

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	93
Program Memory Size	256KB (256K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	120-LQFP
Supplier Device Package	120-LQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90922ncspmc-gs-167e1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

16-bit Microcontroller

CMOS

F²MC-16LX MB90920 Series

MB90F922NC/F922NCS/922NCS/F923NC/F923NCS/ MB90F924NC/F924NCS/V920-101/V920-102

DESCRIPTION

The MB90920 series is a family of general-purpose FUJITSU SEMICONDUCTOR 16-bit microcontrollers designed for applications such as vehicle instrument panel control.

The instruction set retains the AT architecture from the F²MC-8L and F²MC-16LX families, with further refinements including high-level language instructions, extended addressing modes, improved multiplication and division operations (signed), and bit processing. In addition, long word processing is made possible by the inclusion of a built-in 32-bit accumulator.

Note : F²MC is the abbreviation of FUJITSU Flexible Microcontroller.

■ FEATURES

Clock

Built-in PLL clock frequency multiplication circuit.

Selection of machine clocks (PLL clocks) is allowed among frequency division by two on oscillation clock, and multiplication of 1 to 8 times of oscillation clock (for 4 MHz oscillation clock, 4 MHz to 32 MHz). Operation by sub clock (up to 50 kHz : 100 kHz oscillation clock divided by two) is allowed.

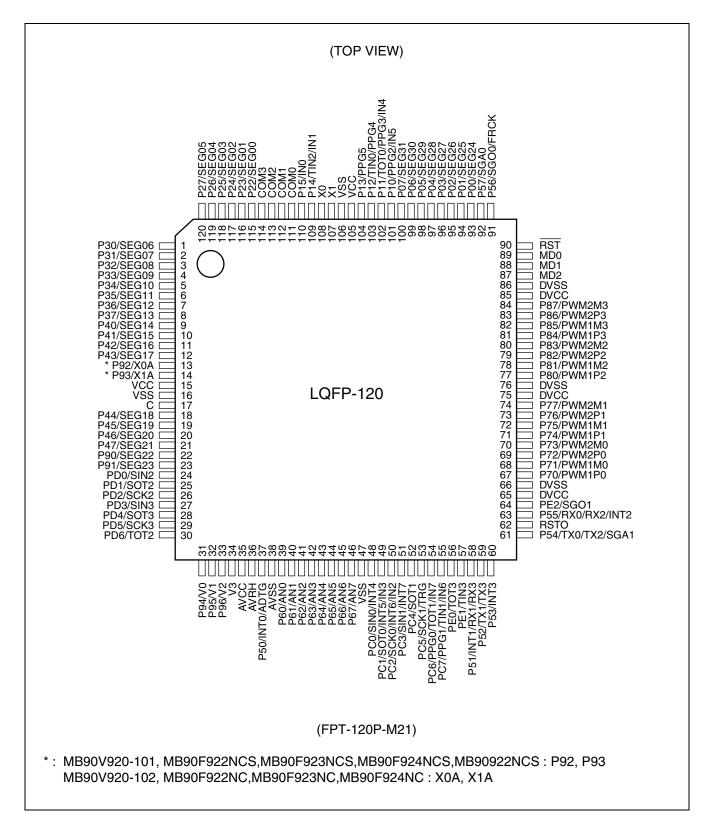
- 16-bit input capture (8 channels) Detects rising, falling, or both edges.
 - 16-bit capture register × 8

The value of a 16-bit free-run timer counter is latched upon detection of an edge input to pin and an interrupt request is generated.

(Continued)

For the information for microcontroller supports, see the following web site.

This web site includes the **"Customer Design Review Supplement"** which provides the latest cautions on system development and the minimal requirements to be checked to prevent problems before the system development.


http://edevice.fujitsu.com/micom/en-support/

■ PRODUCT LINEUP

Part number	MB90 F922NC	MB90 F922NCS	MB90 F923NC	MB90 F923NCS	MB90 F924NC	MB90 F924NCS	MB90 922NCS	MB90 V920-101	MB90 V920-102
Parameter	TOLLING	10221100	1 020110	10201100	102110	1 02 1100		1020 101	1020 102
Туре		F	-lash mem	nory produc	t		MASK ROM product	Evaluatio	on product
CPU				F ² M	IC-16LX C	PU	I.	1	
System clock				rcuit (\times 1, cecution tim					
Sub clock pins (X0A, X1A)	Yes	No	Yes	No	Yes	No	No	No	Yes
ROM		memory Kbytes		memory Kbytes		memory Kbytes	256 K bytes	Exte	ernal
RAM	10 K	lbytes	16 K	lbytes	24 K	bytes	10 K bytes	30 K	bytes
I/O port	91 ports	93 ports	91 ports	93 ports	91 ports	93 ports	93 ports	93 ports	91 ports
LCD controller				32 segr	nent×4 c	ommon			
LIN-UART				UART (LI	N/SCI) 4	channels			
CAN interface				2	1 channels	6			
16-bit input capture				8	3 channels	6			
16-bit reload timer				2	1 channels	6			
16-bit free-run timer					1 channel				
Real time watch timer					1 channel				
16-bit PPG timer				6	6 channels	6			
External interrupt				8	3 channels	6			
8/10-bit A/D converter				٤	3 channels	6			
Low-voltage/ CPU operating detection reset				Yes				٩	lo
Stepping motor controller		4 channels							
Sound generator	2 channels								
Flash memory security	Yes —								
Operating voltage		4.0 V to 5.5 V 4.5 V to 5.5 V						o 5.5 V	
Package	LQFP-120 PGA-299								
DS07-13750-4E	°								

