

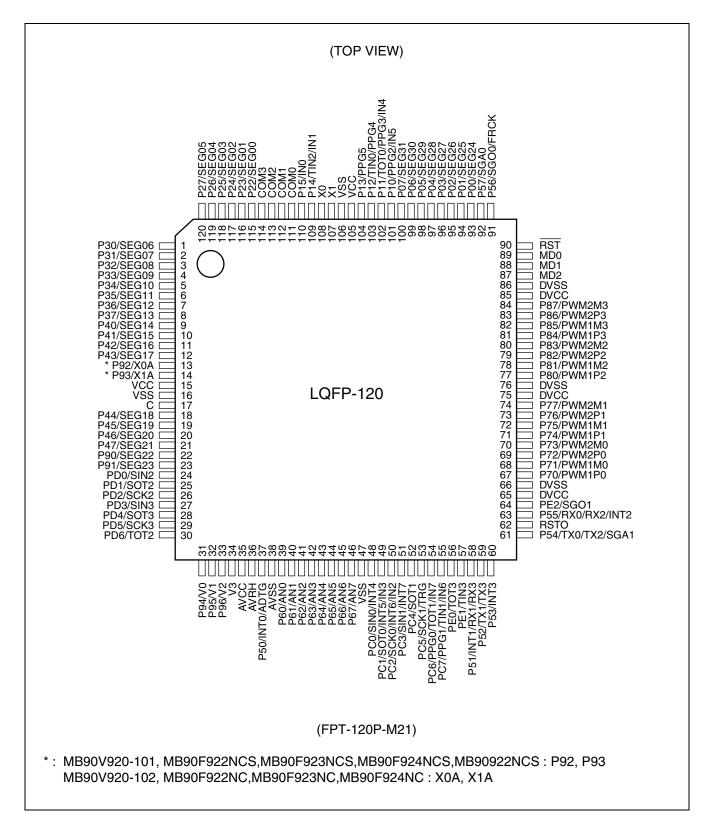
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

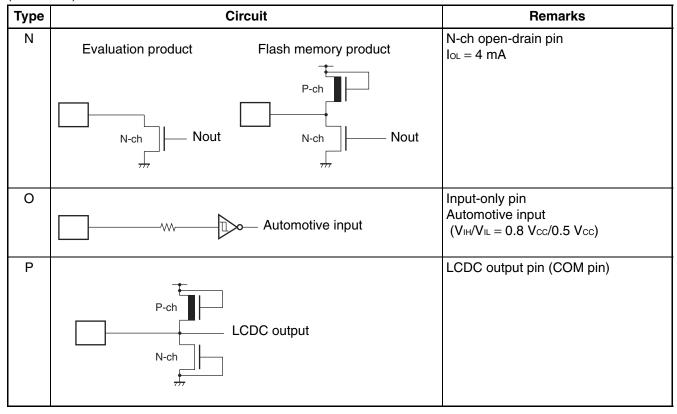
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFl

