

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	93
Program Memory Size	256KB (256K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	10K × 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	120-LQFP
Supplier Device Package	120-LQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90922ncspmc-gs-181e1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

16-bit Microcontroller

CMOS

F²MC-16LX MB90920 Series

MB90F922NC/F922NCS/922NCS/F923NC/F923NCS/ MB90F924NC/F924NCS/V920-101/V920-102

DESCRIPTION

The MB90920 series is a family of general-purpose FUJITSU SEMICONDUCTOR 16-bit microcontrollers designed for applications such as vehicle instrument panel control.

The instruction set retains the AT architecture from the F²MC-8L and F²MC-16LX families, with further refinements including high-level language instructions, extended addressing modes, improved multiplication and division operations (signed), and bit processing. In addition, long word processing is made possible by the inclusion of a built-in 32-bit accumulator.

Note : F²MC is the abbreviation of FUJITSU Flexible Microcontroller.

■ FEATURES

Clock

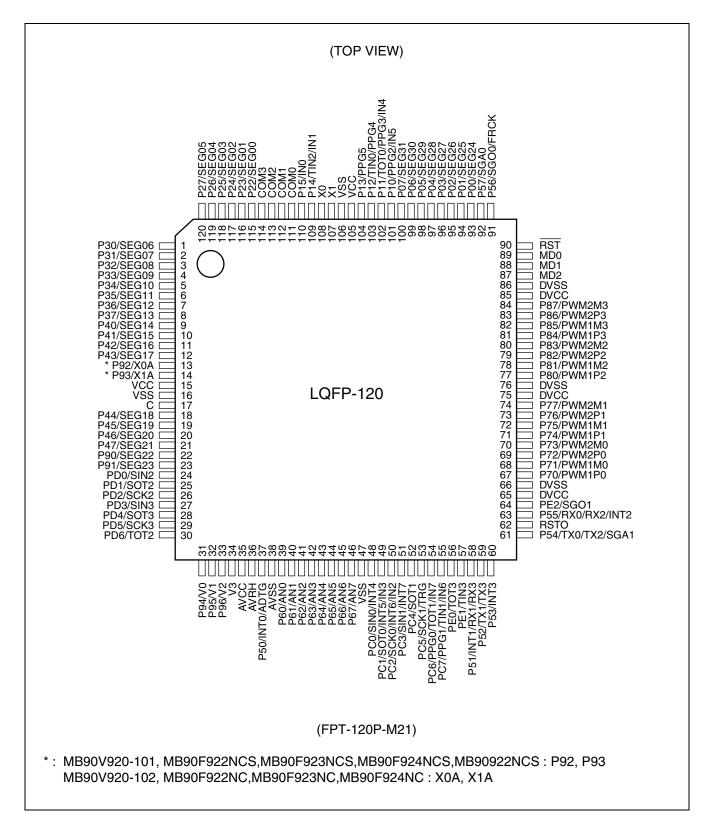
Built-in PLL clock frequency multiplication circuit.

Selection of machine clocks (PLL clocks) is allowed among frequency division by two on oscillation clock, and multiplication of 1 to 8 times of oscillation clock (for 4 MHz oscillation clock, 4 MHz to 32 MHz). Operation by sub clock (up to 50 kHz : 100 kHz oscillation clock divided by two) is allowed.

- 16-bit input capture (8 channels) Detects rising, falling, or both edges.
 - 16-bit capture register × 8

The value of a 16-bit free-run timer counter is latched upon detection of an edge input to pin and an interrupt request is generated.

(Continued)


For the information for microcontroller supports, see the following web site.

This web site includes the **"Customer Design Review Supplement"** which provides the latest cautions on system development and the minimal requirements to be checked to prevent problems before the system development.

http://edevice.fujitsu.com/micom/en-support/

■ PIN ASSIGNMENT

Pin no.	Pin name	I/O circuit type*1	Function
70	P73	 - L	General-purpose output-only port
70	PWM2M0		Stepping motor controller ch.0 output pin
71	P74	- L	General-purpose output-only port
/ 1	PWM1P1		Stepping motor controller ch.1 output pin
72	P75	L	General-purpose output-only port
12	PWM1M1		Stepping motor controller ch.1 output pin
73	P76	 - L	General-purpose output-only port
73	PWM2P1		Stepping motor controller ch.1 output pin
74	P77	L	General-purpose output-only port
74	PWM2M1		Stepping motor controller ch.1 output pin
77	P80	L	General-purpose output-only port
11	PWM1P2		Stepping motor controller ch.2 output pin
78	P81	- L	General-purpose output-only port
70	PWM1M2		Stepping motor controller ch.2 output pin
79	P82	L	General-purpose output-only port
19	PWM2P2		Stepping motor controller ch.2 output pin
80	P83	L	General-purpose output-only port
00	PWM2M2		Stepping motor controller ch.2 output pin
81	P84	L	General-purpose output-only port
01	PWM1P3		Stepping motor controller ch.3 output pin
82	P85	L	General-purpose output-only port
02	PWM1M3		Stepping motor controller ch.3 output pin
83	P86		General-purpose output-only port
03	PWM2P3		Stepping motor controller ch.3 output pin
84	P87	1	General-purpose output-only port
04	PWM2M3	- L	Stepping motor controller ch.3 output pin
00	P90	Г	General-purpose I/O port
22	SEG22	F	LCD controller/driver segment output pin
00	P91	Г	General-purpose I/O port
23	SEG23	F	LCD controller/driver segment output pin
01	P94	<u> </u>	General-purpose I/O port
31	V0	G	LCD controller/driver reference power supply pin
20	P95	6	General-purpose I/O port
32	V1	G	LCD controller/driver reference power supply pin