■ PIN ASSIGNMENT

Pin no.	Pin name	I/O circuit type*1	Function
33 -	P96	G	General-purpose I/O port
	V2	G	LCD controller/driver reference power supply pin
34	V3		LCD controller/driver reference power supply pin
	PC0		General-purpose I/O port
48	SIN0	J	UART ch.0 serial data input pin
	INT4		INT4 external interrupt input pin
	PC1		General-purpose I/O port
49	SOT0	I	UART ch.0 serial data output pin
49	INT5	I	INT5 external interrupt input pin
	IN3		Input capture ch.3 trigger input pin
	PC2		General-purpose I/O port
50	SCK0	I	UART ch.0 serial clock I/O pin
50	INT6	I	INT6 external interrupt input pin
	IN2		Input capture ch.2 trigger input pin
	PC3		General-purpose I/O port
51	SIN1	J	UART ch.1 serial data input pin
	INT7		INT7 external interrupt input pin
52 -	PC4	I	General-purpose I/O port
52	SOT1	I	UART ch.1 serial data output pin
	PC5		General-purpose I/O port
53	SCK1	I	UART ch.1 serial clock I/O pin
	TRG		16-bit PPG ch.0 to ch.5 external trigger input pin
	PC6		General-purpose I/O port
54	PPG0	I	16-bit PPG ch.0 output pin
54	TOT1	I	16-bit reload timer ch.1 TOT output pin
	IN7		Input capture ch.7 trigger input pin
	PC7		General-purpose I/O port
FF	PPG1	I	16-bit PPG ch.1 output pin
55 -	TIN1	I	16-bit reload timer ch.1 TIN input pin
	IN6		Input capture ch.6 trigger input pin
04	PD0		General-purpose I/O port
24	SIN2	J	UART ch.2 serial data input pin
0F	PD1	1	General-purpose I/O port
25 -	SOT2	I	UART ch.2 serial data output pin

(Continued)

Pin no.	Pin name	I/O circuit type*1	Function	
06	PD2		General-purpose I/O port	
26 -	SCK2		UART ch.2 serial clock I/O pin	
27 -	PD3	- J	General-purpose I/O port	
21	SIN3	J	UART ch.3 serial data input pin	
28	PD4		General-purpose I/O port	
20	SOT3		UART ch.3 serial data output pin	
29	PD5	I	General-purpose I/O port	
29	SCK3		UART ch.3 serial clock I/O pin	
30 -	PD6		General-purpose I/O port	
30	TOT2		16-bit reload timer ch.2 TOT output pin	
56	PE0		General-purpose I/O port	
50	ТОТ3		16-bit reload timer ch.3 TOT output pin	
57	PE1		General-purpose I/O port	
57	TIN3		16-bit reload timer ch.3 TIN input pin	
64	PE2		General-purpose I/O port	
04	SGO1		Sound generator ch.1 SGO output pin	
62	RSTO	N	Internal reset signal output pin	
65, 75, 85	DVCC		Power supply input pins dedicated for high current output buffer	
66, 76, 86	DVSS		Power supply GND pins dedicated for high current output buffer	
35	AVCC		A/D converter dedicated power supply input pin	
38	AVSS		A/D converter dedicated power supply GND pin	
36	AVRH		A/D converter Vref+ input pin. Vref- is fixed to AVSS.	
89	MD0	D	Mode setting input pin. Connect to VCC pin.	
88	MD1	D	Mode setting input pin. Connect to VCC pin.	
87	MD2	D/E*2	Mode setting input pin. Connect to VSS pin.	
17	С	_	External capacitor pin. Connect a 0.1 μ F capacitor between this pin and the VSS pin.	
15, 105	VCC		Power supply input pins	
16, 47, 106	VSS	_	GND power supply pins	

*1 : For I/O circuit type, refer to " ■ I/O CIRCUIT TYPES".

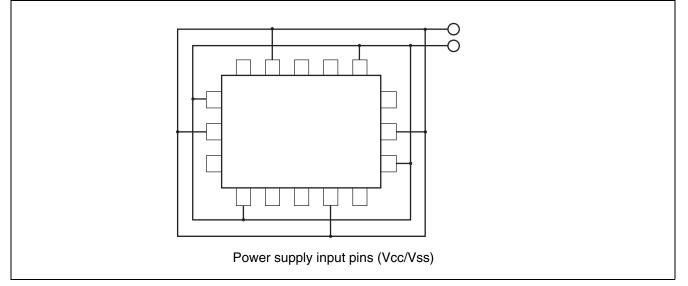
 $^{\ast}2$: The I/O circuit type is D for Flash memory products and E for evaluation products.