Product StatusObsoleteCore ProcessorF*MC-16LXCore Size16-BitSpeed32MHzConnectivityCANbus, LINbus, UART/USARTPeripheralsLCD, LVD, POR, PWM, WDTNumber of I/O93Program Memory Size256KB (256K x 8)Program Memory TypeMask ROMEEPROM Size-RAM Size10K x 8Voltage - Supply (Vcc/Vdd)4V ~ 5.5VData ConvertersA/D 8x8/10bOscillator TypeExternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case120-LQFP (16x16)Purchase URLhttps://www.ex.fl.com/product-detail/infineon-technologies/mb90922ncspmc-gs-203e1		
Core Size16-BitSpeed32MHzConnectivityCANbus, LINbus, UART/USARTPeripheralsLCD, LVD, POR, PWM, WDTNumber of I/O93Program Memory Size256KB (256K x 8)Program Memory TypeMask ROMEEPROM Size-RAM Size10K x 8Voltage - Supply (Vcc/Vdd)4V ~ 5.5VData ConvertersA/D 8x8/10bOscillator TypeExternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case120-LQFP (16x16)Purchage IIPI20-LQFP (16x16)	Product Status	Obsolete
Speed32MHzConnectivityCANbus, LINbus, UART/USARTPeripheralsLCD, LVD, POR, PWM, WDTNumber of I/O93Program Memory Size256KB (256K x 8)Program Memory TypeMask ROMEEPROM Size-RAM Size10K x 8Voltage - Supply (Vcc/Vdd)4V ~ 5.5VData ConvertersA/D 8x8/10bOscillator TypeExternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case120-LQFP (16x16)Purchage UBLEurenal	Core Processor	F ² MC-16LX
ConnectivityCANbus, LINbus, UART/USARTPeripheralsLCD, LVD, POR, PWM, WDTNumber of I/O93Program Memory Size256KB (256K x 8)Program Memory TypeMask ROMEEPROM Size-RAM Size10K x 8Voltage - Supply (Vcc/Vdd)4V ~ 5.5VData ConvertersA/D 8x8/10bOscillator TypeExternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case120-LQFP (16x16)Purchace IIRI-	Core Size	16-Bit
PeripheralsLCD, LVD, POR, PWM, WDTNumber of I/O93Program Memory Size256KB (256K x 8)Program Memory TypeMask ROMEEPROM Size-RAM Size10K x 8Voltage - Supply (Vcc/Vdd)4V ~ 5.5VData ConvertersA/D 8x8/10bOscillator TypeExternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case120-LQFP (16x16)Purchase LIPL	Speed	32MHz
Number of I/O93Program Memory Size256KB (256K x 8)Program Memory TypeMask ROMEEPROM Size-RAM Size10K x 8Voltage - Supply (Vcc/Vdd)4V ~ 5.5VData ConvertersA/D 8x8/10bOscillator TypeExternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case120-LQFPSupplier Device Package120-LQFP (16x16)	Connectivity	CANbus, LINbus, UART/USART
Program Memory Size256KB (256K x 8)Program Memory TypeMask ROMEEPROM Size-RAM Size10K x 8Voltage - Supply (Vcc/Vdd)4V ~ 5.5VData ConvertersA/D 8x8/10bOscillator TypeExternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case120-LQFPSupplier Device Package120-LQFP (16x16)	Peripherals	LCD, LVD, POR, PWM, WDT
Program Memory TypeMask ROMEEPROM Size-RAM Size10K x 8Voltage - Supply (Vcc/Vdd)4V ~ 5.5VData ConvertersA/D 8x8/10bOscillator TypeExternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case120-LQFPSupplier Device Package120-LQFP (16x16)	Number of I/O	93
EEPROM Size-RAM Size10K x 8Voltage - Supply (Vcc/Vdd)4V ~ 5.5VData ConvertersA/D 8x8/10bOscillator TypeExternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case120-LQFPSupplier Device Package120-LQFP (16x16)	Program Memory Size	256КВ (256К х 8)
RAM Size10K x 8Voltage - Supply (Vcc/Vdd)4V ~ 5.5VData ConvertersA/D 8x8/10bOscillator TypeExternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case120-LQFPSupplier Device Package120-LQFP (16x16)	Program Memory Type	Mask ROM
Voltage - Supply (Vcc/Vdd)4V ~ 5.5VData ConvertersA/D 8x8/10bOscillator TypeExternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case120-LQFPSupplier Device Package120-LQFP (16x16)	EEPROM Size	·
Data ConvertersA/D 8x8/10bOscillator TypeExternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case120-LQFPSupplier Device Package120-LQFP (16x16)	RAM Size	10K x 8
Oscillator Type External Operating Temperature -40°C ~ 105°C (TA) Mounting Type Surface Mount Package / Case 120-LQFP Supplier Device Package 120-LQFP (16x16)	Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Operating Temperature -40°C ~ 105°C (TA) Mounting Type Surface Mount Package / Case 120-LQFP Supplier Device Package 120-LQFP (16x16)	Data Converters	A/D 8x8/10b
Mounting Type Surface Mount Package / Case 120-LQFP Supplier Device Package 120-LQFP (16x16)	Oscillator Type	External
Package / Case 120-LQFP Supplier Device Package 120-LQFP (16x16)	Operating Temperature	-40°C ~ 105°C (TA)
Supplier Device Package 120-LQFP (16x16)	Mounting Type	Surface Mount
Purchase LIPI	Package / Case	120-LQFP
Purchase URL https://www.e-xfl.com/product-detail/infineon-technologies/mb90922ncspmc-gs-203e1	Supplier Device Package	120-LQFP (16x16)
	Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90922ncspmc-gs-203e1


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

■ PIN ASSIGNMENT

Pin no.	Pin name	I/O circuit type*1	Function
70	P73	 - L	General-purpose output-only port
70	PWM2M0		Stepping motor controller ch.0 output pin
71	P74	- L	General-purpose output-only port
/ 1	PWM1P1		Stepping motor controller ch.1 output pin
72	P75	L	General-purpose output-only port
12	PWM1M1		Stepping motor controller ch.1 output pin
73	P76	 - L	General-purpose output-only port
73	PWM2P1		Stepping motor controller ch.1 output pin
74	P77	L	General-purpose output-only port
74	PWM2M1		Stepping motor controller ch.1 output pin
77	P80	L	General-purpose output-only port
11	PWM1P2		Stepping motor controller ch.2 output pin
78	P81	- L	General-purpose output-only port
70	PWM1M2		Stepping motor controller ch.2 output pin
79	P82	L	General-purpose output-only port
19	PWM2P2		Stepping motor controller ch.2 output pin
80	P83	L	General-purpose output-only port
00	PWM2M2		Stepping motor controller ch.2 output pin
81	P84	L	General-purpose output-only port
01	PWM1P3		Stepping motor controller ch.3 output pin
82	P85	L	General-purpose output-only port
02	PWM1M3		Stepping motor controller ch.3 output pin
83	P86		General-purpose output-only port
03	PWM2P3		Stepping motor controller ch.3 output pin
84	P87		General-purpose output-only port
04	PWM2M3	- L	Stepping motor controller ch.3 output pin
00	P90	Г	General-purpose I/O port
22	SEG22	F	LCD controller/driver segment output pin
00	P91	Г	General-purpose I/O port
23	SEG23	F	LCD controller/driver segment output pin
01	P94	<u> </u>	General-purpose I/O port
31	V0	G	LCD controller/driver reference power supply pin
20	P95	6	General-purpose I/O port
32	V1	G	LCD controller/driver reference power supply pin

HANDLING DEVICES

• Strictly observe maximum rated voltages (preventing latch-up)

In CMOS IC devices, a condition known as latch-up may occur if voltages higher than V_{cc} or lower than V_{ss} are applied to input or output pins other than medium or high withstand voltage pins, or if the voltage applied between VCC and VSS pins exceeds the rated voltage level. If a latch-up occurs, the power supply current may increase dramatically and may destroy semiconductor elements. When using semiconductor devices, always take sufficient care to avoid exceeding maximum ratings.