Pin no.	Pin name	I/O circuit type*1	Function
33 -	P96	G	General-purpose I/O port
	V2	G	LCD controller/driver reference power supply pin
34	V3	_	LCD controller/driver reference power supply pin
	PC0		General-purpose I/O port
48	SIN0	J	UART ch.0 serial data input pin
	INT4		INT4 external interrupt input pin
	PC1		General-purpose I/O port
40	SOT0	I	UART ch.0 serial data output pin
49	49 INT5		INT5 external interrupt input pin
	IN3		Input capture ch.3 trigger input pin
	PC2		General-purpose I/O port
50	SCK0	I	UART ch.0 serial clock I/O pin
50	INT6	I	INT6 external interrupt input pin
	IN2		Input capture ch.2 trigger input pin
	PC3		General-purpose I/O port
51	SIN1	J	UART ch.1 serial data input pin
	INT7		INT7 external interrupt input pin
52 -	PC4	I	General-purpose I/O port
52	SOT1	I	UART ch.1 serial data output pin
	PC5		General-purpose I/O port
53	SCK1	I	UART ch.1 serial clock I/O pin
	TRG		16-bit PPG ch.0 to ch.5 external trigger input pin
	PC6		General-purpose I/O port
54	PPG0	I	16-bit PPG ch.0 output pin
54	TOT1	I	16-bit reload timer ch.1 TOT output pin
	IN7		Input capture ch.7 trigger input pin
	PC7		General-purpose I/O port
FF	PPG1	Ι	16-bit PPG ch.1 output pin
55	55 TIN1		16-bit reload timer ch.1 TIN input pin
	IN6		Input capture ch.6 trigger input pin
04	PD0		General-purpose I/O port
24	SIN2	J	UART ch.2 serial data input pin
0F	PD1	1	General-purpose I/O port
25 -	SOT2	I	UART ch.2 serial data output pin

(Continued)

Pin no.	Pin name	I/O circuit type*1	Function
06	PD2		General-purpose I/O port
26 -	SCK2		UART ch.2 serial clock I/O pin
27 -	PD3	- J	General-purpose I/O port
21	SIN3	J	UART ch.3 serial data input pin
28	PD4		General-purpose I/O port
20	SOT3		UART ch.3 serial data output pin
29	PD5	I	General-purpose I/O port
29	SCK3		UART ch.3 serial clock I/O pin
30 -	PD6		General-purpose I/O port
	TOT2		16-bit reload timer ch.2 TOT output pin
56	PE0		General-purpose I/O port
50	ТОТ3		16-bit reload timer ch.3 TOT output pin
57	PE1		General-purpose I/O port
57	TIN3		16-bit reload timer ch.3 TIN input pin
64	PE2		General-purpose I/O port
04	SGO1		Sound generator ch.1 SGO output pin
62	RSTO	N	Internal reset signal output pin
65, 75, 85	DVCC		Power supply input pins dedicated for high current output buffer
66, 76, 86	DVSS		Power supply GND pins dedicated for high current output buffer
35	AVCC		A/D converter dedicated power supply input pin
38	AVSS		A/D converter dedicated power supply GND pin
36	AVRH		A/D converter Vref+ input pin. Vref- is fixed to AVSS.
89	MD0	D	Mode setting input pin. Connect to VCC pin.
88	MD1	D	Mode setting input pin. Connect to VCC pin.
87	MD2	D/E*2	Mode setting input pin. Connect to VSS pin.
17	С	_	External capacitor pin. Connect a 0.1 μ F capacitor between this pin and the VSS pin.
15, 105	VCC		Power supply input pins
16, 47, 106	VSS	_	GND power supply pins

*1 : For I/O circuit type, refer to " ■ I/O CIRCUIT TYPES".

 $^{\ast}2$: The I/O circuit type is D for Flash memory products and E for evaluation products.

• Handling the power supply for high-current output buffer pins (DVcc, DVss)

• Flash memory products and MASK ROM products (MB90F922NC/F922NCS/922NCS/F923NC/ F923NCS/F924NC/F924NCS)

In the Flash memory products and MASK ROM products, the power supply for the high-current output buffer pins (DVcc, DVss) is isolated from the digital power supply (Vcc).