Туре	Circuit	Remarks
K	P-ch P-ch Nout P-ch Nout Analog output CMOS hysteresis input Standby control signal or analog input enable signal or analog input enable signal or analog input enable signal CMOS hysteresis input Standby control signal or analog input enable signal CMOS input (SIN) Standby control signal or analog input enable signal CMOS input (SIN)	 A/D converter input common general- purpose port (serial input) CMOS output (IoH/IoL = ±4 mA) CMOS hysteresis input (VIH/VIL = 0.8 Vcc/0.2 Vcc) CMOS input (SIN) (VIH/VIL = 0.7 Vcc/0.3 Vcc) Automotive input (VIH/VIL = 0.8 Vcc/0.5 Vcc)
L	P-ch Pout High current N-ch Nout	High current output port (SMC pin) CMOS output (Io⊬/Io∟ = ± 30 mA)
M	P-ch P-ch P-ch P-ch P-ch Pout CMOS hysteresis input Standby control signal or LCDC output switching signal Automotive input Standby control signal or LCDC output switching signal CMOS input (SIN) Standby control signal or LCDC output switching signal CMOS input (SIN) Standby control signal or LCDC output switching signal	LCDC output common general- purpose port (serial input)) • CMOS output (IoH/IoL = ± 4 mA) • CMOS hysteresis input (VIH/VIL = 0.8 Vcc/0.2 Vcc) • CMOS input (SIN) (VIH/VIL = 0.7 Vcc/0.3 Vcc) • Automotive input (VIH/VIL = 0.8 Vcc/0.5 Vcc)

• Notes on operating in PLL clock mode

On this microcontroller, if in case the crystal oscillator breaks off or an external reference clock input stops while the PLL clock mode is selected, a self-oscillator circuit contained in the PLL may continue its operation at its self-running frequency. However, FUJITSU SEMICONDUCTOR will not guarantee results of operations if such failure occurs.

Crystal oscillator circuit


Noise around the X0/X1, or X0A/X1A pins may cause this device to operate abnormally. In the interest of stable operation it is strongly recommended that printed circuit artwork places ground bypass capacitors as close as possible to the X0/X1, X0A/X1A and crystal oscillator (or ceramic oscillator) and that oscillator lines do not cross the lines of other circuits.

Please ask each crystal maker to evaluate the oscillational characteristics of the crystal and this device.

• Power supply pins

Devices including multiple VCC or VSS pins are designed such that pins that need to be at the same potential are interconnected internally to prevent malfunctions such as latch-up. To reduce unnecessary radiation, prevent malfunctioning of the strobe signal due to the rise of ground level, and observe the standard for total output current, be sure to connect the VCC and VSS pins to the power supply and ground externally.

Always connect all of the VCC pins to the same potential and all of the VSS pins to ground as shown in the following diagram. The device will not operate correctly if multiple VCC or VSS pins are connected to different voltages, even if those voltages are within the guaranteed operating ranges.

In addition, care must be given to connecting the VCC and VSS pins of this device to the current supply source with as low impedance as possible. It is recommended that a 1.0 μ F bypass capacitor be connected between the VCC and VSS pins as close to the pins as possible.

• Sequence for connecting the A/D converter power supply and analog inputs

The A/D converter power supply (AVcc, AVRH) and analog inputs (AN0 to AN7) must be applied after the digital power supply (Vcc) is switched on. When turning the power off, the A/D converter power supply and analog inputs must be disconnected before the digital power supply is switched off (Vcc). Ensure that AVRH does not exceed AVcc during either power-on or power-off. Even when pins which double as analog input pins are used as input ports, be sure that the input voltage does not exceed AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

CAN CONTROLLERS

The CAN controller has the following features :

- Conforms to CAN Specification Version 2.0 Part A and B
 - Supports transmission/reception in standard frame and extended frame formats
- Supports transmission of data frames by receiving remote frames
- 16 transmission/reception message buffers
 - 29-bit ID and 8-byte data
 - Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask
 - 2 acceptance mask registers in either standard frame format or extended frame formats
- Bit rate programmable from 10 kbps to 2 Mbps (when input clock is at 16 MHz)