When the analog system power supply is switched on or off, be careful not to apply the analog power supply (AV_{cc}, AVRH), the analog input voltages and the power supply voltage for the high current output buffer pins (DV_{cc}) in excess of the digital power supply voltage (V_{cc}).

Once the digital power supply voltage (Vcc) has been disconnected, the analog power supply (AVcc, AVRH) and the power supply voltage for the high current output buffer pins (DVcc) may be turned on in any sequence.

Supply voltage stabilization

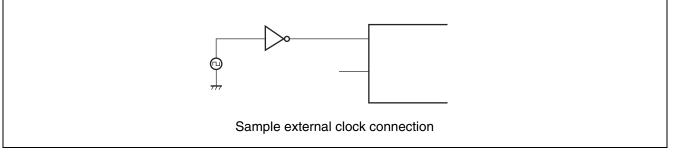
Rapid fluctuations in the power supply voltage can cause malfunctions even if the Vcc power supply voltage remains within the warranted operating range. It is recommended that the power supply be stabilized such that ripple fluctuations (P-P value) at commercial frequencies (50 Hz/60 Hz) be limited to within 10% of the standard Vcc value, and that transient fluctuations due to power supply switching, etc. be limited to a rate of 0.1 V/ms or less.

• Precautions when turning the power on

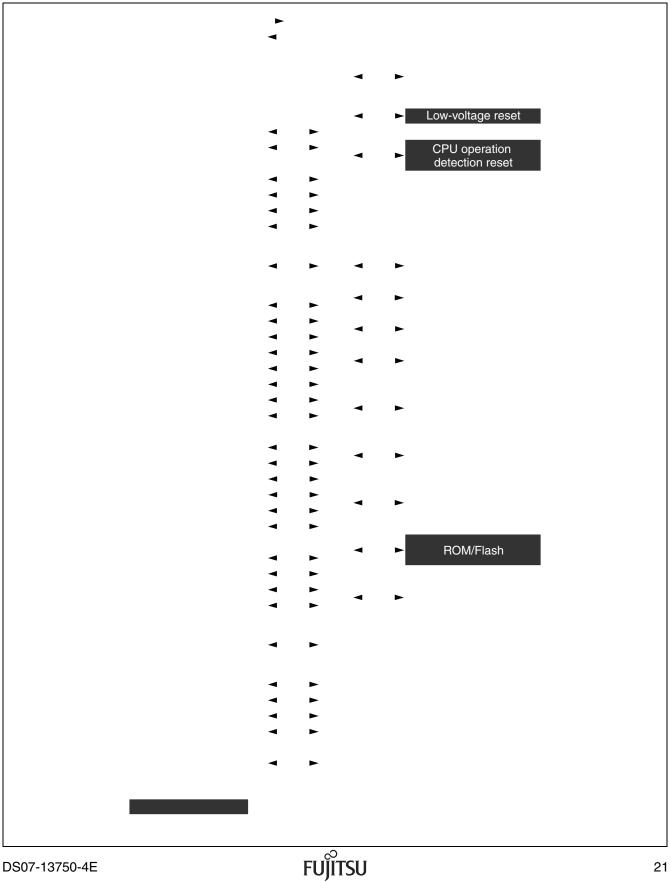
In order to prevent the built-in step-down circuits from malfunctioning, the time taken for the voltage to rise (0.2 V to 2.7 V) during power-on should be less than 50 μ s.

• Handling unused pins

If unused input pins are left open, they may cause malfunctions or latch-up which may lead to permanent damage to the semiconductor. Unused input pins should therefore be pulled up or pulled down through a resistor of at least 2 k Ω .


Unused input/output pins may be set to the output state and left open, or set to the input state and connected to a pull-up or pull-down resistance of 2 k Ω or more.

• Handling A/D converter power supply pins


Even if the A/D converter is not used, the power supply pins should be connected such as $AV_{CC} = V_{CC}$, and $AV_{SS} = AVRH = V_{SS}$.

• Notes on using an external clock

Even when an external clock is used, an oscillation stabilization wait time is required following power-on reset or release from sub clock mode or stop mode. Furthermore, only the X0A pin should be driven when an external clock is used, with the X1A pin open as shown in the following diagram. Do not use high-speed oscillation pins (X0 and X1) for external clock input.

