

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

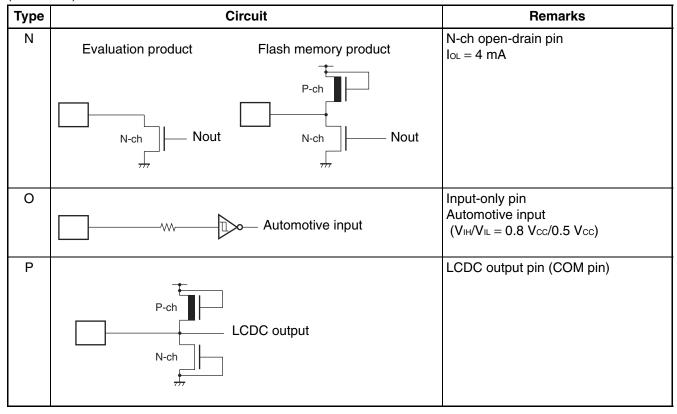
Details

E·XFl

Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	93
Program Memory Size	256КВ (256К х 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	120-LQFP
Supplier Device Package	120-LQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90922ncspmc-gs-215e1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Pin no.	Pin name	I/O circuit type*1	Function				
	P54		General-purpose I/O port				
61	TX0		CAN interface 0 TX output pin				
	61 TX2		CAN interface 2 TX output pin				
	SGA1		Sound generator ch.1 SGA output pin				
	P55		General-purpose I/O port				
63	RX0	. 1	CAN interface 0 RX input pin				
03	RX2		CAN interface 2 RX input pin				
	INT2		INT2 external interrupt input pin				
	P56		General-purpose I/O port				
91	SGO0	I	Sound generator ch.0 SGO output pin				
	FRCK		Free-run timer clock input pin				
00	P57	1	General-purpose I/O port				
92	SGA0		Sound generator ch.0 SGA output pin				
20	P60		General-purpose I/O port				
39	AN0	Н	A/D converter input pin				
40	P61		General-purpose I/O port				
40	AN1	Н	A/D converter input pin				
44	P62		General-purpose I/O port				
41	AN2	Н	A/D converter input pin				
40	P63		General-purpose I/O port				
42	AN3	Н	A/D converter input pin				
40	P64		General-purpose I/O port				
43	AN4	Н	A/D converter input pin				
	P65		General-purpose I/O port				
44	AN5	Н	A/D converter input pin				
45	P66		General-purpose I/O port				
45	AN6	Н	A/D converter input pin				
40	P67		General-purpose I/O port				
46	AN7	Н	A/D converter input pin				
07	P70		General-purpose output-only port				
67	PWM1P0	L	Stepping motor controller ch.0 output pin				
	P71		General-purpose output-only port				
50	68 L PWM1M0		Stepping motor controller ch.0 output pin				
<u> </u>	P72		General-purpose output-only port				
69	PWM2P0	L	Stepping motor controller ch.0 output pin				

(Continued)

Pin no.	Pin name	I/O circuit type*1	Function
06	PD2		General-purpose I/O port
26 -	SCK2		UART ch.2 serial clock I/O pin
27 -	PD3	- J	General-purpose I/O port
21	SIN3	J	UART ch.3 serial data input pin
28	PD4		General-purpose I/O port
20	SOT3		UART ch.3 serial data output pin
29	PD5	I	General-purpose I/O port
29	SCK3		UART ch.3 serial clock I/O pin
30 -	PD6		General-purpose I/O port
	TOT2		16-bit reload timer ch.2 TOT output pin
56	PE0		General-purpose I/O port
50	ТОТ3		16-bit reload timer ch.3 TOT output pin
57	PE1		General-purpose I/O port
57	TIN3		16-bit reload timer ch.3 TIN input pin
64	PE2		General-purpose I/O port
04	SGO1		Sound generator ch.1 SGO output pin
62	RSTO	N	Internal reset signal output pin
65, 75, 85	DVCC		Power supply input pins dedicated for high current output buffer
66, 76, 86	DVSS		Power supply GND pins dedicated for high current output buffer
35	AVCC		A/D converter dedicated power supply input pin
38	AVSS		A/D converter dedicated power supply GND pin
36	AVRH		A/D converter Vref+ input pin. Vref- is fixed to AVSS.
89	MD0	D	Mode setting input pin. Connect to VCC pin.
88	MD1	D	Mode setting input pin. Connect to VCC pin.
87	MD2	D/E*2	Mode setting input pin. Connect to VSS pin.
17	С	_	External capacitor pin. Connect a 0.1 μ F capacitor between this pin and the VSS pin.
15, 105	VCC		Power supply input pins
16, 47, 106	VSS	_	GND power supply pins