Therefore, DVcc can therefore be set to a higher voltage than Vcc. If the power supply for the high-current output buffer pins (DVcc, DVss) is supplied before the digital power supply (Vcc), however, care needs to be taken because it is possible that the port 7 or port 8 stepping motor outputs may momentarily output an "H" or "L" level. In order to prevent this, connect the digital power supply (Vcc) prior to connecting the power supply for the high-current output buffer pins. Even when the high-current output buffer pins are used as general-purpose ports, power should be supplied to the power supply pins for the high-current output buffer pins (DVcc, DVss).

• Evaluation product (MB90V920-101/MB90V920-102)

In the evaluation products, the power supply for the high-current output buffer pins (DV_{cc}, DV_{ss}) is not isolated from the digital power supply (V_{cc}). Therefore, DV_{cc} must therefore be set to a lower voltage than Vcc. The power supply for the high-current output buffer pins (DV_{cc}, DV_{ss}) must always be applied after the digital power supply (V_{cc}) has been connected, and disconnected before the digital power supply (V_{cc}) is disconnected (the power supply for the high-current output buffer pins may also be connected and disconnected simultaneously with the digital power supply).

Even when the high-current output buffer pins are used as general-purpose ports, power should be supplied to the power supply pins for the high-current output buffer pins (DVcc, DVss).

Pull-up/pull-down resistors

MB90920 series does not support internal pull-up/pull-down resistors. Use external components as necessary.

Precautions when not using a sub clock signal

If the X0A and X1A pins are not connected to an oscillator, apply a pull-down resistance to the X0A pin and leave the X1A pin open.

Notes on operating when the external clock is stopped

The MB90920 series is not guaranteed to operate correctly using the internal oscillator circuit when there is no external oscillator or the external clock input is stopped.

• Flash memory security function

A security bit is located within the Flash memory region. The security function is activated by writing the protection code 01_{H} to the security bit.

Do not write the value 01_{H} to this address if you are not using the security function.

Please refer to following table for the address of the security bit.

	Flash memory size	Address for security bit
MB90F922NC MB90F922NCS	Built-in 2 Mbits Flash Memory	FC0001н
MB90F923NCS	Built-in 3 Mbits Flash Memory	F80001 н
MB90F924NCS	Built-in 4 Mbits Flash Memory	F80001 н

• Serial communication

In serial communication, reception of wrong data may occur due to noise or other causes. Therefore, design a printed circuit board to prevent noise from occurring. Taking account of the reception of wrong data, detect errors by measures such as adding a checksum to the end of data. If an error is detected, retransmit the data.

• Characteristic difference between flash device and MASK ROM device

In the flash device and the MASK ROM device, the electrical characteristic including current consumption, ESD, latch-up, the noise characteristic, and oscillation characteristic, etc. is different according to the difference between the chip layout and the memory structure.

Reconfirm the electrical characteristic when the product is replaced by another product of the same series.

Address	Register name	Symbol	Read/write	Resource name	Initial value	
000024н			R/W		XXXXXXXXB	
000025н	Compare clear register	CPCLR	R/W		XXXXXXXXB	
000026н	Timor doto registor	TCDT	R/W	16-bit	0000000в	
000027н	Timer data register	ICDI	R/W	free-run timer	0000000в	
000028н	Lower timer control status register	TCCSL	R/W		0000000в	
000029н	Higher timer control status register	TCCSH	R/W		01-00000в	
00002Ан	Lower PPG0 control status register	PCNTL0	R/W	16-bit PPG0	0000000в	
00002Вн	Higher PPG0 control status register	PCNTH0	R/W		0000001в	
00002Сн	Lower PPG1 control status register	PCNTL1	R/W	16-bit PPG1	0000000в	
00002Dн	Higher PPG1 control status register	PCNTH1	R/W		0000001в	
00002Eн	Lower PPG2 control status register	PCNTL2	R/W	16-bit PPG2	0000000в	
00002Fн	Higher PPG2 control status register	PCNTH2	R/W		0000001в	
000030н	External interrupt enable	ENIR	R/W		0000000в	
000031н	External interrupt request	EIRR	R/W	External interrupt	0000000в	
000032н	Lower external interrupt level	ELVRL	R/W		0000000в	
000033н	Higher external interrupt level	ELVRH	R/W		0000000в	
000034н	Serial mode register 0	SMR0	R/W, W		0000000в	
000035н	Serial control register 0	SCR0	R/W, W		0000000в	
000036н	Reception/transmission data register 1	RDR0/ TDR0	R/W		0000000в	
000037н	Serial status register 0	SSR0	R/W, R	UART	00001000в	
000038н	Extended communication control register 0	ECCR0	R/W, R	(LIN/SCI) 0	000000XX _B	
000039н	Extended status control register 0	ESCR0	R/W		00000100в	
00003Ан	Baud rate generator register 00	BGR00	R/W		0000000в	
00003Вн	Baud rate generator register 01	BGR01	R/W, R		0000000в	
00003Cн to 00003Fн	(Disabled)					
000040н to 00004Fн	Area reserved for CAN C	ontroller 0. R	efer to " ∎ CA	N CONTROLLERS"		
000050н	Lower timer control status register 0	TMCSR0L	R/W		0000000в	
000051н	Higher timer control status register 0	TMCSR0H	R/W	16-bit reload timer	XXX10000 _B	
000052н		TMR0/		0	XXXXXXXXB	
000053н	Timer register 0/reload register 0	TMRLR0	R/W		XXXXXXXXB	