■ BLOCK DIAGRAM

Address	Register name	Symbol	Read/write	Resource name	Initial value
000054н	Lower timer control status register 1	TMCSR1L	R/W		0000000в
000055н	Higher timer control status register 1	TMCSR1H	R/W	16-bit reload timer	XXX10000 _B
000056н	Timer register 1/relead register 1	TMR1/		1	XXXXXXXXB
000057н	Timer register 1/reload register 1	TMRLR1	R/W		XXXXXXXXB
000058н	LCD output control register 1	LOCR1	R/W	LCDC	11111111в
000059н	LCD output control register 2	LOCR2	R/W	LODU	0000000в
00005Ан	Lower sound control register 0	SGCRL0	R/W		0000000в
00005Вн	Higher sound control register 0	SGCRH0	R/W		0XXXX100 _B
00005Сн	Frequency data register 0	SGFR0	R/W	Sound constant O	XXXXXXXXB
00005Dн	Amplitude data register 0	SGAR0	R/W	Sound generator 0	0000000в
00005Eн	Decrement grade register 0	SGDR0	R/W		XXXXXXXXB
00005F н	Tone count register 0	SGTR0	R/W		XXXXXXXXB
000060н	Input capture register 0	IPCP0	D		XXXXXXXXB
000061 н	input capture register o	IPCPU	R	Input conturo 0/1	XXXXXXXXB
000062н	Input capture register 1	IPCP1	R	Input capture 0/1	XXXXXXXXB
000063н	input capture register i	IPCPT	n		XXXXXXXXB
000064н			P		XXXXXXXXB
000065н	Input capture register 2	IPCP2	R	Incut conture 0/0	XXXXXXXXB
000066н	Input conturo register 2	IPCP3	R	Input capture 2/3	XXXXXXXXB
000067н	Input capture register 3	IFCF3	n		XXXXXXXXB
000068н	Input capture control status 0/1	ICS01	R/W	Input conturo 0/1	0000000в
000069н	Input capture edge register 0/1	ICE01	R/W	Input capture 0/1	XXX0X0XX _B
00006Ан	Input capture control status 2/3	ICS23	R/W	Input capture 2/3	0000000в
00006Вн	Input capture edge register 2/3	ICE23	R/W	input capture 2/3	XXXXXXXXB
00006Сн	Lower LCD control register	LCRL	R/W	LCD controller/	00010000в
00006Dн	Higher LCD control register	LCRH	R/W	driver	0000000в
00006Ен	Low voltage/CPU operation detection reset control register	LVRC	R/W	Low voltage/CPU operation detection reset	00111000 _B
00006Fн	ROM mirror	ROMM	W	ROM mirror	XXXXXXX1 _B
000070н to 00007Fн	Area reserved for CAN C	ontroller 1. R	efer to " ∎ CA	N CONTROLLERS"	
000080н	PWM control register 0	PWC0	R/W	Stepping motor controller 0	00000X0 _B
000081 н		(Disabl	ed)		
000082н	PWM control register 1	PWC1	R/W	Stepping motor controller 1	000000Х0в

Address	Register name	Symbol	Read/write	Resource name	Initial value						
000083н		(Disab	led)								
000084н	PWM control register 2	PWC2	R/W	Stepping motor controller 2	00000Х0в						
000085н	(Disabled)										
000086н	PWM control register 3	VM control register 3 PWC3 R/W Stepping motor controller 3									
000087н		(Disab	led)								
000088н	LCD output control register 3	LOCR3	R/W	LCDC	XXXXX111 _B						
000089н		(Disab	led)								
00008A _H	A/D setting register 0	ADSR0	R/W		0000000В						
00008BH	A/D setting register 1	ADSR1	R/W	A/D converter	0000000в						
00008Сн	Port input level select 0	PIL0	R/W		0000000В						
00008DH	Port input level select 1	PIL1	R/W	Port input level select	XXXX0000 _B						
00008EH	Port input level select 2	PIL2	R/W	301001	XXXX0000 _B						
00008Fн to 00009Dн		(Disab	led)								
00009E н	Program address detection control register	PACSR	R/W	Address match detection	XXXX0X0X _B						
00009Fн	Delayed Interrupt/Release Register	DIRR	R/W	Delay interrupt	XXXXXXX0B						
0000А0н	Power saving mode control register	LPMCR	R/W	Power saving	00011000в						
0000A1 н	Clock select register	CKSCR	R/W, R	control circuit	11111100в						
0000A2н to 0000A7н		(Disab	led)								
0000A8H	Watchdog timer control register	WDTC	R, W	Watchdog timer	XXXXX111 _B						
0000А9н	Time-base timer control register	TBTC	R/W, W	Time-base timer	1XX00100 _B						
0000ААн	Watch timer control register	WTC	R/W, W, R	Watch timer (sub clock)	10001000 _B						
0000ABн to 0000ADн		(Disab	led)		•						
0000AEH	Flash memory control status register	FMCS	R/W	Flash interface	000X0000B						
0000AFн		(Disab	lod)								