	Add	ress		Register	Abbreviation	Access	Initial Value
CAN0	CAN1	CAN2	CAN3	negister	Abbreviation	ALLESS	
003С00н	003D00н	003E00н	003F00н	Control status register	CSR	R/W, R	00000в
003C01н	003D01н	003E01 н	003F01 н	Control Status register	0311	11/ VV, 11	00-1в
003C02н	003D02 _H	003E02н	003F02н	Last event indicator	LEIR	R/W	В
003C03н	003D03н	003E03н	003F03н	register		11/ VV	000-0000в
003C04н	003D04 _H	003E04н	003F04н	RX/TX error counter	RTEC	R	0000000в
003C05н	003D05н	003E05н	003F05н		meo	11	0000000в
003C06н	003D06н	003E06н	003F06н	Bit timing register	BTR	R/W	-1111111в
003C07н	003D07н	003E07 н	003F07 н		BIN	I 1/ V V	11111111 _В

List of Control Registers(1)

	Add	ress		Deviator	Abbrevia-	A	
CAN0	CAN1	CAN2	CAN3	Register	tion	Access	Initial Value
003А60н	003В60н	003760н	003860н	DLC register 0	DLCR0	R/W	XXXX _B
003A61 н	003B61 н	003761 н	003861 н		DLONU		
003А62 н	003В62н	003762н	003862н	DLC register 1	DLCR1	R/W	XXXX _в
003А63н	003В63н	003763н	003863н		DEOITI	11/ VV	
003А64 н	003B64н	003764н	003864н	DLC register 2	DLCR2	R/W	XXXX _в
003А65н	003В65н	003765н	003865н		DECHZ	11/ VV	
003А66н	003В66н	003766н	003866н	DLC register 3	DLCR3	R/W	ХХХХв
003А67 н	003В67н	003767н	003867н		DLUNG		
003А68 н	003В68н	003768н	003868 н	DLC register 4	DLCR4	R/W	XXXX _в
003А69 н	003В69н	003769н	003869 н		DLCI14	11/ VV	
003А6А н	003B6Aн	00376Ан	00386А н	DLC register 5	DLCR5	R5 R/WX	XXXX _в
003A6Bн	003B6Bн	00376Вн	00386Вн		DECI15	11/ VV	
003A6Cн	003B6Cн	00376С н	00386Cн	DLC register 6	DLCR6	R/W	ХХХХв
003A6Dн	003B6Dн	00376Dн	00386Dн		DECINO	11/ VV	
003A6Eн	003B6Eн	00376E н	00386Eн	DLC register 7	DLCR7	R/W	XXXX _в
003A6Fн	003B6Fн	00376F н	00386F н		DEOIN		
003А70н	003В70н	003770н	003870н	DLC register 8	DLCR8	R/W	ХХХХв
003A71 н	003B71 н	003771 н	003871 н		DECINO	11/ VV	
003А72н	003В72н	003772н	003872н	DLC register 9	DLCR9	R/W	ХХХХв
003А73н	003В73н	003773н	003873н		DECITO	11/11	
003A74н	003B74н	003774н	003874н	DLC register 10	DLCR10	R/W	ХХХХв
003А75н	003В75н	003775н	003875н		DEGITIO	10,00	
003А76н	003В76н	003776н	003876н	DLC register 11	DLCR11	R/W	XXXX _в
003А77 н	003B77 н	003777н	003877н		DEGITIT	10,00	
003А78 н	003B78 н	003778 н	003878 н	DLC register 12	DLCR12	R/W	ХХХХв
003А79 н	003B79 н	003779 н	003879 н		DEGITIZ	10,00	
003А7Ан	003В7Ан	00377Ан	00387А н	DLC register 13	DLCR13	R/W	ХХХХв
003A7Bн	003B7Bн	00377Вн	00387В н		DEGITIS	11/ VV	
003А7Сн	003В7Сн	00377Сн	00387Cн	DLC register 14	DLCR14	R/W	ХХХХв
003A7Dн	003B7Dн	00377Dн	00387Dн		DECITI4		
003A7Eн	003B7Eн	00377Ен	00387Eн	DLC register 15	DLCR15	R/W	XXXXB
003A7Fн	003B7Fн	00377Fн	00387Fн		DECITIS	I 1/ VV	

List of Message Buffers (DLC Registers)

