

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	93
Program Memory Size	256KB (256K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	120-LQFP
Supplier Device Package	120-LQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90922ncspmc-gs-161e1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin no.	Pin name	I/O circuit type*1	Function			
20	P96	0	General-purpose I/O port			
33	V2	G	LCD controller/driver reference power supply pin			
34	V3		LCD controller/driver reference power supply pin			
	PC0		General-purpose I/O port			
48	SIN0	J	UART ch.0 serial data input pin			
	INT4		INT4 external interrupt input pin			
	PC1		General-purpose I/O port			
40	SOT0		UART ch.0 serial data output pin			
49	INT5		INT5 external interrupt input pin			
	IN3		Input capture ch.3 trigger input pin			
	PC2		General-purpose I/O port			
50	SCK0		UART ch.0 serial clock I/O pin			
50	INT6		INT6 external interrupt input pin			
	IN2		Input capture ch.2 trigger input pin			
	PC3		General-purpose I/O port			
51 SIN1		J	UART ch.1 serial data input pin			
	INT7		INT7 external interrupt input pin			
52	PC4	. 1	General-purpose I/O port			
02	SOT1		UART ch.1 serial data output pin			
	PC5		General-purpose I/O port			
53	SCK1	I	UART ch.1 serial clock I/O pin			
	TRG		16-bit PPG ch.0 to ch.5 external trigger input pin			
	PC6		General-purpose I/O port			
54	PPG0		16-bit PPG ch.0 output pin			
01	TOT1		16-bit reload timer ch.1 TOT output pin			
	IN7		Input capture ch.7 trigger input pin			
	PC7		General-purpose I/O port			
55	PPG1		16-bit PPG ch.1 output pin			
00	55 TIN1		16-bit reload timer ch.1 TIN input pin			
	IN6		Input capture ch.6 trigger input pin			
24	PD0	1	General-purpose I/O port			
<u> </u>	SIN2	, , , , , , , , , , , , , , , , , , ,	UART ch.2 serial data input pin			
25	PD1	. 1	General-purpose I/O port			
SOT2			UART ch.2 serial data output pin			

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
Н	P-ch P-ch P-ch P-ch P-ch P-ch Pout Analog input CMOS hysteresis input Standby control signal or analog input enable signal Automotive input Standby control signal or analog input enable signal	A/D converter input common general-purpose port • CMOS output (IoH/IoL = ± 4 mA) • CMOS hysteresis input (VIH/VIL = 0.8 Vcc/0.2 Vcc) • Automotive input (VIH/VIL = 0.8 Vcc/0.5 Vcc)
1	P-ch Pout N-ch Nout N-ch Nout CMOS hysteresis input Standby control signal Automotive input Standby control signal	General-purpose port • CMOS output (Iон/IоL = ±4 mA) • CMOS hysteresis input (VIH/VIL = 0.8 Vcc/0.2 Vcc) • Automotive input (VIH/VIL = 0.8 Vcc/0.5 Vcc)
J	P-ch P-ch P-ch P-ch P-ch P-ut Nout	General-purpose port (serial input) • CMOS output (IoH/IoL = ± 4 mA) • CMOS hysteresis input (VIH/VIL = 0.8 Vcc/0.2 Vcc) • CMOS input (SIN) (VIH/VIL = 0.7 Vcc/0.3 Vcc) • Automotive input (VIH/VIL = 0.8 Vcc/0.5 Vcc)

HANDLING DEVICES

• Strictly observe maximum rated voltages (preventing latch-up)

In CMOS IC devices, a condition known as latch-up may occur if voltages higher than V_{cc} or lower than V_{ss} are applied to input or output pins other than medium or high withstand voltage pins, or if the voltage applied between VCC and VSS pins exceeds the rated voltage level. If a latch-up occurs, the power supply current may increase dramatically and may destroy semiconductor elements. When using semiconductor devices, always take sufficient care to avoid exceeding maximum ratings.