	Add	ress		Deviator	Ábbre-		Initial Value
CAN0	CAN1	CAN2	CAN3	Register	viation	Access	Initial Value
003A00н to 003A1Fн	003B00н to 003B1Fн	003700н to 00371Fн	003800н to 00381Fн	General-purpose RAM	_	R/W	XXXXXXXXB to XXXXXXXB
003А20н 003А21н	003B20н 003B21н	003720н 003721н	003820н 003821н				XXXXXXXXB XXXXXXXB
003А22н 003А23н	003B22н 003B23н	003722н 003723н	003822н 003823н	ID register 0	IDR0	R/W	XXXXXB XXXXXXXXB
003А24н 003А25н	003B24н 003B25н	003724н 003725н	003824н 003825н	ID register 1	IDR1	R/W	XXXXXXXXXB XXXXXXXXB
003А26н 003А27н	003B26н 003B27н	003726н 003727н	003826н 003827н				XXXXXB XXXXXXXXB
003А28н 003А29н	003B28н 003B29н	003728н 003729н	003828н 003829н	ID register 2	IDR2	R/W	XXXXXXXXXB XXXXXXXXB
003А2Ан 003А2Вн	003B2Aн 003B2Bн	00372Ан 00372Вн	00382Ан 00382Вн				XXXXXB XXXXXXXXB
003А2Сн 003А2Dн	003B2Cн 003B2Dн	00372Cн 00372Dн	00382Cн 00382Dн	ID register 3	IDR3	R/W	XXXXXXXXXB XXXXXXXXB
003А2Ен 003А2Fн	003B2Eн 003B2Fн	00372Eн 00372Fн	00382Eн 00382Fн				XXXXXB XXXXXXXXB
003А30н 003А31н	003B30н 003B31н	003730н 003731н	003830н 003831н	ID register 4	IDR4	R/W	XXXXXXXXAB XXXXXXXXAB
003А32н 003А33н	003B32н 003B33н	003732н 003733н	003832н 003833н				XXXXXB XXXXXXXXB
003А34н 003А35н	003B34н 003B35н	003734н 003735н	003834н 003835н	ID register 5	IDR5	R/W	XXXXXXXXAB XXXXXXXXB
003А36н 003А37н	003B36н 003B37н	003736н 003737н	003836н 003837н			10,00	XXXXXB XXXXXXXXB
003А38н 003А39н	003B38н 003B39н	003738н 003739н	003838н 003839н	ID register 6	IDR6	R/W	XXXXXXXXAB XXXXXXXXB
003АЗАн 003АЗВн	003ВЗАн 003ВЗВн	00373Ан 00373Вн	00383Ан 00383Вн			N/ VV	XXXXXB XXXXXXXXB
003А3Сн 003А3Dн	003B3Cн 003B3Dн	00373Cн 00373Dн	00383Cн 00383Dн	ID register 7	1007		XXXXXXXXB XXXXXXXB
003АЗЕн 003АЗFн	003B3Eн 003B3Fн	00373Eн 00373Fн	00383Eн 00383Fн	ID register 7	IDR7	R/W	XXXXXB XXXXXXXXB

List of Message	Buffers (ID	Registers)
	= = = = = = = = = = = = = = = = = = = =	

(Continued)

(Continued)

Interrupt source	El ² OS				Interre re	Priority	
	corresponding	Number		Address	ICR	Address	
UART 1 RX	© #37 25н FFFF68н ICR13 0000В		◎ #37 25н FFFF68н ICD		0000BD _H *1	High	
UART 1 TX	\bigtriangleup	#38	26н	FFFF64н	101113	UUUUDDH	A
UART 0 RX	0	#39	27н	FFFF60⊦	ICR14	0000BEн*1	
UART 0 TX	\bigtriangleup	#40	28н	FFFF5CH		UUUUDEH -	
Flash memory status	×	#41	29н	FFFF58⊦	ICR15	0000BF _H *1	1
Delay interrupt generator module	×	#42	2Ан	FFFF54H	101115	UUUUDFH '	Low

© : Usable, and has expanded intelligent I/O services (EI²OS) stop function

 \bigcirc : Usable

 \bigtriangleup : Usable when interrupt sources sharing ICR are not in use

- \times : Unusable
- *1 : Peripheral functions that share the ICR register have the same interrupt level.

• If the expanded intelligent I/O service (EI²OS) is used with peripheral functions that share the ICR register, only one of the peripheral functions that share the register can be used.

• When the expanded intelligent I/O service (EI²OS) is specified for one of the peripheral functions that shares the ICR register, interrupts cannot be used from the other peripheral functions that share the register.

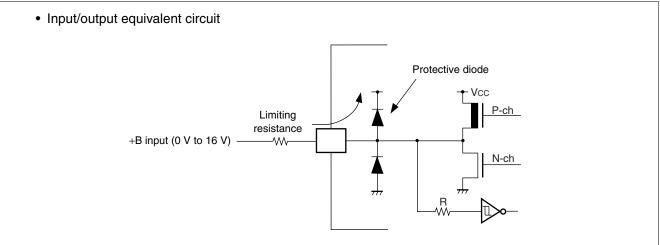
*2 : Priority applies when interrupts of the same level are generated.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Devementer	Cumhal	Rat	ing	Unit	Remarks			
Parameter	Symbol	Min	Max	Unit	neillaiks			
	Vcc	Vss - 0.3	Vss + 6.0	V				
Dowor oupply voltogo*1	AVcc	$V_{\text{SS}} - 0.3$	Vss + 6.0	V	$AVcc = Vcc^{*2}$			
Power supply voltage*1	AVRH	Vss - 0.3	Vss + 6.0	V	AVcc ≥ AVRH*2			
	DVcc	$V_{\text{SS}} - 0.3$	Vss + 6.0	V	$DVcc = Vcc^{*2}$			
Input voltage*1	Vı	Vss - 0.3	Vcc + 0.3	V	*3			
Output voltage*1	Vo	$V_{\text{SS}}-0.3$	Vcc + 0.3	V				
Maximum clamp current		- 4	+ 4	mA	*7			
Total maximum clamp current	Σ CLAMP	_	40	mA	*7			
"L" level maximum	IOL1	_	15	mA	Except P70 to P77 and P80 to P87			
output current*4			40	mA	P70 to P77 and P80 to P87			
"L" level average output	OLAV1	_	4	mA	Except P70 to P77 and P80 to P87			
current*5	OLAV2	_	30	mA	P70 to P77 and P80 to P87			
"L" level maximum	Σ IOL1	_	100	mA	Except P70 to P77 and P80 to P87			
total output current	Σ IOL2		330	mA	P70 to P77 and P80 to P87			
"L" level average total	Σ IOLAV1		50	mA	Except P70 to P77 and P80 to P87			
output current	Σ Iolav2	_	250	mA	P70 to P77 and P80 to P87			
"H" level maximum	О Н1 ^{*4}	_	-15	mA	Except P70 to P77 and P80 to P87			
output current	О Н2 ^{*4}		-40	mA	P70 to P77 and P80 to P87			
"H" level average	OHAV1*5	_	-4	mA	Except P70 to P77 and P80 to P87			
output current	OHAV2 ^{*5}	_	-30	mA	P70 to P77 and P80 to P87			
"H" level maximum	Σloh1		-100	mA	Except P70 to P77 and P80 to P87			
total output current	Σloh2	_	-330	mA	P70 to P77 and P80 to P87			
"H" level average total	Σ IOHAV1 ^{*6}		-50	mA	Except P70 to P77 and P80 to P87			
output current	Σ IOHAV2 ^{*6}		-250	mA	P70 to P77 and P80 to P87			
Power consumption	PD	_	625	mW				
Operating temperature	TA	- 40	+ 105	°C				
Storage temperature	Тѕтс	- 55	+ 150	°C				

