

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	93
Program Memory Size	256KB (256K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	120-LQFP
Supplier Device Package	120-LQFP (16x16)
Purchase URL	

Туре	Circuit	Remarks
Н	P-ch Pout N-ch Nout Analog input CMOS hysteresis input Standby control signal or analog input enable signal Automotive input Standby control signal or analog input enable signal	A/D converter input common general-purpose port • CMOS output (IoH/IoL = ± 4 mA) • CMOS hysteresis input (VH/VIL = 0.8 Vcc/0.2 Vcc) • Automotive input (VH/VIL = 0.8 Vcc/0.5 Vcc)
I	P-ch Pout Nout CMOS hysteresis input Standby control signal Automotive input Standby control signal	General-purpose port CMOS output (IoH/IoL = ± 4 mA) CMOS hysteresis input (VIH/VIL = 0.8 Vcc/0.2 Vcc) Automotive input (VIH/VIL = 0.8 Vcc/0.5 Vcc)
J	P-ch Nout CMOS hysteresis input Standby control signal Automotive input Standby control signal CMOS input (SIN) Standby control signal	General-purpose port (serial input) • CMOS output (IoH/IoL = ± 4 mA) • CMOS hysteresis input (VIH/VIL = 0.8 Vcc/0.2 Vcc) • CMOS input (SIN) (VIH/VIL = 0.7 Vcc/0.3 Vcc) • Automotive input (VIH/VIL = 0.8 Vcc/0.5 Vcc)

Туре	Circuit	Remarks
N	Evaluation product P-ch N-ch Nout Nout Nout	N-ch open-drain pin IoL = 4 mA
0	Automotive input	Input-only pin Automotive input (VIH/VIL = 0.8 Vcc/0.5 Vcc)
P	P-ch LCDC output	LCDC output pin (COM pin)

■ HANDLING DEVICES

Strictly observe maximum rated voltages (preventing latch-up)

In CMOS IC devices, a condition known as latch-up may occur if voltages higher than Vcc or lower than Vss are applied to input or output pins other than medium or high withstand voltage pins, or if the voltage applied between VCC and VSS pins exceeds the rated voltage level. If a latch-up occurs, the power supply current may increase dramatically and may destroy semiconductor elements. When using semiconductor devices, always take sufficient care to avoid exceeding maximum ratings.

When the analog system power supply is switched on or off, be careful not to apply the analog power supply (AVcc, AVRH), the analog input voltages and the power supply voltage for the high current output buffer pins (DVcc) in excess of the digital power supply voltage (Vcc).

Once the digital power supply voltage (Vcc) has been disconnected, the analog power supply (AVcc, AVRH) and the power supply voltage for the high current output buffer pins (DVcc) may be turned on in any sequence.

Supply voltage stabilization

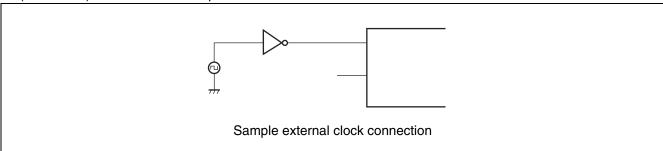
Rapid fluctuations in the power supply voltage can cause malfunctions even if the Vcc power supply voltage remains within the warranted operating range. It is recommended that the power supply be stabilized such that ripple fluctuations (P-P value) at commercial frequencies (50 Hz/60 Hz) be limited to within 10% of the standard Vcc value, and that transient fluctuations due to power supply switching, etc. be limited to a rate of 0.1 V/ms or less.