When the analog system power supply is switched on or off, be careful not to apply the analog power supply (AV_{cc}, AVRH), the analog input voltages and the power supply voltage for the high current output buffer pins (DV_{cc}) in excess of the digital power supply voltage (V_{cc}).

Once the digital power supply voltage (Vcc) has been disconnected, the analog power supply (AVcc, AVRH) and the power supply voltage for the high current output buffer pins (DVcc) may be turned on in any sequence.

Supply voltage stabilization

Rapid fluctuations in the power supply voltage can cause malfunctions even if the Vcc power supply voltage remains within the warranted operating range. It is recommended that the power supply be stabilized such that ripple fluctuations (P-P value) at commercial frequencies (50 Hz/60 Hz) be limited to within 10% of the standard Vcc value, and that transient fluctuations due to power supply switching, etc. be limited to a rate of 0.1 V/ms or less.

• Precautions when turning the power on

In order to prevent the built-in step-down circuits from malfunctioning, the time taken for the voltage to rise (0.2 V to 2.7 V) during power-on should be less than 50 μ s.

• Handling unused pins

If unused input pins are left open, they may cause malfunctions or latch-up which may lead to permanent damage to the semiconductor. Unused input pins should therefore be pulled up or pulled down through a resistor of at least 2 k Ω .

Unused input/output pins may be set to the output state and left open, or set to the input state and connected to a pull-up or pull-down resistance of 2 k Ω or more.

• Handling A/D converter power supply pins

Even if the A/D converter is not used, the power supply pins should be connected such as $AV_{CC} = V_{CC}$, and $AV_{SS} = AVRH = V_{SS}$.

• Notes on using an external clock

Even when an external clock is used, an oscillation stabilization wait time is required following power-on reset or release from sub clock mode or stop mode. Furthermore, only the X0A pin should be driven when an external clock is used, with the X1A pin open as shown in the following diagram. Do not use high-speed oscillation pins (X0 and X1) for external clock input.

• Handling the power supply for high-current output buffer pins (DVcc, DVss)

• Flash memory products and MASK ROM products (MB90F922NC/F922NCS/922NCS/F923NC/ F923NCS/F924NC/F924NCS)

In the Flash memory products and MASK ROM products, the power supply for the high-current output buffer pins (DVcc, DVss) is isolated from the digital power supply (Vcc).

Therefore, DVcc can therefore be set to a higher voltage than Vcc. If the power supply for the high-current output buffer pins (DVcc, DVss) is supplied before the digital power supply (Vcc), however, care needs to be taken because it is possible that the port 7 or port 8 stepping motor outputs may momentarily output an "H" or "L" level. In order to prevent this, connect the digital power supply (Vcc) prior to connecting the power supply for the high-current output buffer pins. Even when the high-current output buffer pins are used as general-purpose ports, power should be supplied to the power supply pins for the high-current output buffer pins (DVcc, DVss).

• Evaluation product (MB90V920-101/MB90V920-102)

In the evaluation products, the power supply for the high-current output buffer pins (DV_{cc}, DV_{ss}) is not isolated from the digital power supply (V_{cc}). Therefore, DV_{cc} must therefore be set to a lower voltage than Vcc. The power supply for the high-current output buffer pins (DV_{cc}, DV_{ss}) must always be applied after the digital power supply (V_{cc}) has been connected, and disconnected before the digital power supply (V_{cc}) is disconnected (the power supply for the high-current output buffer pins may also be connected and disconnected simultaneously with the digital power supply).

Even when the high-current output buffer pins are used as general-purpose ports, power should be supplied to the power supply pins for the high-current output buffer pins (DVcc, DVss).

Pull-up/pull-down resistors

MB90920 series does not support internal pull-up/pull-down resistors. Use external components as necessary.

Precautions when not using a sub clock signal

If the X0A and X1A pins are not connected to an oscillator, apply a pull-down resistance to the X0A pin and leave the X1A pin open.

Notes on operating when the external clock is stopped

The MB90920 series is not guaranteed to operate correctly using the internal oscillator circuit when there is no external oscillator or the external clock input is stopped.