*1 : The parameter is based on $V_{SS} = AV_{SS} = DV_{SS} = 0.0 V.$

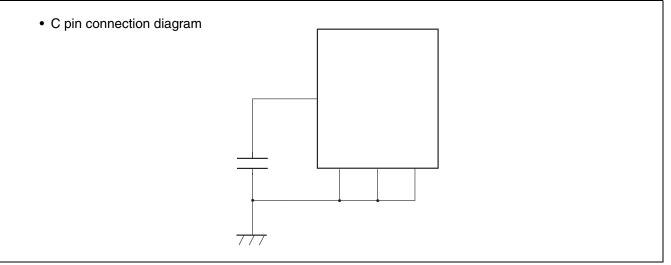

*2 : AVcc, AVRH must not exceed Vcc, and AVRH must not exceed AVcc. When using an evaluation product, DVcc must not exceed Vcc (however, DVcc can be set to a higher voltage than Vcc when using a Flash memory product).

*3 : If the input current or the maximum input current is limited using external components, ICLAMP is the applicable rating instead of VI.

*4 : Maximum output current is defined as the peak value of current through any one of the corresponding pins.

(Continued)

- *5 : Average output current is defined as the average value of the current flowing through any one of the corresponding pins within a period of 100 ms. The "average value" can be calculated by multiplying the "operating current" by the "operating factor".
- *6 : Average total output current is defined as the average value of the current flowing through all of the corresponding pins within a period of 100 ms. The "average value" can be calculated by multiplying the "operating current" by the "operating factor".
- *7 : Applicable to pins: P10 to P15,P50 to P57,P60 to P67,P70 to P77,P80 to P87,PC0 to PC7,PD0 to PD6, PE0 to PE2
 - Use within recommended operating conditions.
 - Use at DC voltage (current).
 - The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied, the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
 - Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the microcontroller may partially malfunction on power supplied through the +B signal pin.
 - Note that if the +B input is applied during power-on, the power supply voltage may reach a level such that the power-on reset does not function due to the power supplied from the +B signal.
 - Care must be taken not to leave +B input pins open.
 - Note that analog system input/output pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal inputs.
 - Sample recommended circuit :


WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

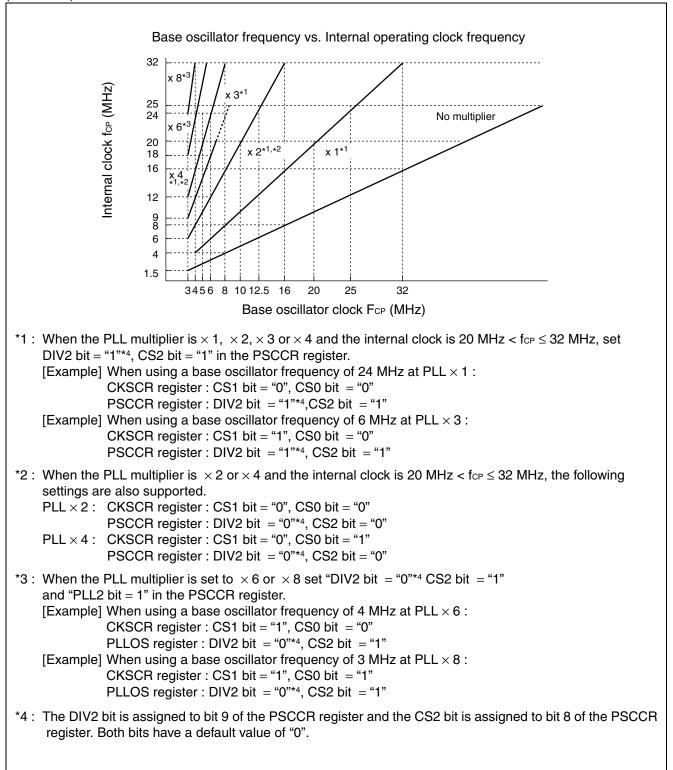
2. Recommended Operating Conditions

 $(V_{SS} = DV_{SS} = AV_{SS} = 0.0 V)$

Parameter	Symbol	Value		Unit	Remarks
Farameter	Symbol	Min	Max	Onit	nemarks
Power supply	Vcc	4.0	5.5	V	The low voltage detection reset operates when the power supply voltage reaches 4.2 V \pm 0.2 V.
voltage	AVcc DVcc			Maintain stop operation status The low voltage detection reset operates when the power supply voltage reaches 4.2 V \pm 0.2 V.	
Smoothing capacitor*	Cs	0.1	1.0	μF	Use a ceramic capacitor or other capacitor of equivalent frequency characteristics. Use a capacitor with a capacitance greater than this capacitor as the bypass capacitor for the V_{CC} pin.
Operating temperature	TA	- 40	+ 105	°C	

*: Refer to the following diagram for details on the connection of the smoothing capacitor Cs.