Address	Register name	Symbol	Read/write	Resource name	Initial value
0000D4H	Lower timer control status register 2	TMCSR2L	R/W	16-bit	0000000в
0000D5н	Higher timer control status register 2	TMCSR2H	R/W	reload timer 2	XXX10000 _B
0000D6н	Lower timer control status register 3	TMCSR3L	R/W	16-bit	0000000в
0000D7н	Higher timer control status register 3	TMCSR3H	R/W	reload timer 3	XXX10000 _B
0000D8н	Lower sound control register 1	SGCRL1	R/W	Cound concretor 1	0000000в
0000D9н	Higher sound control register 1	SGCRH1	R/W	Sound generator 1	0XXXX100 _B
0000DAH	Lower PPG3 control status register	PCNTL3	R/W	16-bit PPG3	0000000в
0000DBH	Higher PPG3 control status register	PCNTH3	R/W	10-bit FFG3	0000001в
0000DCH	Lower PPG4 control status register	PCNTL4	R/W	16-bit PPG4	0000000в
0000DDH	Higher PPG4 control status register	PCNTH4	R/W	TO-DIL PPG4	0000001в
0000DEH	Lower PPG5 control status register	PCNTL5	R/W		0000000в
0000DFH	Higher PPG5 control status register	PCNTH5	R/W	16-bit PPG5	0000001в
0000E0H	Serial mode register 2	SMR2	R/W, W		0000000в
0000E1н	Serial control register 2	SCR2	R/W, W		0000000в
0000E2н	Reception/transmission data register 2	RDR2/ TDR2	R/W		0000000в
0000E3H	Serial status register 2	SSR2	R/W, R	UART	00001000в
0000E4H	Extended communication control register 2	ECCR2	R/W, R	(LIN/SCI) 2	000000XXв
0000E5н	Extended status control register 2	ESCR2	R/W		00000100в
0000E6н	Baud rate generator register 20	BGR20	R/W		0000000в
0000E7н	Baud rate generator register 21	BGR21	R/W, R		0000000в
0000E8H	Serial mode register 3	SMR3	R/W, W		0000000в
0000E9H	Serial control register 3	SCR3	R/W, W		0000000в
0000EAH	Reception/transmission data register 3	RDR3/ TDR3	R/W		0000000в
0000EBH	Serial status register 3	SSR3	R/W, R	UART	00001000в
0000ECH	Extended communication control register 3	ECCR3	R/W, R	(LIN/SCI) 3	000000XX _B
0000EDH	Extended status control register 3	ESCR3	R/W		00000100в
0000EEH	Baud rate generator register 30	BGR30	R/W		0000000в
0000EFH	Baud rate generator register 31	BGR31	R/W, R		0000000в
001FF0н	Program address detection register 0	PADR0	R/W		XXXXXXXXB
001FF1н	Program address detection register 1	PADR0	R/W		XXXXXXXXB
001FF2н	Program address detection register 2	PADR0	R/W	Address match	XXXXXXXXB
001FF3н	Program address detection register 3	PADR1	R/W	detection	XXXXXXXXB
001FF4н	Program address detection register 4	PADR1	R/W		XXXXXXXXB
001FF5н	Program address detection register 5	PADR1	R/W		XXXXXXXXB

Address	Register name	Symbol	Read/write	Resource name	Initial value			
003700н								
to	Area reserved for CAN Controller 2. Refer to "■ CAN CONTROLLERS"							
0037FFн								
003800н to	Area reserved for CAN C	ontrollar 3 R	ofor to "■ CA					
0038FFн	Area reserved for CAN Controller 3. Refer to "■ CAN CONTROLLERS"							
003900н								
to		(Disabl	ed)					
00391Fн		1	1					
003920н	PPG0 down counter register	PDCR0	R		11111111 _В			
003921 н				16-bit PPG0	11111111 _в			
003922н	PPG0 cycle setting register	PCSR0	W		11111111 _В			
003923н		1 00110	vv		11111111в			
003924н	PPG0 duty setting register	PDUT0	W		0000000в			
003925н		FD010	vv	16-bit PPG0	0000000в			
003926н	PPG0 output division setting register	PPGDIV0	R/W, R		11111100в			
003927н		(Disabl	ed)					
003928н		PDCR1	R	16-bit PPG1	11111111в			
003929н	PPG1 down counter register				11111111в			
00392Ан		PCSR1			11111111в			
00392Вн	PPG1 cycle setting register		W		11111111в			
00392Сн					0000000в			
00392Dн	PPG1 duty setting register	PDUT1	W		0000000в			
00392Ен	PPG1output division setting register	PPGDIV1	R/W, R		11111100 _B			
00392F н		(Disabl	ed)					
003930н					11111111в			
003931 н	PPG2 down counter register	PDCR2	R		11111111 _в			
003932н					11111111в			
003933н	PPG2 cycle setting register	PCSR2	W	16-bit PPG2	11111111в			
003934н					0000000в			
003935н	PPG2 duty setting register	PDUT2	W		0000000в			
003936н	PPG2 output division setting register	PPGDIV2	R/W, R		11111100в			
003937 н		I			I			
to		(Disabl	ed)					
00393Fн		1	,					
003940н	Input capture register 4	IPCP4	R		XXXXXXXXB			
003941 н				Input capture 4/5	XXXXXXXXB			
003942н	Input capture register 5	IPCP5	R		XXXXXXXXB			
003943н	Input capture register o				XXXXXXXXB			
					(Continued)			