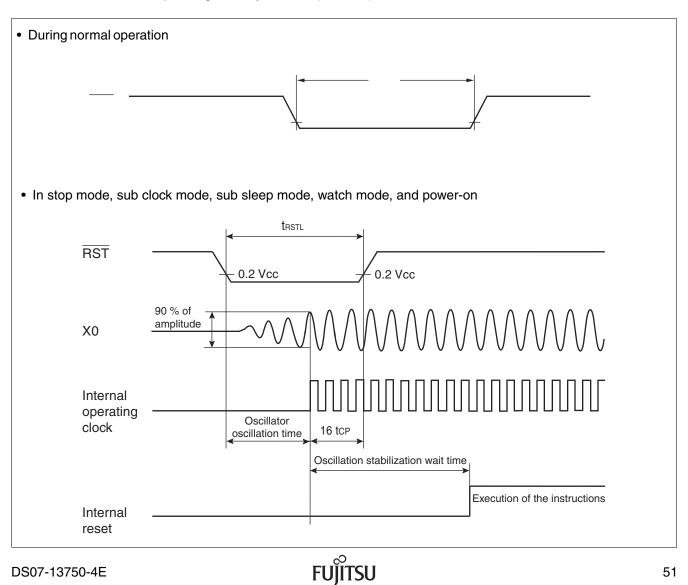
	Add	ress		Begister	Abbre-	A	Initial Value
CAN0	CAN1	CAN2	CAN3	Register	viation	Access	Initial Value
003A80н	003B80н	003780⊦	003880H	Data register () (9 butes)		R/W	XXXXXXXXB
to 003A87н	to 003B87⊦	to 003787⊦	to 003887⊦	Data register 0 (8 bytes)	DTR0	H/ VV	to XXXXXXXB
003A88н	003B88н	003788 н	003888H		DTD4	DAA	XXXXXXX
to 003A8F⊦	to 003B8F⊦	to 00378F⊦	to 00388Fн	Data register 1 (8 bytes)	DTR1	R/W	to XXXXXXXB
003А90н	003B90н	003790н	003890⊦ to	Data register 2 (8 bytes)	DTR2	R/W	XXXXXXXXB
to 003А97н	to 003B97н	to 003797⊦	to 003897⊦	Data register 2 (8 bytes)	DIRZ	H/ VV	to XXXXXXXB
003A98н	003B98н	003798 н	003898 н		5754	5 444	XXXXXXXXB
to 003A9F⊦	to 003B9F⊦	to 00379Fн	to 00389Fн	Data register 3 (8 bytes)	DTR3	R/W	to XXXXXXXB
003AA0н	003BA0н	0037A0н	0038A0н	Data register 4 (9 butes)			XXXXXXXXB
to 003AA7⊦	to 003BA7н	to 0037А7н	to 0038А7н	Data register 4 (8 bytes)	DTR4	R/W	to XXXXXXXB
003AA8H	003BA8н	0037A8н	0038A8н	Data register E (9 butes)	DTDE		XXXXXXXXB
to 003AAF⊦	to 003BAF⊦	to 0037AF⊦	to 0038AF⊦	Data register 5 (8 bytes)	DTR5	R/W	to XXXXXXXB
003AB0н	003BB0н	0037B0н	0038B0н		DTDA	544	XXXXXXXXB
to 003AB7н	to 003BB7н	to 0037В7н	to 0038В7н	Data register 6 (8 bytes)	DTR6	R/W	to XXXXXXXB
003AB8н	003BB8н	0037B8н	0038B8н	Data variatav 7 (0 kutar)			XXXXXXXXB
to 003ABF⊬	to 003BBF⊦	to 0037BF⊬	to 0038BF⊦	Data register 7 (8 bytes)	DTR7	R/W	to XXXXXXXB
003АС0н	003ВС0н	0037С0н	0038C0н				XXXXXXXXB
to 003AC7н	to 003BC7⊦	to 0037C7⊦	to 0038С7н	Data register 8 (8 bytes)	DTR8	R/W	to XXXXXXXB
003AC8H	003BC8н	0037C8H	0038C8н	Data register 0 (0 butes)			XXXXXXXXB
to 003ACF⊦	to 003BCF⊦	to 0037CF⊦	to 0038CF⊦	Data register 9 (8 bytes)	DTR9	R/W	to XXXXXXXB
003AD0н	003BD0н	0037D0н	0038D0н				XXXXXXXXB
to 003AD7н	to 003BD7⊦	to 0037D7н	to 0038D7н	Data register 10 (8 bytes)	DTR10	R/W	to XXXXXXXB
003AD8н	003BD8н	0037D8н	0038D8н				XXXXXXXXB
to 003ADF⊦	to 003BDF⊦	to 0037DF⊦	to 0038DF⊦	Data register 11 (8 bytes)	DTR11	R/W	to XXXXXXXB
003AE0н	003BE0н	0037E0 н	0038E0 н				XXXXXXXXB
to 003АЕ7н	to 003BE7н	to 0037E7н	to 0038E7н	Data register 12 (8 bytes)	DTR12	R/W	to XXXXXXXB
003AE8н	003BE8н	0037E8н	0038E8н	_		5 444	XXXXXXXXB
to 003AEF⊦	to 003BEF⊦	to 0037EF⊦	to 0038EF⊦	Data register 13 (8 bytes)	DTR13	R/W	to XXXXXXXB
003AF0H	003BF0н	0037F0⊦	0038F0н				XXXXXXXXB
to 003AF7н	to 003BF7⊦	to 0037F7⊦	to 0038F7н	Data register 14 (8 bytes)	DTR14	R/W	to XXXXXXXB
003AF8н	003BF8⊦	0037F8н	0038F8⊦		DTD		XXXXXXXXB
to 003AFF⊦	to 003BFF⊦	to 0037FF⊦	to 0038FF⊦	Data register 15 (8 bytes)	DTR15	R/W	to XXXXXXXB