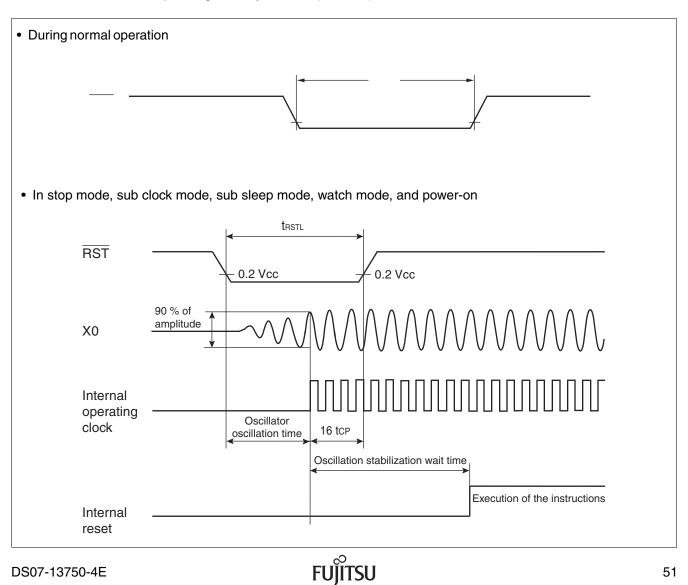
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.


Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

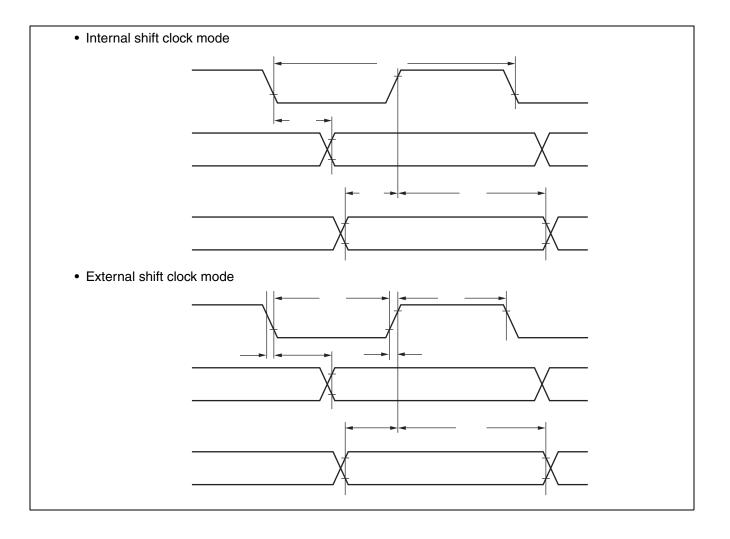
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

Parameter	Symbol	Pin name	Conditions	V	/alue		Unit	Remarks
Farameter	Symbol	Fin name	Conditions	Min	Тур	Max	Unit	nemarks
Input leakage current	lı.	All input pins	Vcc = DVcc = AVcc = 5.5 V, Vss < Vi < Vcc	_		10	μA	
Input capacitance 1	CIN1	All pins except VCC, VSS, DVCC, DVSS, AVCC, AVSS, C, P70 to P77, P80 to P87				15	pF	
Input capacitance 2	CIN2	P70 to P77, P80 to P87	_		_	45	pF	
Pull-up resistance	Rup	RST	—	25	50	100	kΩ	
Pull-down resistance	Rdown	MD2	_			100	kΩ	Excluding Flash memory product
General-purpose output "H" voltage	V _{OH1}	All pins except P70 to P77, P80 to P87	Vcc = 4.5 V, Іон = -4.0 mA	Vcc - 0.5	_	_	v	
Stepping motor output "H" voltage	Vон2	P70 to P77, P80 to P87	Vcc = 4.5 V, Іон = -30.0 mA	Vcc-0.5			V	
General-purpose output "L" voltage	V _{OL1}	All pins except P70 to P77, P80 to P87	$V_{CC} = 4.5 \text{ V},$ $I_{OL} = 4.0 \text{ mA}$	_		0.4	v	
Stepping motor output "L" voltage	Vol2	P70 to P77, P80 to P87	Vcc = 4.5 V, loL = 30.0 mA			0.55	V	
Stepping motor output phase variation "H"	ΔVон	PWM1Pn, PWM1Mn, PWM2Pn, PWM2Mn, n = 0 to 3	$V_{CC} = 4.5 V,$ $I_{OH} = -30.0 mA,$ maximum deviation V_{OH2}			90	mV	
Stepping motor output phase variation "L"	ΔVol	PWM1Pn, PWM1Mn, PWM2Pn, PWM2Mn, n = 0 to 3	$V_{CC} = 4.5 V,$ $I_{OL} = 30.0 mA,$ maximum deviation V_{OH2}			90	mV	
		Between V0 and V1,		50	100	200	kΩ	Evaluation product
LCD internal divider resistance	Rlcd	Between V1 and V2, Between V2 and V3		8.75	12.5	17.0	kΩ	Flash memory product

(Vcc = 5.0 V $\pm 10\%$, Vss = DVss = AVss = 0.0 V, T_A = -40 °C to +105 °C)