Address	Register name	Symbol	Read/write	Resource name	Initial value		
003970н to 003973н		(Disab	led)				
003974н	Frequency data register 1	SGFR1	R/W		XXXXXXXXB		
003975н	Amplitude data register 1	SGAR1	R/W	Sound concretor 1	0000000в		
003976н	Decrement grade register 1	SGDR1	R/W	Sound generator 1	XXXXXXXXB		
003977н	Tone count register 1	SGTR1	R/W		XXXXXXXXB		
003978н to 00397Fн		(Disabled)					
003980н	DWM1 compare register 0	PWC10	R/W		XXXXXXXXB		
003981 н	PWM1 compare register 0	FWCIU	U/ M		XXXXXXXXB		
003982н	BWW compare register 0	PWC20	R/W	Stepping motor	XXXXXXXXB		
003983н	PWM2 compare register 0	F WC20	U/ M	controller 0	XXXXXXXXB		
003984н	PWM1 select register 0	PWS10	R/W		0000000в		
003985н	PWM2 select register 0	PWS20	R/W		Х000000в		
003986н, 003987н		(Disab	led)				
003988н	DWM1 compare register 1	PWC11	R/W		XXXXXXXXB		
003989н	PWM1 compare register 1	PWCII	H/ VV		XXXXXXXXB		
00398Ан	DWM2 compare register 1	PWC21	R/W	Stepping motor controller 1	XXXXXXXXB		
00398Вн	PWM2 compare register 1		H/ VV		XXXXXXXXB		
00398Сн	PWM1 select register 1	PWS11	R/W		0000000в		
00398Dн	PWM2 select register 1	PWS21	R/W		Х000000в		
00398Eн, 00398Fн		(Disab	led)				
003990н					XXXXXXXXB		
003991 н	PWM1 compare register 2	PWC12	R/W		XXXXXXXXB		
003992н	DW/M2 compare register 2			Stepping motor	XXXXXXXXB		
003993н	PWM2 compare register 2	PWC22	R/W	controller 2	XXXXXXXXB		
003994н	PWM1 select register 2	PWS12	R/W		0000000в		
003995н	PWM2 select register 2		Х000000в				
003996н, 003997н		(Disab	led)		(Continued		

CAN CONTROLLERS

The CAN controller has the following features :

- Conforms to CAN Specification Version 2.0 Part A and B
 - Supports transmission/reception in standard frame and extended frame formats
- Supports transmission of data frames by receiving remote frames
- 16 transmission/reception message buffers
 - 29-bit ID and 8-byte data
 - Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask
 - 2 acceptance mask registers in either standard frame format or extended frame formats
- Bit rate programmable from 10 kbps to 2 Mbps (when input clock is at 16 MHz)

	Add	ress		Register	Abbreviation	Access	Initial Value	
CAN0	CAN1	CAN2	CAN3	negister	Abbreviation	ALLESS		
003С00н	003D00н	003E00 н	003F00н	Control status register	CSR	R/W, R	00000в	
003C01н	003D01н	003E01 н	003F01 н	Control Status register	0311	11/ VV, 11	00-1в	
003C02н	003D02 _H	003E02н	003F02н	Last event indicator	LEIR	R/W	В	
003C03н	003D03н	003E03н	003F03н	register		11/ VV	000-0000в	
003C04н	003D04 _H	003E04 _H	003F04н	RX/TX error counter	RTEC	R	0000000в	
003C05н	003D05н	003E05н	003F05н		meo	11	0000000в	
003C06н	003D06н	003E06н	003F06н	Bit timing register	BTR	R/W	-1111111в	
003C07н	003D07н	003E07 н	003F07 н		BIN	I 1/ V V	11111111 _В	

List of Control Registers(1)