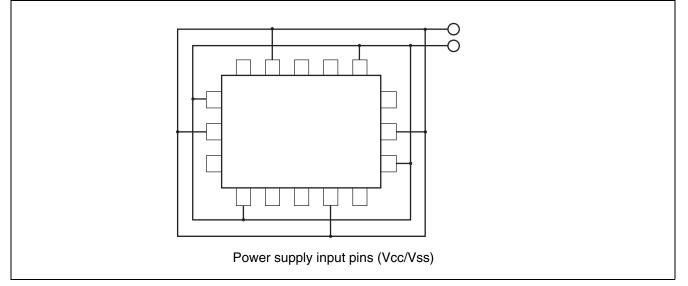
*1 : For I/O circuit type, refer to " ■ I/O CIRCUIT TYPES".

 $^{\ast}2$: The I/O circuit type is D for Flash memory products and E for evaluation products.

• Notes on operating in PLL clock mode

On this microcontroller, if in case the crystal oscillator breaks off or an external reference clock input stops while the PLL clock mode is selected, a self-oscillator circuit contained in the PLL may continue its operation at its self-running frequency. However, FUJITSU SEMICONDUCTOR will not guarantee results of operations if such failure occurs.

Crystal oscillator circuit


Noise around the X0/X1, or X0A/X1A pins may cause this device to operate abnormally. In the interest of stable operation it is strongly recommended that printed circuit artwork places ground bypass capacitors as close as possible to the X0/X1, X0A/X1A and crystal oscillator (or ceramic oscillator) and that oscillator lines do not cross the lines of other circuits.

Please ask each crystal maker to evaluate the oscillational characteristics of the crystal and this device.

• Power supply pins

Devices including multiple VCC or VSS pins are designed such that pins that need to be at the same potential are interconnected internally to prevent malfunctions such as latch-up. To reduce unnecessary radiation, prevent malfunctioning of the strobe signal due to the rise of ground level, and observe the standard for total output current, be sure to connect the VCC and VSS pins to the power supply and ground externally.

Always connect all of the VCC pins to the same potential and all of the VSS pins to ground as shown in the following diagram. The device will not operate correctly if multiple VCC or VSS pins are connected to different voltages, even if those voltages are within the guaranteed operating ranges.

In addition, care must be given to connecting the VCC and VSS pins of this device to the current supply source with as low impedance as possible. It is recommended that a 1.0 μ F bypass capacitor be connected between the VCC and VSS pins as close to the pins as possible.

• Sequence for connecting the A/D converter power supply and analog inputs

The A/D converter power supply (AVcc, AVRH) and analog inputs (AN0 to AN7) must be applied after the digital power supply (Vcc) is switched on. When turning the power off, the A/D converter power supply and analog inputs must be disconnected before the digital power supply is switched off (Vcc). Ensure that AVRH does not exceed AVcc during either power-on or power-off. Even when pins which double as analog input pins are used as input ports, be sure that the input voltage does not exceed AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

• Serial communication

In serial communication, reception of wrong data may occur due to noise or other causes. Therefore, design a printed circuit board to prevent noise from occurring. Taking account of the reception of wrong data, detect errors by measures such as adding a checksum to the end of data. If an error is detected, retransmit the data.

• Characteristic difference between flash device and MASK ROM device

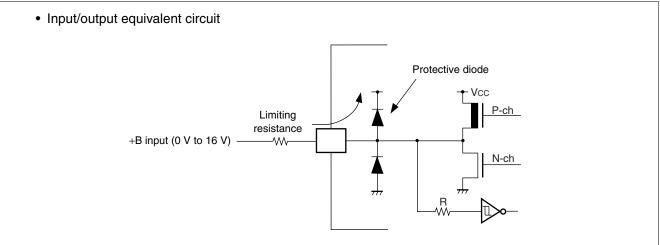
In the flash device and the MASK ROM device, the electrical characteristic including current consumption, ESD, latch-up, the noise characteristic, and oscillation characteristic, etc. is different according to the difference between the chip layout and the memory structure.

Reconfirm the electrical characteristic when the product is replaced by another product of the same series.

