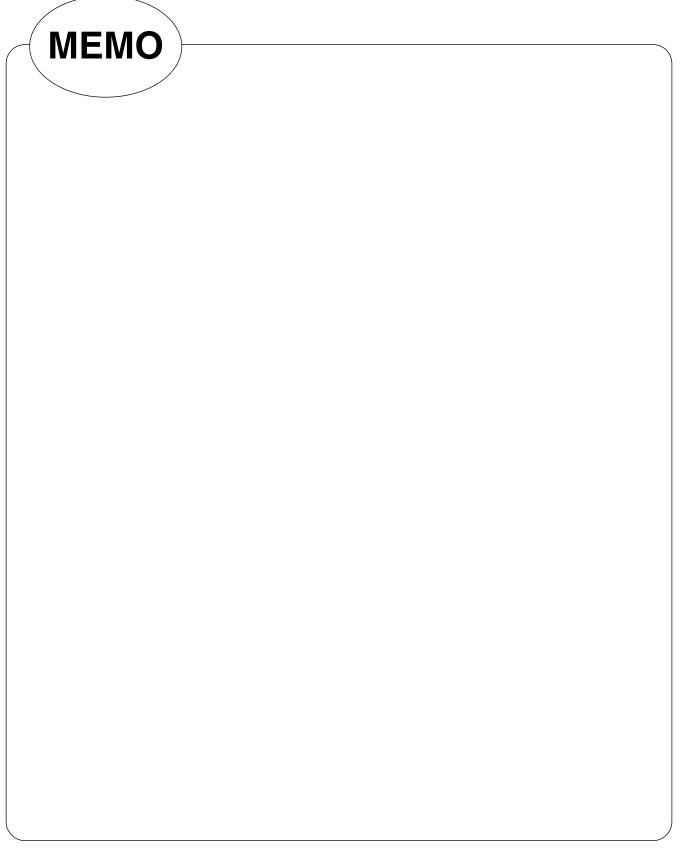

About errors


As |AVRH - AVss| becomes smaller, the relative errors grow larger.

■ ORDERING INFORMATION

Part number	Package	Remarks
MB90F922NCPMC MB90F922NCSPMC MB909922NCSPMC MB90F923NCPMC MB90F923NCSPMC MB90F924NCPMC MB90F924NCSPMC	120-pin plastic LQFP (FPT-120P-M21)	
MB90V920-101CR MB90V920-102CR	299-pin ceramic PGA (PGA-299C-A01)	For evaluation

■ PACKAGE DIMENSION



Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

■ MAJOR CHANGES IN THIS EDITION

Page	Section	Change Results
12	■I/O CIRCUIT TYPE	Corrected the circuit type B.
20	■ HANDLING DEVICES	 Added the following items; Serial communication Characteristic difference between flash device and MASK ROM device
31	■ I/O MAP	Corrected "Address: 003970 $_{\text{H}}$ ". Clock supervisor control register \rightarrow (Disabled)
46	ELECTRICAL CHARACTERISTICS3. DC Characteristics	Added the item for "LCD output impedance".
68	■ ORDERING INFORMATION	Corrected the part numbers; MB90V920-101 \rightarrow MB90V920-101CR MB90V920-102 \rightarrow MB90V920-102CR

The vertical lines marked in the left side of the page show the changes.

FUJITSU SEMICONDUCTOR LIMITED

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome, Kohoku-ku Yokohama Kanagawa 222-0033, Japan Tel: +81-45-415-5858 http://jp.fujitsu.com/fsl/en/

For further information please contact:

North and South America

FUJITSU SEMICONDUCTOR AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://us.fujitsu.com/micro/

Europe

FUJITSU SEMICONDUCTOR EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/semiconductor/

Korea

FUJITSU SEMICONDUCTOR KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

Asia Pacific

FUJITSU SEMICONDUCTOR ASIA PTE. LTD. 151 Lorong Chuan, #05-08 New Tech Park 556741 Singapore Tel : +65-6281-0770 Fax : +65-6281-0220 http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China Tel : +86-21-6146-3688 Fax : +86-21-6335-1605 http://cn.fujitsu.com/fss/

FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel : +852-2377-0226 Fax : +852-2376-3269 http://cn.fujitsu.com/fsp/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or other rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.