■ ELECTRICAL CHARACTERISTICS

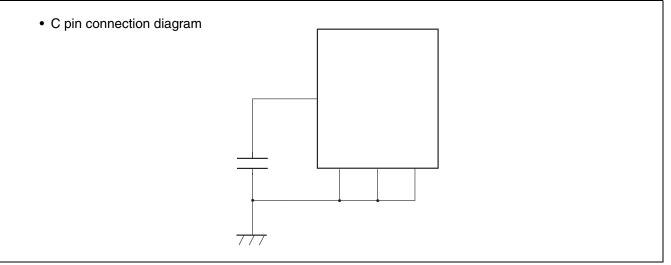
1. Absolute Maximum Ratings

Devementer	Cumhal	Rating		Unit	Remarks	
Parameter	Symbol	Min	Max	Unit	nemarks	
	Vcc	Vss - 0.3	Vss + 6.0	V		
Dowor oupply voltogo*1	AVcc	Vss - 0.3	Vss + 6.0	V	$AVcc = Vcc^{*2}$	
Power supply voltage*1	AVRH	Vss - 0.3	Vss + 6.0	V	AVcc ≥ AVRH*2	
	DVcc	Vss - 0.3	Vss + 6.0	V	$DVcc = Vcc^{*2}$	
Input voltage*1	Vı	Vss - 0.3	Vcc + 0.3	V	*3	
Output voltage*1	Vo	Vss - 0.3	Vcc + 0.3	V		
Maximum clamp current	CLAMP	- 4	+ 4	mA	*7	
Total maximum clamp current	Σ Iclamp		40	mA	*7	
"L" level maximum	OL1		15	mA	Except P70 to P77 and P80 to P87	
output current*4		_	40	mA	P70 to P77 and P80 to P87	
"L" level average output	OLAV1		4	mA	Except P70 to P77 and P80 to P87	
current*5	OLAV2		30	mA	P70 to P77 and P80 to P87	
"L" level maximum	Σ IOL1	_	100	mA	Except P70 to P77 and P80 to P87	
total output current	Σ Iol2	_	330	mA	P70 to P77 and P80 to P87	
"L" level average total	Σ IOLAV1		50	mA	Except P70 to P77 and P80 to P87	
output current	Σ Iolav2	_	250	mA	P70 to P77 and P80 to P87	
"H" level maximum	Он1*4	_	-15	mA	Except P70 to P77 and P80 to P87	
output current	он2*4		-40	mA	P70 to P77 and P80 to P87	
"H" level average	OHAV1*5	_	-4	mA	Except P70 to P77 and P80 to P87	
output current	OHAV2 ^{*5}	_	-30	mA	P70 to P77 and P80 to P87	
"H" level maximum	Σ Іон1		-100	mA	Except P70 to P77 and P80 to P87	
total output current	Σ Іон2	_	-330	mA	P70 to P77 and P80 to P87	
"H" level average total	Σ IOHAV1 ^{*6}		-50	mA	Except P70 to P77 and P80 to P87	
output current	Σ Iohav2 ^{*6}		-250	mA	P70 to P77 and P80 to P87	
Power consumption	PD		625	mW		
Operating temperature	TA	- 40	+ 105	°C		
Storage temperature	Тѕтс	- 55	+ 150	°C		

*1 : The parameter is based on $V_{SS} = AV_{SS} = DV_{SS} = 0.0 V.$

*2 : AVcc, AVRH must not exceed Vcc, and AVRH must not exceed AVcc. When using an evaluation product, DVcc must not exceed Vcc (however, DVcc can be set to a higher voltage than Vcc when using a Flash memory product).

*3 : If the input current or the maximum input current is limited using external components, ICLAMP is the applicable rating instead of VI.


*4 : Maximum output current is defined as the peak value of current through any one of the corresponding pins.

2. Recommended Operating Conditions

 $(V_{SS} = DV_{SS} = AV_{SS} = 0.0 V)$

Darameter	Parameter Symbol Value U		Unit	Remarks	
Farameter	Symbol	Min	Max	Onit	nemarks
Power supply	Vcc	4.0	5.5	V	The low voltage detection reset operates when the power supply voltage reaches 4.2 V \pm 0.2 V.
voltage	AVcc DVcc	4.4	5.5	v	Maintain stop operation status The low voltage detection reset operates when the power supply voltage reaches 4.2 V \pm 0.2 V.
Smoothing capacitor*	Cs	0.1	1.0	μF	Use a ceramic capacitor or other capacitor of equivalent frequency characteristics. Use a capacitor with a capacitance greater than this capacitor as the bypass capacitor for the V_{CC} pin.
Operating temperature	TA	- 40	+ 105	°C	

*: Refer to the following diagram for details on the connection of the smoothing capacitor Cs.