• Precautions when turning the power on

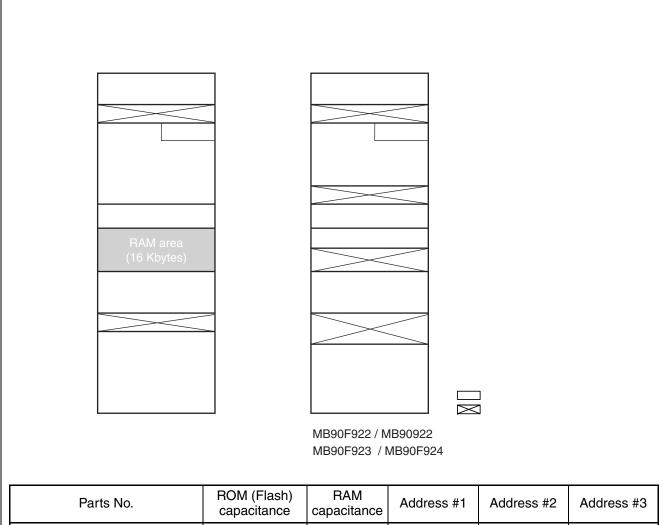
In order to prevent the built-in step-down circuits from malfunctioning, the time taken for the voltage to rise (0.2 V to 2.7 V) during power-on should be less than 50 μ s.

· Handling unused pins

If unused input pins are left open, they may cause malfunctions or latch-up which may lead to permanent damage to the semiconductor. Unused input pins should therefore be pulled up or pulled down through a resistor of at least $2 \text{ k}\Omega$.


Unused input/output pins may be set to the output state and left open, or set to the input state and connected to a pull-up or pull-down resistance of 2 $k\Omega$ or more.

• Handling A/D converter power supply pins


Even if the A/D converter is not used, the power supply pins should be connected such as $AV_{CC} = V_{CC}$, and $AV_{SS} = AVRH = V_{SS}$.

· Notes on using an external clock

Even when an external clock is used, an oscillation stabilization wait time is required following power-on reset or release from sub clock mode or stop mode. Furthermore, only the X0A pin should be driven when an external clock is used, with the X1A pin open as shown in the following diagram. Do not use high-speed oscillation pins (X0 and X1) for external clock input.

■ MEMORY MAP

Parts No.	ROM (Flash) capacitance	RAM capacitance	Address #1	Address #2	Address #3
MB90F922NC/F922NCS/922NCS	256 Kbytes	10 Kbytes	FC0000н	004000н	002900н
MB90F923NC/F923NCS	384 Kbytes	16 Kbytes	FA0000 _H	004А00н	003700н
MB90F924NC/F924NCS	512 Kbytes	24 Kbytes	F80000н	006А00н	003700н

^{*:} Evaluation products do not contain internal ROM. Treat this address as the ROM decode area used by the tools.

Note: To select models without the ROM mirror function, refer to the "ROM Mirror Function Selection Module" in Hardware Manual. The image of the ROM data in the FF bank appears at the top of the 00 bank, in order to enable efficient use of small C compiler models. The lower 16-bits of the FF bank addresses are allocated to the same addresses as the lower 16-bits of the 00 bank, making it possible to reference tables in ROM without declaring the "far" modifier with the pointers. For example, when an access is made to the address 00C000H, the actual address to be accessed is FFC000H in ROM. Because the size of the FF bank ROM area exceeds 32 Kbytes, it is not possible to view the entire region in the 00 bank image. Therefore because the ROM data from FF8000H to FFFFFFH appears in the image from 008000H to 00FFFFH, it is recommended that ROM data tables be stored in the area from FF8000H to FFFFFFH.