List of Message Buffers (Data register)

■ INTERRUPT SOURCES, INTERRUPT VECTORS, AND INTERRUPT CONTROL REGISTERS

Interrupt source	EI²OS "	Interrupt vector			Interru re	Priority	
	corresponding	Number		Address	ICR	Address	*2
Reset	×	#08	08н	FFFFDC H			High
INT9 instruction	×	#09	09н	FFFFD8 _H			
Exception processing	×	#10	0Ан	FFFFD4H			11
CAN0 received/CAN2 received	×	#11	0Вн	FFFFD0H			
CAN0 transmitted/node status/ CAN2 transmitted/node status	×	#12	0Сн	FFFFCCH	ICR00	0000B0н*1	
CAN1 received/CAN3 received	×	#13	0Dн	FFFFC8 _H			
CAN1 transmitted/node status/ CAN3 transmitted/node status/SIO	×	#14	0Ен	FFFFC4 _H	ICR01	0000B1н*1	
Input capture 0	\triangle	#15	0 Fн	FFFFC0H			
DTP/ external interrupt - ch.0/ch.1 detected	Δ	#16	10н	FFFFBCH	ICR02	0000B2 _H *1	
Reload timer 0	\bigtriangleup	#17	11 н	FFFFB8H	10000	0000000 *1	
Reload timer 2	\bigtriangleup	#18	12 н	FFFFB4H	ICR03	0000B3н*1	
Input capture 1	\triangle	#19	13 н	FFFFB0H			
DTP/ external interrupt - ch.2/ch.3 detected	Δ	#20	14н	FFFFACH	ICR04	0000B4 _H *1	
Input capture 2	\triangle	#21	15 н	FFFFA8H	10005		
Reload timer 3	\bigtriangleup	#22	16 н	FFFFA4H	ICR05	0000B5н*1	
Input capture 3/4/5/6/7	\bigtriangleup	#23	17 н	FFFFA0H			
DTP/ external interrupt - ch.4/ ch.5 detected UART3 RX	Δ	#24	18 н	FFFF9CH	ICR06	0000B6н*1	
PPG timer 0	Δ	#25	19 н	FFFF98 _H			
DTP/ external interrupt - ch.6/ ch.7 detected UART3 TX	Δ	#26	1Ан	FFFF94 _H	ICR07	0000B7н*1	
PPG timer 1	\triangle	#27	1 Вн	FFFF90H		000000 *1	
Reload timer 1	\bigtriangleup	#28	1Cн	FFFF8CH	ICR08	0000B8 ^{H*1}	
PPG timer 2/3/4/5	0	#29	1Dн	FFFF88 _H			
Real time watch timer watch timer (sub clock)	×	#30	1Ен	FFFF84⊦	ICR09	0000B9н*1	
Free-run timer overflow/clear	×	#31	1Fн	FFFF80H		00000 4 *1	
A/D converter conversion complete	0	#32	20н	FFFF7CH	ICR10	0000BAн *1	
Sound generator 0/1	×	#33	21н	FFFF78 _H		000000 *1	
Time-base timer	×	#34	22н	FFFF74 _H	ICR11	0000BBH*1	
UART2 RX	0	#35	23н	FFFF70H		000000 *1	🕇
UART2 TX	\triangle	#36	24н	FFFF6CH	ICR12	0000BCH*1	Low

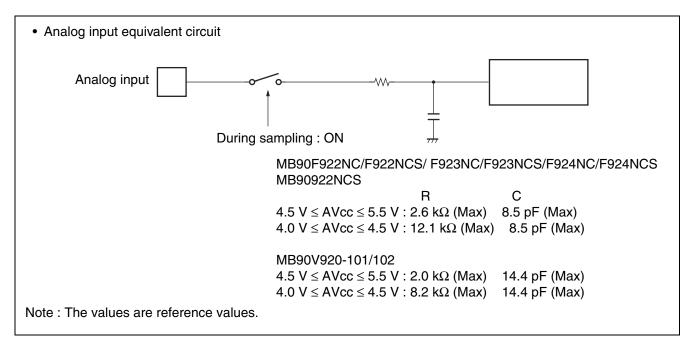
Parameter	Symbol	Pin name	Conditions	V	/alue		Unit	Remarks
Farameter	Symbol	Fin name	Conditions	Min	Тур	Max	Unit	nemarks
Input leakage current	In.	All input pins	$V_{CC} = DV_{CC} = AV_{CC} = 5.5 V,$ $V_{SS} < V_{I} < V_{CC}$	_		10	μA	
Input capacitance 1	CIN1	All pins except VCC, VSS, DVCC, DVSS, AVCC, AVSS, C, P70 to P77, P80 to P87				15	pF	
Input capacitance 2	CIN2	P70 to P77, P80 to P87	_		_	45	pF	
Pull-up resistance	Rup	RST	—	25	50	100	kΩ	
Pull-down resistance	Rdown	MD2	_			100	kΩ	Excluding Flash memory product
General-purpose output "H" voltage	V _{OH1}	All pins except P70 to P77, P80 to P87	Vcc = 4.5 V, Іон = -4.0 mA	Vcc - 0.5	_	_	v	
Stepping motor output "H" voltage	Vон2	P70 to P77, P80 to P87	Vcc = 4.5 V, Іон = -30.0 mA	Vcc-0.5			V	
General-purpose output "L" voltage	V _{OL1}	All pins except P70 to P77, P80 to P87	$V_{CC} = 4.5 \text{ V},$ $I_{OL} = 4.0 \text{ mA}$	_		0.4	v	
Stepping motor output "L" voltage	Vol2	P70 to P77, P80 to P87	Vcc = 4.5 V, loL = 30.0 mA			0.55	V	
Stepping motor output phase variation "H"	ΔVон	PWM1Pn, PWM1Mn, PWM2Pn, PWM2Mn, n = 0 to 3	$V_{CC} = 4.5 V,$ $I_{OH} = -30.0 mA,$ maximum deviation V_{OH2}			90	mV	
Stepping motor output phase variation "L"	ΔVol	PWM1Pn, PWM1Mn, PWM2Pn, PWM2Mn, n = 0 to 3	$V_{CC} = 4.5 V,$ $I_{OL} = 30.0 mA,$ maximum deviation V_{OH2}			90	mV	
		Between V0 and V1,		50	100	200	kΩ	Evaluation product
LCD internal divider resistance	Rlcd	Between V1 and V2, Between V2 and V3		8.75	12.5	17.0	kΩ	Flash memory product