• Flash memory security function

A security bit is located within the Flash memory region. The security function is activated by writing the protection code 01_{H} to the security bit.

Do not write the value 01_{H} to this address if you are not using the security function.

Please refer to following table for the address of the security bit.

	Flash memory size	Address for security bit
MB90F922NC MB90F922NCS	Built-in 2 Mbits Flash Memory	FC0001н
MB90F923NCS	Built-in 3 Mbits Flash Memory	F80001н
MB90F924NCS	Built-in 4 Mbits Flash Memory	F80001 н

MEMORY MAP

Note: To select models without the ROM mirror function, refer to the "ROM Mirror Function Selection Module" in Hardware Manual. The image of the ROM data in the FF bank appears at the top of the 00 bank, in order to enable efficient use of small C compiler models. The lower 16-bits of the FF bank addresses are allocated to the same addresses as the lower 16-bits of the 00 bank, making it possible to reference tables in ROM without declaring the "far" modifier with the pointers. For example, when an access is made to the address 00C000_H, the actual address to be accessed is FFC000_H in ROM. Because the size of the FF bank ROM area exceeds 32 Kbytes, it is not possible to view the entire region in the 00 bank image. Therefore because the ROM data from FF8000_H to FFFFF_H appears in the image from 008000_H to 00FFFF_H, it is recommended that ROM data tables be stored in the area from FF8000_H to FFFFF_H.

Address	Register name	Symbol	Read/write	Resource name	Initial value			
000024н	Compare alcor register		R/W		XXXXXXXXB			
000025н	Compare clear register	CPULK	R/W		XXXXXXXXB			
000026н	Timor data registar	TODT	R/W	16-bit	0000000в			
000027н		ICDI	R/W	free-run timer	0000000в			
000028н	Lower timer control status register	TCCSL	R/W		0000000в			
000029н	Higher timer control status register	TCCSH	R/W		01-00000в			
00002Ан	Lower PPG0 control status register	PCNTL0	R/W	16-bit PPC0	0000000в			
00002Вн	Higher PPG0 control status register	PCNTH0	R/W	10-51(11:00	0000001в			
00002Сн	Lower PPG1 control status register	PCNTL1	R/W	16-bit PPC1	0000000в			
00002Dн	Higher PPG1 control status register	PCNTH1	R/W		0000001в			
00002Eн	Lower PPG2 control status register	PCNTL2	R/W	16-bit PPC2	0000000в			
00002Fн	Higher PPG2 control status register	PCNTH2	R/W	10-0111 02	0000001в			
000030н	External interrupt enable	ENIR	R/W		0000000в			
000031н	External interrupt request	EIRR	R/W	External interrupt	0000000в			
000032н	Lower external interrupt level	ELVRL	R/W	External interrupt	0000000в			
000033н	Higher external interrupt level	ELVRH	R/W		0000000в			
000034н	Serial mode register 0	SMR0	R/W, W		0000000в			
000035н	Serial control register 0	SCR0	R/W, W		0000000в			
000036н	Reception/transmission data register 1	RDR0/ TDR0	R/W		0000000в			
000037н	Serial status register 0	SSR0	R/W, R	UART	00001000в			
000038н	Extended communication control register 0	ECCR0	R/W, R	(LIN/SCI) 0	000000XX _B			
000039н	Extended status control register 0	ESCR0	R/W		00000100в			
00003Ан	Baud rate generator register 00	BGR00	R/W		0000000в			
00003Вн	Baud rate generator register 01	BGR01	R/W, R		0000000в			
00003Cн to 00003Fн	(Disabled)							
000040н to 00004Fн	Area reserved for CAN Controller 0. Refer to "■ CAN CONTROLLERS"							
000050н	Lower timer control status register 0	TMCSR0L	R/W		0000000в			
000051н	Higher timer control status register 0	TMCSR0H	1CSR0H R/W 16-bit reload timer					
000052н	Timer register 0/reload register 0	TMR0/	B/M	0	XXXXXXXXB			
000053н		TMRLR0	I I/ V V		XXXXXXXXB			