Address	Register name	Symbol	Read/write	Resource name	Initial value							
000083н		(Disab	led)									
000084н	PWM control register 2	PWC2	R/W	Stepping motor controller 2	00000Х0в							
000085н		(Disabled)										
000086н	PWM control register 3	PWC3	R/W	Stepping motor controller 3	000000Х0в							
000087н		(Disab	led)									
000088н	LCD output control register 3	LOCR3	R/W	LCDC	XXXXX111 _B							
000089н		(Disab	led)									
00008A _H	A/D setting register 0	ADSR0	R/W		0000000В							
00008BH	A/D setting register 1	ADSR1	R/W	A/D converter	0000000в							
00008Сн	Port input level select 0	PIL0	R/W		0000000В							
00008DH	Port input level select 1	PIL1	R/W	Port input level select	XXXX0000 _B							
00008EH	Port input level select 2	PIL2	R/W	301001	XXXX0000 _B							
00008Fн to 00009Dн		(Disab	led)									
00009Ен	Program address detection control register	PACSR	R/W	Address match detection	XXXX0X0X _B							
00009Fн	Delayed Interrupt/Release Register	DIRR	R/W	Delay interrupt	XXXXXXX0B							
0000А0н	Power saving mode control register	LPMCR	R/W	Power saving	00011000в							
0000A1 н	Clock select register	CKSCR	R/W, R	control circuit	11111100в							
0000A2н to 0000A7н		(Disab	led)									
0000A8H	Watchdog timer control register	WDTC	R, W	Watchdog timer	XXXXX111 _B							
0000А9н	Time-base timer control register	TBTC	R/W, W	Time-base timer	1XX00100 _B							
0000ААн	Watch timer control register	WTC	R/W, W, R	Watch timer (sub clock)	10001000 _B							
0000ABн to 0000ADн		(Disabled)										
0000AEH	Flash memory control status register	FMCS	R/W	Flash interface	000X0000B							
0000AFн	(Disabled)											

Address	Register name	Symbol	Read/write	Resource name	Initial value
003944н	land antime register 0		D		XXXXXXXXB
003945н	Input capture register 6	IPCP6	R	least continue C/Z	XXXXXXXXB
003946н	1	10007		Input capture 6/7	XXXXXXXXB
003947н	Input capture register 7	IPCP7	R		XXXXXXXXB
003948н to		•			
00394Fн		(Disab	,		
003950н	Minute data register 2/Reload register 2	TMR2/	R/W	16-bit reload timer	XXXXXXXXB
003951 н	Minute data register 2/neload register 2	TMRLR2	11/ VV	2	XXXXXXXXB
003952н	Minute data register 3/Reload register 3	TMR3/	R/W	16-bit reload timer	XXXXXXXXB
003953н	Millule data register 3/ Neload register 3	TMRLR3	U/ M	3	XXXXXXXXB
003954н to 003957н		(Disab	led)		
003958н					XXXXXXXXB
003959н	Sub second data register	WTBR	R/W		XXXXXXXXB
00395Ан				Real time watch timer	XXXXXXXXB
00395Вн	Second data register	WTSR	R/W		ХХ00000в
00395Сн	Minute data register	WTMR	R/W	waterrunner	ХХ00000в
00395D н	Hour data register	WTHR	R/W		ХХХ00000в
00395Ен	Day data register	WTDR	R/W		00Х0001в
00395F н		(Disab	led)		
003960н					XXXXXXXXB
003961н					XXXXXXXXB
003962н					XXXXXXXXB
003963н					XXXXXXXXB
003964н					XXXXXXXXB
003965н					XXXXXXXXB
003966н					XXXXXXXXB
003967н	LCD display RAM	VRAM	R/W	LCD controller/	XXXXXXXXB
003968н		VITAIVI	U/ M	driver	XXXXXXXXB
003969н					XXXXXXXXB
00396Ан					XXXXXXXXB
00396Вн					XXXXXXXXB
00396Сн					XXXXXXXXB
00396Dн					XXXXXXXXB
00396Eн					XXXXXXXXB
00396Fн	1				XXXXXXXXB

List of Control Registers(2)