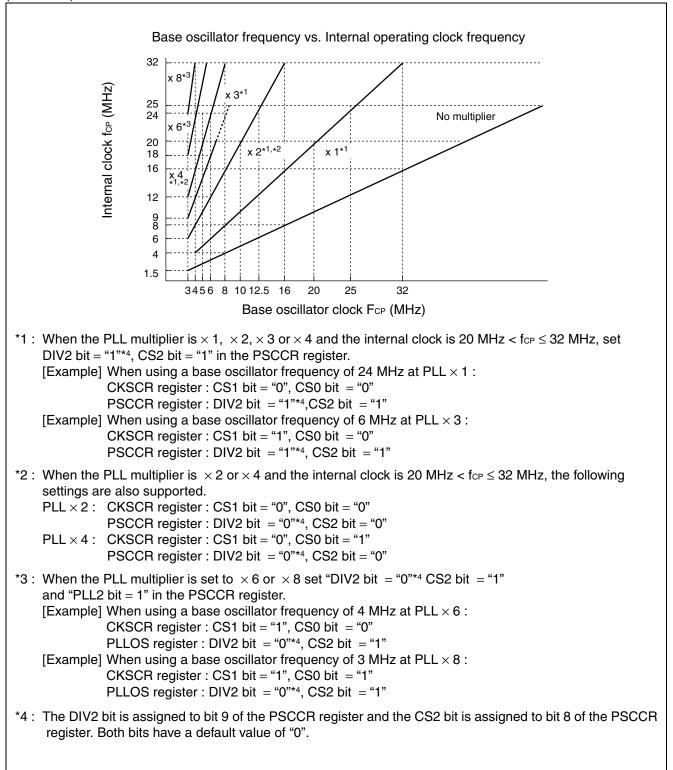
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

3. DC Characteristics

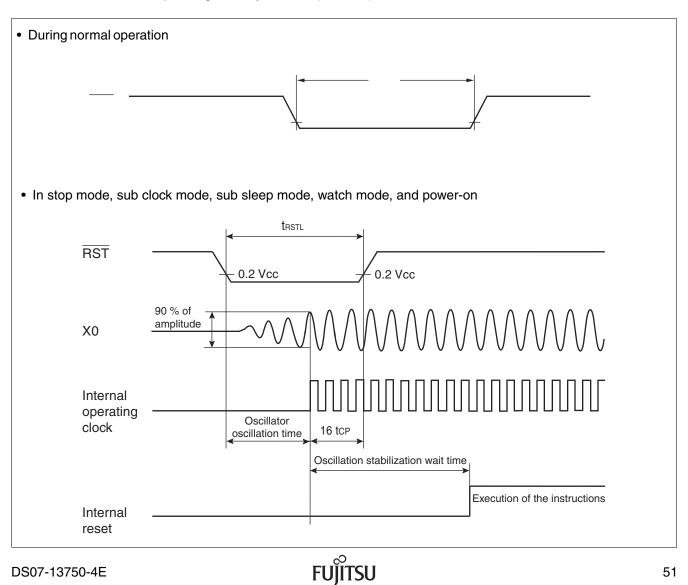
Devenueter	• • • •	Pin name	Conditions	Value				Demontos
Parameter	Symbol		Conditions	Min	Тур	Мах	Unit	Remarks
"H" level input voltage	VIHA		_	0.8 Vcc			V	Pin inputs if Automotive input levels are selected
	VIHS		_	0.8 Vcc			V	Pin inputs if CMOS hysteresis input levels are selected
	VIHC		_	0.7 Vcc			V	RST input pin (CMOS hysteresis)
"L" level input voltage	VILA		_			0.5 Vcc	V	Pin inputs if Automotive input levels are selected
	VILS	_	_		_	0.2 Vcc	V	Pin inputs if CMOS hysteresis input levels are selected
	VILR					0.3 Vcc	V	RST input pin (CMOS hysteresis)
Power supply current*	lcc		Maximum operating frequency FcP = 32 MHz, normal operation		35	45	mA	
			Maximum operating frequency FcP = 32 MHz, writing Flash memory		55	65	mA	
	Iccs		Operating frequency $F_{CP} = 32 \text{ MHz},$ sleep mode		13	20	mA	
	Істѕ		Operating frequency $F_{CP} = 2 MHz$, time-base timer mode		0.6	1.0	mA	
	Ictspll	Vcc	Operating frequency F _{CP} = 32 MHz, PLL timer mode, External frequency = 4 MHz		2.5	4	mA	
	Iccl		Operating frequency $F_{CP} = 8 \text{ kHz}, T_A = +25 \text{ °C},$ sub clock operation		120	270	μA	
	Iccls		Operating frequency $F_{CP} = 8 \text{ kHz}, T_A = +25 \text{ °C},$ sub sleep operation	_	100	200	μA	
	Ісст		Operating frequency $F_{CP} = 8 \text{ kHz}, T_A = +25 \text{ °C},$ watch mode		90	180	μA	
	Іссн	1	$T_A = + 25 \ ^{\circ}C$, stop mode	—	80	170	μA	


(Vcc = 5.0 V $\pm 10\%$, Vss = DVss = AVss = 0.0 V, T_A = -40 °C to +105 °C)