Address	Register name	Symbol	Read/write	Resource name	Initial value				
000083н	(Disabled)								
000084н	PWM control register 2	PWC2	R/W	Stepping motor controller 2	000000Х0в				
000085н		(Disab	led)						
000086н	PWM control register 3	R/W	Stepping motor controller 3	000000Х0в					
000087н		(Disab	led)						
000088н	LCD output control register 3	LOCR3	R/W	LCDC	XXXXX111 _B				
000089н		(Disab	led)						
00008Ан	A/D setting register 0	ADSR0	R/W	A/D converter	0000000в				
00008Вн	A/D setting register 1	ADSR1	R/W	AB conventer	0000000в				
00008CH	Port input level select 0	PIL0	R/W	Deut immed level	0000000в				
00008DH	Port input level select 1	PIL1	R/W	Port input level select	XXXX0000 _B				
00008EH	Port input level select 2	PIL2	R/W		XXXX0000 _B				
00008Fн to 00009Dн	(Disabled)								
00009Eн	Program address detection control register	PACSR	R/W	Address match detection	XXXX0X0X _B				
00009Fн	Delayed Interrupt/Release Register	DIRR	R/W	Delay interrupt	$XXXXXXX0_B$				
0000A0H	Power saving mode control register	LPMCR	R/W	Power saving	00011000в				
0000A1 н	Clock select register	CKSCR	R/W, R	control circuit	11111100в				
0000A2н to 0000A7н	(Disabled)								
0000А8 н	Watchdog timer control register	WDTC	R, W	Watchdog timer	XXXXX111 _B				
0000А9 н	Time-base timer control register	TBTC	R/W, W	Time-base timer	1XX00100 _B				
0000ААн	Watch timer control register	WTC	R/W, W, R	Watch timer (sub clock)	10001000в				
0000ABн to 0000ADн	(Disabled)								
0000АЕн	Flash memory control status register	FMCS	R/W	Flash interface	000Х0000в				
0000AF _H		(Disab	led)						