(2) Reset input

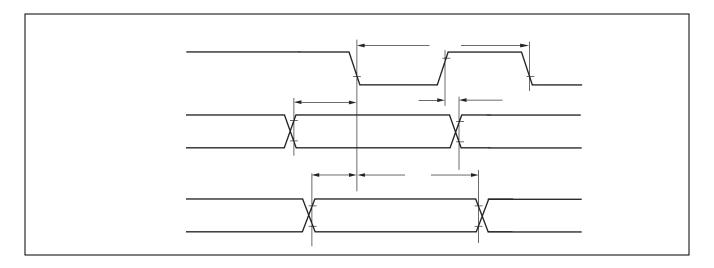

()			$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = AV)$	/ss = 0.0	V, TA :	= − 40 °C to +105 °C)	
Parameter Symbol		Pin name	Value	Unit	Remarks		
Falametei	Symbol	Fill liallie	Min	Max	Unit	nemarks	
		500	_	ns	During normal operation		
Reset input time	Reset input time tRSTL RST	RST	Oscillator oscillation time* + 16 tcp	_	ms	In stop mode, sub clock mode, sub sleep mode, and watch mode	
		100		μs	In time-base timer mode		

*: The oscillation time of the oscillator is the time taken to reach 90% of the amplitude. The oscillation time of a crystal oscillator is between several ms and tens of ms. The oscillation time of a ceramic oscillator is between hundreds of μ s and several ms. The oscillation time of an external clock is 0 ms.

Note : tcp is the internal operating clock cycle time. (Unit : ns)

FU

• Bit setting: ESCR0/1/2/3:SCES=0, ECCR0/1/2/3:SCDE=1

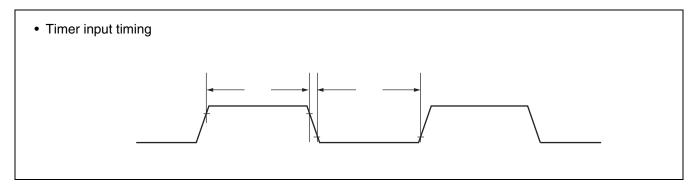

(Vcc = 5.0 V \pm 10%, Vss = AVss = 0.0 V, T_A = -40 °C to +105 °C)

Parameter	Symbol Pin name		Conditions	Val	Unit	
Falameter	Symbol	Fill lidille	Conditions	Min	Max	Unit
Serial clock cycle time	tscyc	SCK0 to SCK3		5 tcp	_	ns
SCK $\uparrow \rightarrow$ SOT delay time	tsнovi	SCK0 to SCK3, SOT0 to SOT3	Internal shift clock	- 50	+ 50	ns
$Valid\ SIN \to SCK \downarrow$	tivsli	SCK0 to SCK3,	mode output pin	tcp + 80		ns
$SCK \downarrow \to valid \; SIN \; hold \; time$	tslixi	SIN0 to SIN3	$C_{L} = 80 \text{ pF} + 1 \text{TTL}$	0		ns
$SOT \to SCK \downarrow delay time$	tsov⊔	SCK0 to SCK3, SOT0 to SOT3		3 tcp - 70		ns

Notes : • Depending on the machine clock frequency to be used, the maximum baud rate may be limited by some parameters. These parameters are shown in "MB90920 series hardware manual".

 \bullet CL is the load capacitance connected to the pin during testing.

• tcp is the internal operating clock cycle time. Refer to "(1) Clock timing".



(5) Timer input timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to} + 105 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Pin name	Conditions	Value		Unit
		r in name	Conditions	Min	Мах	Onit
Input pulse width	t⊤iwн t⊤iw∟	TIN0, TIN1, IN0 to IN3		4 tcp	_	ns

Note : tcp is the internal operating clock cycle time. Refer to " (1) Clock timing".

Parameter	Conditions	Value			Unit	Remarks
		Min	Тур	Max	Unit	nelliaiks
Sector erase time	$\begin{array}{l} T_{\text{A}}=+~25~^{\circ}\text{C}\\ V_{\text{CC}}=5.0~\text{V} \end{array}$		0.9	3.6	s	Excludes pre-programming before erase
Word (16-bit width) programming time			23	370	μs	Excludes system-level overhead
Chip programming time	$\begin{array}{l} T_{\text{A}}=+\ 25\ ^{\circ}\text{C},\\ V_{\text{CC}}=5.0\ \text{V} \end{array}$		3.4	55	S	
Erase/program cycle	—	10000			cycle	
Flash memory data retention time	Average T _A = + 85 °C	20			year	*

6. Flash Memory Program/Erase Characteristics

* : This value is calculated from the results of evaluating the reliability of the technology (using Arrhenius equation to translate high temperature measurements into normalized value at + 85 °C).

■ MAJOR CHANGES IN THIS EDITION

Page	Section	Change Results		
12	■I/O CIRCUIT TYPE	Corrected the circuit type B.		
20	■ HANDLING DEVICES	 Added the following items; Serial communication Characteristic difference between flash device and MASK ROM device 		
31	■ I/O MAP	Corrected "Address: 003970 $_{\text{H}}$ ". Clock supervisor control register \rightarrow (Disabled)		
46	ELECTRICAL CHARACTERISTICS3. DC Characteristics	Added the item for "LCD output impedance".		
68	■ ORDERING INFORMATION	Corrected the part numbers; MB90V920-101 \rightarrow MB90V920-101CR MB90V920-102 \rightarrow MB90V920-102CR		

The vertical lines marked in the left side of the page show the changes.