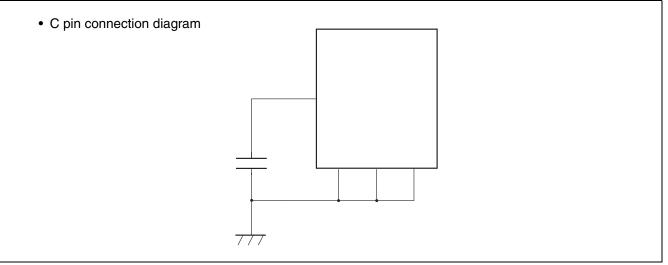

Address				List of Control Registers(2)	Abbre-	-	
CAN0	CAN1	CAN2	CAN3	Register	viation	Access	Initial Value
000040н	000070н	0039C0н	0039D0н	Maaaaa kuffan oo lid na siatan			0000000в
000041н	000071 н	0039C1 н	0039D1 н	Message buffer valid register	BVALR	R/W	0000000в
000042н	000072н	0039С2н	0039D2н			R/W	0000000в
000043н	000073н	0039С3н	0039D3н	Transmit request register	TREQR	H/VV	0000000в
000044н	000074н	0039C4н	0039D4н	Transmit cancel register	TCANR	W	0000000в
000045н	000075н	0039C5н	0039D5н	Transmit cancer register	ICANN	vv	0000000в
000046н	000076н	0039С6н	0039D6н	Transmit complete register	TCR	R/W	0000000в
000047н	000077н	0039C7 н	0039D7н		ICh		0000000в
000048н	000078н	0039C8 н	0039D8н	Receive complete register	RCR	R/W	0000000в
000049н	000079н	0039С9н	0039D9н		non		0000000в
00004Ан	00007Ан	0039САн	0039DAн	Remote request receive	RRTRR	R/W	0000000в
00004Вн	00007Вн	0039CBн	0039DBн	register	nninn		0000000в
00004Сн	00007Сн	0039ССн	0039DCн	Receive overrun register	ROVRR	R/W	0000000в
00004DH	00007Dн	0039CDH	0039DDн		novnin	L/ AA	0000000в
00004Eн	00007Eн	0039CEH	0039DEH	Receive interrupt enable	RIER	RIER R/W	0000000в
00004Fн	00007F н	0039CFн	0039DFн	register		11/ 11	0000000в
003С08н	003D08н	003E08н	003F08н	IDE register	IDER	R/W	XXXXXXXXB
003С09н	003D09н	003E09н	003F09н			11/ VV	XXXXXXXXB
003С0Ан	003D0Aн	003Е0Ан	003F0Aн	Transmit RTR register	TRTRR	RTRR R/W	0000000в
003С0Вн	003D0Bн	003E0Bн	003F0Bн			10,00	0000000в
003С0Сн	003D0Cн	003E0CH	003F0Cн	Remote frame receive wait	RFWTR	R/W	XXXXXXXXB
003C0Dн	003D0Dн	003E0Dн	003F0Dн	register		11/ 11	XXXXXXXXB
003C0Eн	003D0Eн	003E0E н	003F0Eн	Transmit interrupt enable	TIER	R/W	0000000в
003C0Fн	003D0Fн	003E0Fн	003F0Fн	register		10,00	0000000в
003C10н	003D10 н	003E10н	003F10н				XXXXXXXXB
003C11н	003D11 н	003E11н	003F11н	Acceptance mask select	AMSR	SR R/W	XXXXXXXXB
003C12н	003D12н	003E12н	003F12н	register		1000	XXXXXXXXB
003C13н	003D13н	003E13н	003F13⊦				XXXXXXXXB
003C14н	003D14н	003E14н	003F14н				XXXXXXXXB
003C15н	003D15н	003E15н	003F15⊦	Acceptance mask register 0	AMR0	R/W	XXXXXXXXB
003C16н	003D16н	003E16н	003F16н		/		XXXXXB
003C17н	003D17н	003E17н	003F17н				XXXXXXXXB
003C18н	003D18н	003E18⊦	003F18⊦				XXXXXXXXB
003C19н	003D19н	003E19н	003F19⊦	Acceptance mask register 1	AMR1	R/W	XXXXXXXXB
003C1Aн	003D1Aн	003E1Aн	003F1Aн				XXXXXB
003C1BH	003D1Bн	003E1Bн	003F1Bн				XXXXXXXXB