	Address			Pogistor	Abbre-	A00000	Initial Value
CAN0	CAN1	CAN2	CAN3	negister	viation	Access	
003А80 н	003В80н	003780н	003880н				XXXXXXXXB
to 003A87н	to 003B87⊦	to 003787н	to 003887н	Data register 0 (8 bytes)	DTR0	R/W	to XXXXXXXB
003A88 н	003B88н	003788 н	003888н				XXXXXXXXB
to 003A8F⊦	to 003B8F⊦	to 00378F⊦	to 00388F⊦	Data register 1 (8 bytes)	DTR1	R/W	to XXXXXXXB
003А90н to 003А97н	003B90н to 003B97н	003790н to 003797н	003890н to 003897н	Data register 2 (8 bytes)	DTR2	R/W	XXXXXXXXB to XXXXXXXXB
003А98н to 003А9Fн	003B98н to 003B9Fн	003798н to 00379Fн	003898н to 00389F⊦	Data register 3 (8 bytes)	DTR3	R/W	XXXXXXXXB to XXXXXXXXB
003AA0н to 003AA7н	003BA0н to 003BA7н	0037А0н to 0037А7н	0038A0н to 0038A7н	Data register 4 (8 bytes)	DTR4	R/W	XXXXXXXXB to XXXXXXXXB
003AA8⊦ to 003AAF⊧	003BA8⊦ to 003BAE⊧	0037A8⊦ to 0037AF⊧	0038A8⊦ to 0038AF⊧	Data register 5 (8 bytes)	DTR5	R/W	XXXXXXXXB to XXXXXXXR
003AB0⊦ to	003BB0⊦ to	0037B0н to	0038B0н to	Data register 6 (8 bytes)	DTR6	R/W	XXXXXXXXB to
003AB7 н	003BB7 н	0037В7н	0038B7 н				XXXXXXXXB
003AB8⊦ to 003ABF⊦	003BB8⊦ to 003BBF⊦	0037В8н to 0037ВFн	0038В8н to 0038ВFн	Data register 7 (8 bytes)	DTR7	R/W	XXXXXXXXB to XXXXXXXXB
003AC0н to 003AC7н	003BC0н to 003BC7н	0037C0н to 0037C7н	0038C0н to 0038C7н	Data register 8 (8 bytes)	DTR8	R/W	XXXXXXXXB to XXXXXXXXB
003AC8н to 003ACFн	003BC8н to 003BCFн	0037C8н to 0037CFн	0038C8н to 0038CFн	Data register 9 (8 bytes)	DTR9	R/W	XXXXXXXXB to XXXXXXXXB
003AD0н to 003AD7н	003BD0н to 003BD7н	0037D0н to 0037D7н	0038D0н to 0038D7н	Data register 10 (8 bytes)	DTR10	R/W	XXXXXXXXB to XXXXXXXXB
003AD8н to 003ADFн	003BD8н to 003BDFн	0037D8н to 0037DFн	0038D8н to 0038DFн	Data register 11 (8 bytes)	DTR11	R/W	XXXXXXXXB to XXXXXXXXB
003AE0н to 003AE7н	003BE0н to 003BE7н	0037E0н to 0037E7н	0038E0н to 0038E7н	Data register 12 (8 bytes)	DTR12	R/W	XXXXXXXXB to XXXXXXXXB
003AE8н to 003AEFн	003BE8н to 003BEFн	0037E8н to 0037EFн	0038E8н to 0038EFн	Data register 13 (8 bytes)	DTR13	R/W	XXXXXXXXB to XXXXXXXXB
003AF0н to 003AF7н	003BF0н to 003BF7н	0037F0н to 0037F7н	0038F0н to 0038F7н	Data register 14 (8 bytes)	DTR14	R/W	XXXXXXXXB to XXXXXXXXB
003AF8н to 003AFFн	003BF8н to 003BFFн	0037F8н to 0037FFн	0038F8н to 0038FFн	Data register 15 (8 bytes)	DTR15	R/W	XXXXXXXXB to XXXXXXXB

List of Message Buffers (Data register)

■ INTERRUPT SOURCES, INTERRUPT VECTORS, AND INTERRUPT CONTROL REGISTERS

Interrupt source	EI ² OS	Int	errupt	vector	Interru ree	Priority	
	corresponding	Number		Address	ICR	Address	*2
Reset	×	#08	08н	FFFFDC _H		—	High
INT9 instruction	×	#09	09н	FFFFD8 _H		—	
Exception processing	×	#10	0Ан	FFFFD4 _H		—	
CAN0 received/CAN2 received	×	#11	0Вн	FFFFD0H			
CAN0 transmitted/node status/ CAN2 transmitted/node status	×	#12	0Сн	FFFFCCH	ICR00	0000B0H*1	
CAN1 received/CAN3 received	×	#13	0Dн	FFFFC8H			
CAN1 transmitted/node status/ CAN3 transmitted/node status/SIO	×	#14	0Ен	FFFFC4 _H	ICR01	0000B1н*1	
Input capture 0	Δ	#15	0FH	FFFFC0H			
DTP/ external interrupt - ch.0/ch.1 detected		#16	10 н	FFFFBC _H	ICR02	0000B2 _H *1	
Reload timer 0		#17	11 н	FFFFB8H		000082*1	
Reload timer 2		#18	12 н	FFFFB4H		UUUUDSH ·	
Input capture 1		#19	13 н	FFFFB0H		0000B4 _H *1	
DTP/ external interrupt - ch.2/ch.3 detected	Δ	#20	14 н	FFFFACH	ICR04		
Input capture 2	\bigtriangleup	#21	15 н	FFFFA8H		0000B5н*1	
Reload timer 3	\bigtriangleup	#22	16 н	FFFFA4H	10100		
Input capture 3/4/5/6/7	\bigtriangleup	#23	17 н	FFFFA0H			
DTP/ external interrupt - ch.4/ ch.5 detected UART3 RX	Δ	#24	18 ⊦	FFFF9CH	ICR06	0000B6н*1	
PPG timer 0	\triangle	#25	19 н	FFFF98 _H			
DTP/ external interrupt - ch.6/ ch.7 detected UART3 TX	Δ	#26	1А н	FFFF94 _H	ICR07	0000B7н*1	
PPG timer 1	\bigtriangleup	#27	1В н	FFFF90H		000089*1	
Reload timer 1	\bigtriangleup	#28	1Cн	FFFF8CH		UUUUDOH ·	
PPG timer 2/3/4/5	0	#29	1Dн	FFFF88 _H			
Real time watch timer watch timer (sub clock)	×	#30	1Eн	FFFF84 _H	ICR09	0000B9н*1	
Free-run timer overflow/clear	×	#31	1 F н	FFFF80H		000084*1	
A/D converter conversion complete	0	#32	20н	FFFF7CH			
Sound generator 0/1	×	#33	21н	FFFF78 _H		0000BB*1	
Time-base timer	×	#34	22н	FFFF74 _H			
UART2 RX	0	#35	23н	FFFF70 _H		000080*1	♥
UART2 TX		#36	24н	FFFF6CH	101112		Low