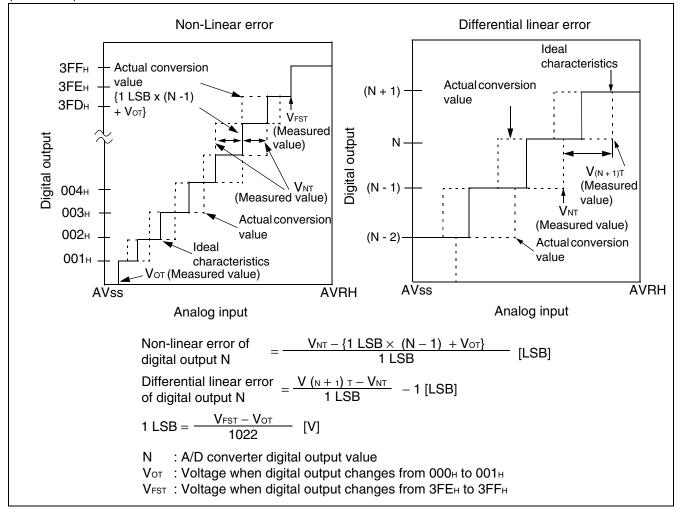

(Vcc = 5.0 V $\pm 10\%$, Vss = DVss = AVss = 0.0 V, T_A = -40 °C to +105 °C)

(2) Reset input

()		$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 ^{\circ}\text{C} \text{ to} +105 ^{\circ}\text{C}$						
Parameter	Symbol	Pin name	Value	Unit	Remarks			
Falametei	Symbol	Fill liallie	Min	Max	Unit	nemarks		
			500	_	ns	During normal operation		
Reset input time	trstl	RST	Oscillator oscillation time* + 16 tcp	_	ms	In stop mode, sub clock mode, sub sleep mode, and watch mode		
			100		μs	In time-base timer mode		

*: The oscillation time of the oscillator is the time taken to reach 90% of the amplitude. The oscillation time of a crystal oscillator is between several ms and tens of ms. The oscillation time of a ceramic oscillator is between hundreds of μ s and several ms. The oscillation time of an external clock is 0 ms.

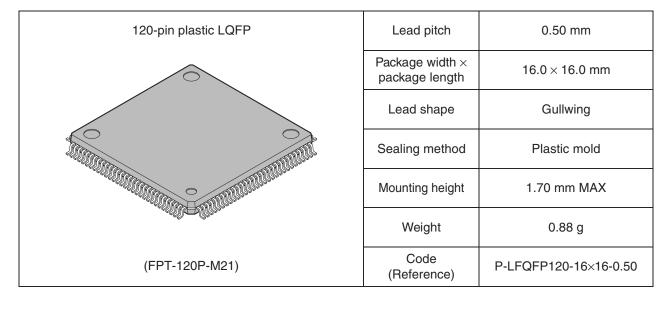

Note : tcp is the internal operating clock cycle time. (Unit : ns)