	Add	ress		Begister	Abbre-	A	Initial Value
CAN0	CAN1	CAN2	CAN3	Register	viation	Access	Initial Value
003A80н	003B80н	003780⊦	003880H	Data register () (9 butes)		R/W	XXXXXXXXB
to 003A87⊦	to 003B87⊦	to 003787⊦	to 003887⊦	Data register 0 (8 bytes)	DTR0	H/ VV	to XXXXXXXB
003A88н	003B88н	003788 н	003888H		DTD4	DAA	XXXXXXX
to 003A8F⊦	to 003B8F⊦	to 00378F⊦	to 00388F⊦	Data register 1 (8 bytes)	DTR1	R/W	to XXXXXXXB
003А90н	003B90н	003790н	003890⊦ to	Data register 2 (8 bytes)	DTR2	R/W	XXXXXXXXB
to 003А97н	to 003B97н	to 003797⊦	to 003897⊦	Data register 2 (8 bytes)	DIRZ	H/ VV	to XXXXXXXB
003A98н	003B98н	003798 н	003898 н		5754	5 444	XXXXXXXXB
to 003A9F⊦	to 003B9F⊦	to 00379Fн	to 00389Fн	Data register 3 (8 bytes)	DTR3	R/W	to XXXXXXXB
003AA0н	003BA0н	0037A0н	0038A0н	Data register 4 (9 butes)			XXXXXXXXB
to 003AA7⊦	to 003BA7н	to 0037А7н	to 0038А7н	Data register 4 (8 bytes)	DTR4	R/W	to XXXXXXXB
003AA8H	003BA8н	0037A8н	0038A8н	Data register E (9 butes)	DTDE		XXXXXXXXB
to 003AAF⊦	to 003BAF⊦	to 0037AF⊦	to 0038AF⊦	Data register 5 (8 bytes)	DTR5	R/W	to XXXXXXXB
003AB0н	003BB0н	0037B0н	0038B0н		DTDA	544	XXXXXXXXB
to 003AB7н	to 003BB7н	to 0037В7н	to 0038В7н	Data register 6 (8 bytes)	DTR6	R/W	to XXXXXXXB
003AB8н	003BB8н	0037B8н	0038B8н	Data variatav 7 (0 kutar)			XXXXXXXXB
to 003ABF⊬	to 003BBF⊦	to 0037BF⊬	to 0038BF⊦	Data register 7 (8 bytes)	DTR7	R/W	to XXXXXXXB
003АС0н	003ВС0н	0037С0н	0038C0н				XXXXXXXXB
to 003AC7н	to 003BC7⊦	to 0037C7⊦	to 0038С7н	Data register 8 (8 bytes)	DTR8	R/W	to XXXXXXXB
003AC8H	003BC8н	0037C8H	0038C8н	Data register 0 (0 butes)			XXXXXXXXB
to 003ACF⊦	to 003BCF⊦	to 0037CF⊦	to 0038CF⊦	Data register 9 (8 bytes)	DTR9	R/W	to XXXXXXXB
003AD0н	003BD0н	0037D0н	0038D0н				XXXXXXXXB
to 003AD7н	to 003BD7⊦	to 0037D7н	to 0038D7н	Data register 10 (8 bytes)	DTR10	R/W	to XXXXXXXB
003AD8н	003BD8н	0037D8н	0038D8н				XXXXXXXXB
to 003ADF⊦	to 003BDF⊦	to 0037DF⊦	to 0038DF⊦	Data register 11 (8 bytes)	DTR11	R/W	to XXXXXXXB
003AE0н	003BE0н	0037E0 н	0038E0 н				XXXXXXXXB
to 003АЕ7н	to 003BE7н	to 0037E7н	to 0038E7н	Data register 12 (8 bytes)	DTR12	R/W	to XXXXXXXB
003AE8н	003BE8н	0037E8н	0038E8н	_		5 444	XXXXXXXXB
to 003AEF⊦	to 003BEF⊦	to 0037EF⊦	to 0038EF⊦	Data register 13 (8 bytes)	DTR13	R/W	to XXXXXXXB
003AF0H	003BF0н	0037F0⊦	0038F0н				XXXXXXXXB
to 003AF7н	to 003BF7⊦	to 0037F7⊦	to 0038F7н	Data register 14 (8 bytes)	DTR14	R/W	to XXXXXXXB
003AF8н	003BF8⊦	0037F8н	0038F8⊦		DTD		XXXXXXXXB
to 003AFF⊦	to 003BFF⊦	to 0037FF⊦	to 0038FF⊦	Data register 15 (8 bytes)	DTR15	R/W	to XXXXXXXB

List of Message Buffers (Data register)

(Continued)