(Continued)

Interrupt source	El ² OS	In	terrup	t vector	Interrupt control register		Priority
	corresponding	Number		Address	ICR	Address	
UART 1 RX	O	#37	25н	FFFF68н	ICB13	0000BDu*1	High
UART 1 TX	\bigtriangleup	#38	26н	FFFF64н	101113		
UART 0 RX	0	#39	27н	FFFF60н		0000BEu*1	
UART 0 TX	\bigtriangleup	#40	28н	FFFF5C _H	101114	UUUUDLH	
Flash memory status	×	#41	29 н	FFFF58⊦	ICB15	0000BEu*1	▼
Delay interrupt generator module	×	#42	2Ан	FFFF54H			Low

© : Usable, and has expanded intelligent I/O services (EI²OS) stop function

 \bigcirc : Usable

 \bigtriangleup : Usable when interrupt sources sharing ICR are not in use

- \times : Unusable
- *1 : Peripheral functions that share the ICR register have the same interrupt level.

• If the expanded intelligent I/O service (EI²OS) is used with peripheral functions that share the ICR register, only one of the peripheral functions that share the register can be used.

• When the expanded intelligent I/O service (EI²OS) is specified for one of the peripheral functions that shares the ICR register, interrupts cannot be used from the other peripheral functions that share the register.

*2 : Priority applies when interrupts of the same level are generated.

2. Recommended Operating Conditions

 $(V_{SS} = DV_{SS} = AV_{SS} = 0.0 V)$

Paramotor	Symbol	Valu		Unit	Pomorko	
Falameter	Symbol	Min	Max	Onit	nemarks	
Power supply	Vcc	4.0	5.5	V	The low voltage detection reset operates when the power supply voltage reaches 4.2 V \pm 0.2 V.	
voltage	AVcc DVcc	4.4	5.5	v	Maintain stop operation status The low voltage detection reset operates when the power supply voltage reaches 4.2 V \pm 0.2 V.	
Smoothing capacitor*	Cs	0.1	1.0	μF	Use a ceramic capacitor or other capacitor of equivalent frequency characteristics. Use a capacitor with a capacitance greater than this capacitor as the bypass capacitor for the V _{cc} pin.	
Operating temperature	Та	- 40	+ 105	°C		

*: Refer to the following diagram for details on the connection of the smoothing capacitor Cs.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