4. AC Characteristics

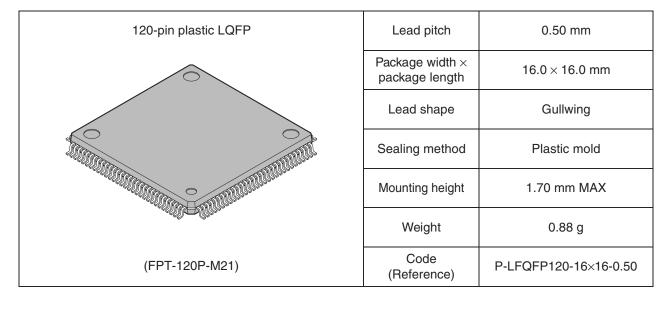
(1) Clock timing

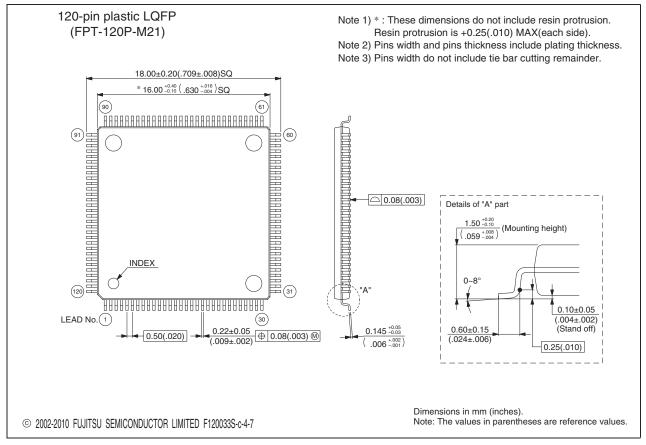
Deveneter	Symbol	Pinname	Condi- tions	Value				·
Parameter				Min	Тур	Max	Unit	Remarks
		X0, X1		3	_	16	MHz	1/2 (PLL stopped) When using the oscillator circuit
				3	—	32	MHz	1/2 (PLL stopped) When using an external clock
	Fc			4	—	32	MHz	PLL multiplied by 1
Clock frequency				3		16	MHz	PLL multiplied by 2
				3		10.7	MHz	PLL multiplied by 3
				3		8	MHz	PLL multiplied by 4
				3		5.33	MHz	PLL multiplied by 6
				3		4	MHz	PLL multiplied by 8
	FLC	X0A, X1A		_	32.768		kHz	
	t cy∟	X0, X1		62.5		333	ns	When using an oscillator
Clock cycle time				31.25		333	ns	External clock input
	t LCYL	X0A, X1A			30.5		μs	
Input clock pulse width	Pwн, Pwl	X0		5		_	ns	Use duty ratio of $50\%\pm3\%$ as a guideline
Width	Pwlh, Pwll	X0A			15.2		μs	
Input clock rise and fall time	tcr, tcf	X0		_		5	ns	When using an external clock signal
Internal operating clock frequency	Fcp	_		1.5		32	MHz	Using main clock (PLL clock)
	FLCP	—		_	8.192		kHz	Using sub clock
Internal operating clock cycle time	tcp	_		31.25	—	666	ns	Using main clock (PLL clock)
	t LCP				122.1		μs	Using sub clock



(2) Reset input

$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to} +10$								
Parameter	Symbol	Pin name	Value			Remarks		
Falameter			Min	Max	Unit	nemarks		
Reset input time	trs⊤∟	RST	500		ns	During normal operation		
			Oscillator oscillation time* + 16 tcp	_	ms	In stop mode, sub clock mode, sub sleep mode, and watch mode		
			100		μs	In time-base timer mode		


*: The oscillation time of the oscillator is the time taken to reach 90% of the amplitude. The oscillation time of a crystal oscillator is between several ms and tens of ms. The oscillation time of a ceramic oscillator is between hundreds of μ s and several ms. The oscillation time of an external clock is 0 ms.


Note : tcp is the internal operating clock cycle time. (Unit : ns)

FU

■ PACKAGE DIMENSION

Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

FUJITSU SEMICONDUCTOR LIMITED

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome, Kohoku-ku Yokohama Kanagawa 222-0033, Japan Tel: +81-45-415-5858 http://jp.fujitsu.com/fsl/en/

For further information please contact:

North and South America

FUJITSU SEMICONDUCTOR AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://us.fujitsu.com/micro/

Europe

FUJITSU SEMICONDUCTOR EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/semiconductor/

Korea

FUJITSU SEMICONDUCTOR KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

Asia Pacific

FUJITSU SEMICONDUCTOR ASIA PTE. LTD. 151 Lorong Chuan, #05-08 New Tech Park 556741 Singapore Tel : +65-6281-0770 Fax : +65-6281-0220 http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China Tel : +86-21-6146-3688 Fax : +86-21-6335-1605 http://cn.fujitsu.com/fss/

FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel : +852-2377-0226 Fax : +852-2376-3269 http://cn.fujitsu.com/fsp/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or other rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.