- *5 : Average output current is defined as the average value of the current flowing through any one of the corresponding pins within a period of 100 ms. The "average value" can be calculated by multiplying the "operating current" by the "operating factor".
- *6 : Average total output current is defined as the average value of the current flowing through all of the corresponding pins within a period of 100 ms. The "average value" can be calculated by multiplying the "operating current" by the "operating factor".
- *7 : Applicable to pins: P10 to P15,P50 to P57,P60 to P67,P70 to P77,P80 to P87,PC0 to PC7,PD0 to PD6, PE0 to PE2
 - Use within recommended operating conditions.
 - Use at DC voltage (current).
 - The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied, the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
 - Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the microcontroller may partially malfunction on power supplied through the +B signal pin.
 - Note that if the +B input is applied during power-on, the power supply voltage may reach a level such that the power-on reset does not function due to the power supplied from the +B signal.
 - Care must be taken not to leave +B input pins open.
 - Note that analog system input/output pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal inputs.
 - Sample recommended circuit :


WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

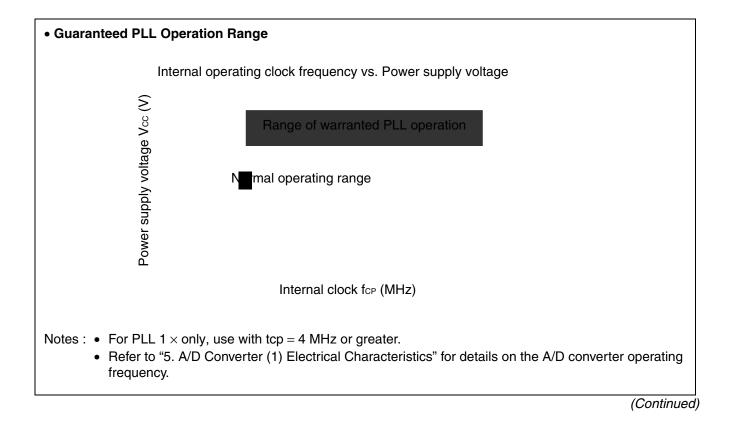
2. Recommended Operating Conditions

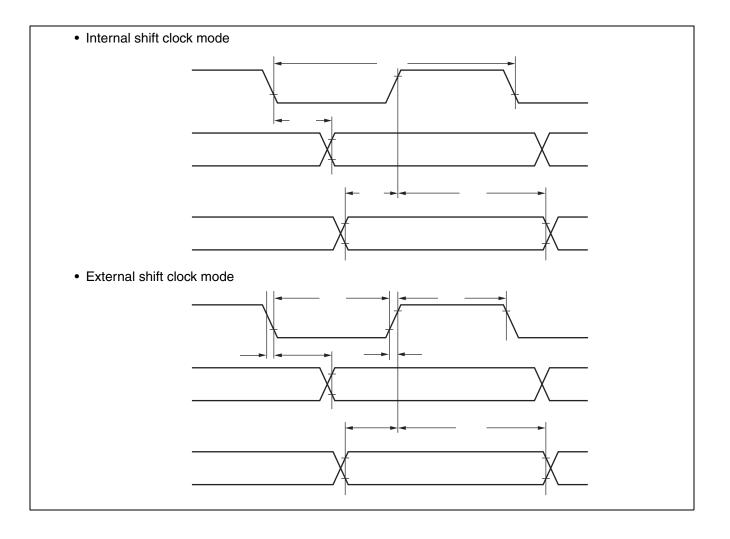
 $(V_{SS} = DV_{SS} = AV_{SS} = 0.0 V)$

Parameter	Symbol	Val	Value		Remarks
Farameter	Symbol	Min	Max	Unit	nemarks
Power supply	Vcc	4.0	5.5	V	The low voltage detection reset operates when the power supply voltage reaches 4.2 V \pm 0.2 V.
voltage	AVcc DVcc	4.4	5.5	v	Maintain stop operation status The low voltage detection reset operates when the power supply voltage reaches 4.2 V \pm 0.2 V.
Smoothing capacitor*	Cs	0.1	1.0	μF	Use a ceramic capacitor or other capacitor of equivalent frequency characteristics. Use a capacitor with a capacitance greater than this capacitor as the bypass capacitor for the V_{CC} pin.
Operating temperature	TA	- 40	+ 105	°C	

*: Refer to the following diagram for details on the connection of the smoothing capacitor Cs.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.


Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.