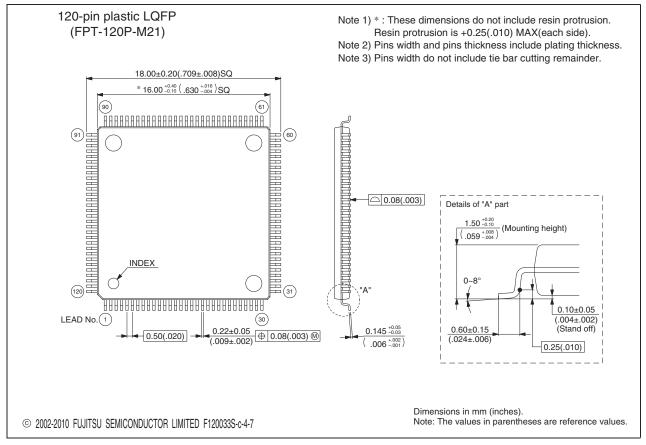


FU

• Notes on the external impedance and sampling time of analog inputs

A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. If the sampling time is still not sufficient, connect a capacitor of about 0.1 μ F to the analog input pin.

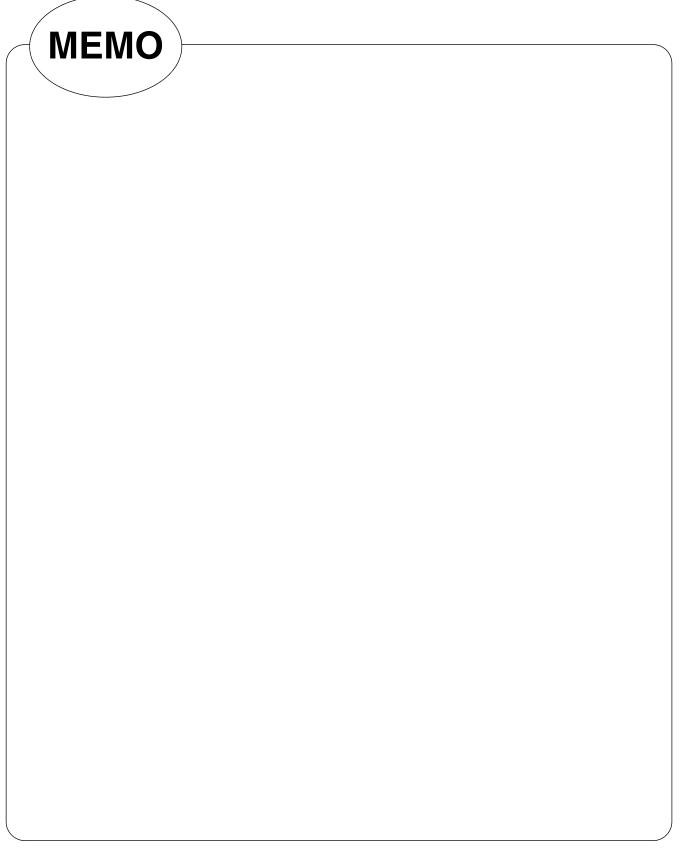




■ ORDERING INFORMATION

Part number	Package	Remarks
MB90F922NCPMC MB90F922NCSPMC MB909922NCSPMC MB90F923NCPMC MB90F923NCSPMC MB90F924NCPMC MB90F924NCSPMC	120-pin plastic LQFP (FPT-120P-M21)	
MB90V920-101CR MB90V920-102CR	299-pin ceramic PGA (PGA-299C-A01)	For evaluation

■ PACKAGE DIMENSION



Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

■ MAJOR CHANGES IN THIS EDITION

Page	Section	Change Results
12	■I/O CIRCUIT TYPE	Corrected the circuit type B.
20	■ HANDLING DEVICES	 Added the following items; Serial communication Characteristic difference between flash device and MASK ROM device
31	■ I/O MAP	Corrected "Address: 003970 $_{\text{H}}$ ". Clock supervisor control register \rightarrow (Disabled)
46	ELECTRICAL CHARACTERISTICS3. DC Characteristics	Added the item for "LCD output impedance".
68	■ ORDERING INFORMATION	Corrected the part numbers; MB90V920-101 \rightarrow MB90V920-101CR MB90V920-102 \rightarrow MB90V920-102CR

The vertical lines marked in the left side of the page show the changes.

FUJITSU SEMICONDUCTOR LIMITED

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome, Kohoku-ku Yokohama Kanagawa 222-0033, Japan Tel: +81-45-415-5858 http://jp.fujitsu.com/fsl/en/

For further information please contact:

North and South America

FUJITSU SEMICONDUCTOR AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://us.fujitsu.com/micro/

Europe

FUJITSU SEMICONDUCTOR EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/semiconductor/

Korea

FUJITSU SEMICONDUCTOR KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

Asia Pacific

FUJITSU SEMICONDUCTOR ASIA PTE. LTD. 151 Lorong Chuan, #05-08 New Tech Park 556741 Singapore Tel : +65-6281-0770 Fax : +65-6281-0220 http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China Tel : +86-21-6146-3688 Fax : +86-21-6335-1605 http://cn.fujitsu.com/fss/

FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel : +852-2377-0226 Fax : +852-2376-3269 http://cn.fujitsu.com/fsp/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or other rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.