4. AC Characteristics

(1) Clock timing

Demonstra	0 male al	Pin name	Condi- tions		Value			Remarks
Parameter	Symbol			Min	Тур	Max	Unit	
				3	_	16	MHz	1/2 (PLL stopped) When using the oscillator circuit
				3	_	32	MHz	1/2 (PLL stopped) When using an external clock
	Fc	X0, X1		4		32	MHz	PLL multiplied by 1
Clock frequency				3		16	MHz	PLL multiplied by 2
				3		10.7	MHz	PLL multiplied by 3
				3		8	MHz	PLL multiplied by 4
				3	—	5.33	MHz	PLL multiplied by 6
				3		4	MHz	PLL multiplied by 8
	FLC	X0A, X1A			32.768	—	kHz	
o	tcy∟	X0, X1	—	62.5	_	333	ns	When using an oscillator
Clock cycle time				31.25		333	ns	External clock input
	tlcyl	X0A, X1A			30.5		μs	
Input clock pulse	Рwн, Pw∟	X0		5	_		ns	Use duty ratio of $50\% \pm 3\%$ as a guideline
WIGUT	Pwlh, Pwll	X0A			15.2		μs	
Input clock rise and fall time	tcr, tcf	X0				5	ns	When using an external clock signal
Internal operating	Fcp			1.5		32	MHz	Using main clock (PLL clock)
CIUCK ITEQUENCY	FLCP				8.192		kHz	Using sub clock
Internal operating	tcp			31.25	_	666	ns	Using main clock (PLL clock)
CIOCK CYCIE IIIIE	t LCP	—	ļ		122.1	—	μs	Using sub clock

$(Vcc = 5.0 V \pm 10\%)$	Vss = DVss = AVss	$s = 0.0 V, T_A = -4$	40 °C to +105 °C)
--------------------------	-------------------	-----------------------	-------------------

• Bit setting: ESCR0/1/2/3:SCES=1, ECCR0/1/2/3:SCDE=1

(Vcc = 5.0 V \pm 10%, Vss = AVss = 0.0 V, T_A = -40 °C to +105 °C)

Paramotor	Symbol	Pin name	Conditiono	Value		Unit
Faiaillelei			Conditions	Min	Max	Unit
Serial clock cycle time	tscyc	SCK0 to SCK3	Internal shift clock mode output pin C∟ = 80 pF + 1TTL	5 tcp	_	ns
SCK $\downarrow \rightarrow$ SOT delay time	ts∟ovi	SCK0 to SCK3, SOT0 to SOT3		- 50	+ 50	ns
Valid SIN $ ightarrow$ SCK \downarrow	tivshi	SCK0 to SCK3,		t _{CP} + 80		ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tshixi	SIN0 to SIN3		0	_	ns
$SOT o SCK \uparrow delay$ time	tsovнı	SCK0 to SCK3, SOT0 to SOT3		3 tcp - 70		ns

Notes : • Depending on the machine clock frequency to be used, the maximum baud rate may be limited by some parameters. These parameters are shown in "MB90920 series hardware manual".

• CL is the load capacitance connected to the pin during testing.

• tcp is the internal operating clock cycle time. Refer to " (1) Clock timing".

■ ORDERING INFORMATION

Part number	Package	Remarks	
MB90F922NCPMC MB90F922NCSPMC MB90922NCSPMC MB90F923NCPMC MB90F923NCSPMC MB90F924NCPMC MB90F924NCSPMC	120-pin plastic LQFP (FPT-120P-M21)		
MB90V920-101CR MB90V920-102CR	299-pin ceramic PGA (PGA-299C-A01)	For evaluation	

■ MAJOR CHANGES IN THIS EDITION

Page	Section	Change Results
12	■I/O CIRCUIT TYPE	Corrected the circuit type B.
20	■ HANDLING DEVICES	 Added the following items; Serial communication Characteristic difference between flash device and MASK ROM device
31	■ I/O MAP	Corrected "Address: 003970 $_{\text{H}}$ ". Clock supervisor control register \rightarrow (Disabled)
46	 ELECTRICAL CHARACTERISTICS 3. DC Characteristics 	Added the item for "LCD output impedance".
68	■ ORDERING INFORMATION	Corrected the part numbers; MB90V920-101 \rightarrow MB90V920-101CR MB90V920-102 \rightarrow MB90V920-102CR

The vertical lines marked in the left side of the page show the changes.