No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

4. AC Characteristics

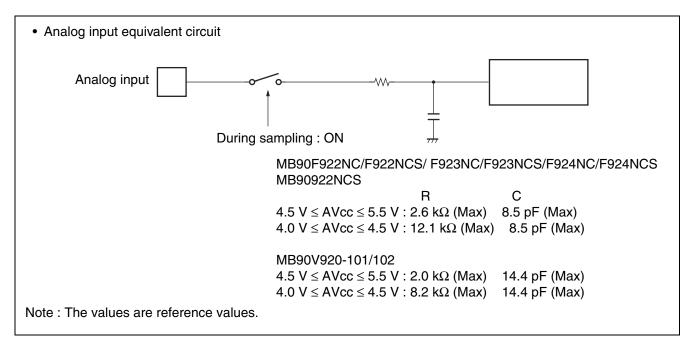
(1) Clock timing

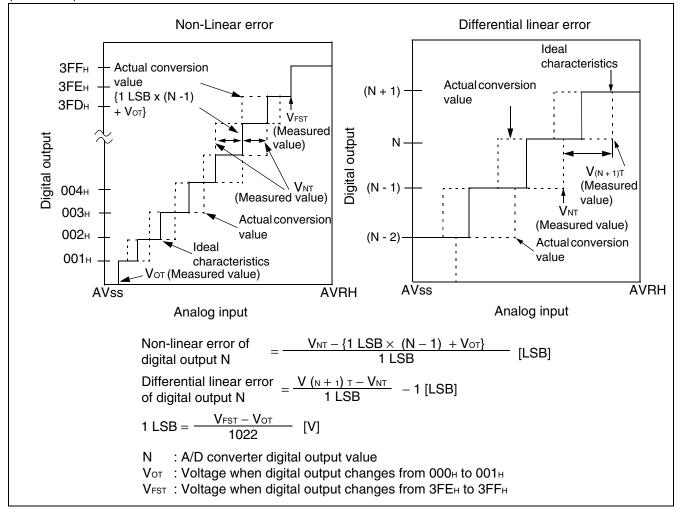
Deveneter	Cumhal		Condi-	,	Value			, 1A = -40 C t0 + 105 C)
Parameter	Symbol	Pin name	tions	Min	Тур	Max	Unit	Remarks
				3	_	16	MHz	1/2 (PLL stopped) When using the oscillator circuit
				3	—	32	MHz	1/2 (PLL stopped) When using an external clock
	Fc	X0, X1		4	—	32	MHz	PLL multiplied by 1
Clock frequency				3		16	MHz	PLL multiplied by 2
				3		10.7	MHz	PLL multiplied by 3
				3		8	MHz	PLL multiplied by 4
				3		5.33	MHz	PLL multiplied by 6
				3		4	MHz	PLL multiplied by 8
	FLC	X0A, X1A		_	32.768		kHz	
	t cy∟	tс _{YL} X0, X1	x0, X1 —	62.5		333	ns	When using an oscillator
Clock cycle time				31.25		333	ns	External clock input
	t LCYL	X0A, X1A			30.5		μs	
Input clock pulse width	Pwн, Pwl	X0		5		_	ns	Use duty ratio of $50\% \pm 3\%$ as a guideline
Width	Pwlh, Pwll	X0A			15.2		μs	
Input clock rise and fall time	tcr, tcf	X0		_		5	ns	When using an external clock signal
Internal operating	Fcp	_		1.5		32	MHz	Using main clock (PLL clock)
clock frequency	FLCP				8.192		kHz	Using sub clock
Internal operating clock cycle time	tcp	_		31.25	—	666	ns	Using main clock (PLL clock)
	t LCP				122.1		μs	Using sub clock

5. A/D Converter

(1) Electrical Characteristics

Devemeter	Cumhal			Value	11	Demerke	
Parameter	Symbol	Pin name	Min	Тур	Max	Unit	Remarks
Resolution	_				10	bit	
Total error			- 3.0		+ 3.0	LSB	
Non-linear error			- 2.5		+ 2.5	LSB	
Differential linear error			– 1.9		+ 1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AV _{ss} – 1.5 LSB	AV _{ss} + 0.5 LSB	AV _{ss} + 2.5 LSB	V	1 LSB = (A)/(BH = A)/(a) / (A)/(BH = A)/(a) / (A)/(BH = A)/(a) / (BH = A)/(a) / (A)/(BH = A)/(A) / (A)/(A) / (A)/(BH = A)/(A) / (A)/(BH = A)/(A) / (A)/(BH = A)/(A) / (A)/(A) / (A)/(
Full scale transition voltage	VFST	AN0 to AN7	AVRH – 3.5 LSB	AVRH – 1.5 LSB	AVRH + 0.5 LSB	v	(AVRH – AVss) / 1024
Compling time			0.4		16500	μs	$4.5 V \le AVcc \le 5.5 V$
Sampling time	tsmp		1.0				$4.0 \text{ V} \le \text{AVcc} \le 4.5 \text{ V}$
Compore time	+		0.66			μs	$4.5 V \le AVcc \le 5.5 V$
Compare time	tсмр		2.2				$4.0 \text{ V} \le \text{AVcc} \le 4.5 \text{ V}$
A/D conversion time	t CNV		1.44	_		μs	*1
Analog port input current	Iain	AN0 to AN7	- 0.3		+ 10	μA	
Analog input voltage	VAIN	AN0 to AN7	0	_	AVRH	V	
Reference voltage	AV+	AVRH	AVss + 2.7		AVcc	V	
Device events event	la	A) (2.3	6.0	mA	
Power supply current	Іан	AVcc			5	μA	*2
Reference voltage	IR	AVRH		520	900	μA	$V_{\text{AVRH}} = 5.0 \text{ V}$
supply current	IRH	AVND			5	μA	*2
Inter-channel variation	—	AN0 to AN7			4	LSB	


*1 : The time per channel (4.5 V \leq AVcc \leq 5.5 V, and internal operating frequency = 32 MHz) .

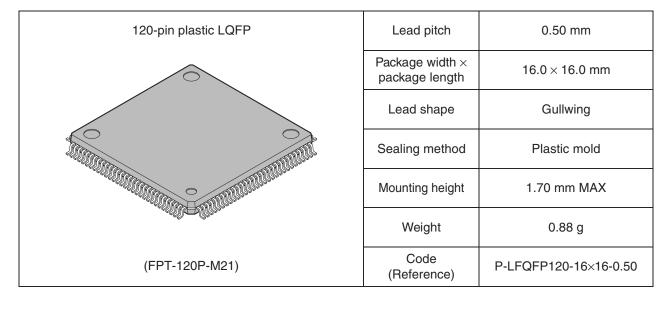

*2 : Defined as supply current (when $V_{CC} = AV_{CC} = AVRH = 5.0 V$) with A/D converter not operating, and CPU in stop mode.

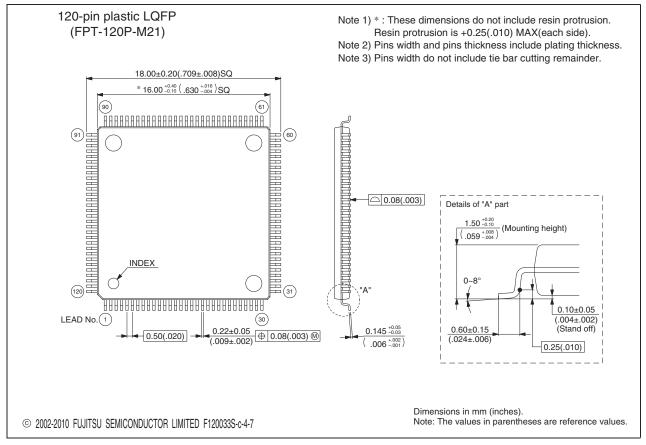
FUÏTSU

• Notes on the external impedance and sampling time of analog inputs

A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. If the sampling time is still not sufficient, connect a capacitor of about 0.1 μ F to the analog input pin.

Parameter	Conditions		Value		Unit	Remarks
Farameter	Conditions	Min	Тур	Max	Omt	nelliaiks
Sector erase time	T _A = + 25 °C		0.9	3.6	s	Excludes pre-programming before erase
Word (16-bit width) programming time	$V_{CC} = 5.0 V$		23	370	μs	Excludes system-level overhead
Chip programming time	$\begin{array}{l} T_{\text{A}}=+\ 25\ ^{\circ}\text{C},\\ V_{\text{CC}}=5.0\ \text{V} \end{array}$		3.4	55	s	
Erase/program cycle	—	10000			cycle	
Flash memory data retention time	Average T _A = + 85 °C	20			year	*


6. Flash Memory Program/Erase Characteristics


* : This value is calculated from the results of evaluating the reliability of the technology (using Arrhenius equation to translate high temperature measurements into normalized value at + 85 °C).

■ ORDERING INFORMATION

Part number	Package	Remarks
MB90F922NCPMC MB90F922NCSPMC MB909922NCSPMC MB90F923NCPMC MB90F923NCSPMC MB90F924NCPMC MB90F924NCSPMC	120-pin plastic LQFP (FPT-120P-M21)	
MB90V920-101CR MB90V920-102CR	299-pin ceramic PGA (PGA-299C-A01)	For evaluation

■ PACKAGE DIMENSION

Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/