Address	Register name	Symbol	Read/write	Resource name	Initial value
000024н		00010	R/W		XXXXXXXXB
000025н	Compare clear register	CPCLR	R/W		XXXXXXXXB
000026н	Time and data was sisten.	TODT	R/W	16-bit	00000000в
000027н	Timer data register	TCDT	R/W	free-run timer	00000000в
000028н	Lower timer control status register	TCCSL	R/W		00000000в
000029н	Higher timer control status register	TCCSH	R/W		01-00000в
00002Ан	Lower PPG0 control status register	PCNTL0	R/W	16 hit DDC0	00000000в
00002Вн	Higher PPG0 control status register	PCNTH0	R/W	16-bit PPG0	0000001в
00002Сн	Lower PPG1 control status register	PCNTL1	R/W	16 hit DDC1	00000000в
00002Dн	Higher PPG1 control status register	PCNTH1	R/W	16-bit PPG1	0000001в
00002Ен	Lower PPG2 control status register	PCNTL2	R/W	16 hit DDC0	0000000В
00002Fн	Higher PPG2 control status register	PCNTH2	R/W	16-bit PPG2	0000001в
000030н	External interrupt enable	ENIR	R/W		00000000в
000031н	External interrupt request	EIRR	R/W	External interrupt	00000000в
000032н	Lower external interrupt level	ELVRL	R/W	External interrupt	00000000в
000033н	Higher external interrupt level	ELVRH	R/W		00000000в
000034н	Serial mode register 0	SMR0	R/W, W		00000000в
000035н	Serial control register 0	SCR0	R/W, W		0000000В
000036н	Reception/transmission data register 1	RDR0/ TDR0	R/W		0000000В
000037н	Serial status register 0	SSR0	R/W, R	UART	00001000в
000038н	Extended communication control register 0	ECCR0	R/W, R	(LIN/SCI) 0	000000XXB
000039н	Extended status control register 0	ESCR0	R/W		00000100в
00003Ан	Baud rate generator register 00	BGR00	R/W		0000000В
00003Вн	Baud rate generator register 01	BGR01	R/W, R		0000000В
00003Сн to 00003Fн		(Disab	led)		
000040н to 00004Fн	Area reserved for CAN C	ontroller 0. R	efer to " ■ CA	IN CONTROLLERS"	
000050н	Lower timer control status register 0	TMCSR0L	R/W		0000000В
000051н	Higher timer control status register 0	TMCSR0H	R/W	16-bit reload timer	ХХХ10000в
000052н	Timer register 0/relead register 0	TMR0/	DAM	0	XXXXXXXXB
000053н	Timer register 0/reload register 0	TMRLR0	R/W		XXXXXXXXB

Address	Register name	Symbol	Read/write	Resource name	Initial value					
003998н	DIAMA access of the C	DWO10	DAM		XXXXXXXXB					
003999н	PWM1 compare register 3	PWC13	R/W		XXXXXXXXB					
00399Ан	DIAMA compare verietos o	DMCoo	D/M	Stepping motor	XXXXXXX					
00399Вн	PWM2 compare register 3	PWC23 R/V	R/W	controller 3	XXXXXXX					
00399Сн	PWM1 select register 3	PWS13	R/W		0000000В					
00399Dн	PWM2 select register 3	PWS23	R/W		Х000000В					
00399Eн to 0039A5н		(Disab	led)							
0039А6н	Flash write control register 0	FWR0	DAM		0000000В					
0039А7н	Flash write control register 1	FWR1	- R/W	Flash I/F	0000000В					
0039A8н to 0039BFн		(Disab	led)							
0039C0н to 0039DFн	Area reserved for CAN Controller 2. Refer to "■ CAN CONTROLLERS"									
0039E0н to 0039FFн	Area reserved for CAN C	ontroller 3. F	Refer to " ■ CA	N CONTROLLERS"						
003A00н to 003AFFн	Area reserved for CAN C	ontroller 0. F	Refer to " ■ CA	IN CONTROLLERS"						
003B00н to 003BFFн	Area reserved for CAN C	ontroller 1. F	Refer to " ■ CA	IN CONTROLLERS"						
003С00н to 003СFFн	Area reserved for CAN C	ontroller 0. F	Refer to " ■ CA	IN CONTROLLERS"						
003D00н to 003DFFн	Area reserved for CAN Controller 1. Refer to "■ CAN CONTROLLERS"									
003E00н to 003EFFн	Area reserved for CAN Controller 2. Refer to "■ CAN CONTROLLERS"									
003F00н to 003FFFн	Area reserved for CAN Controller 3. Refer to "■ CAN CONTROLLERS"									

List of Message Buffers (ID Registers)

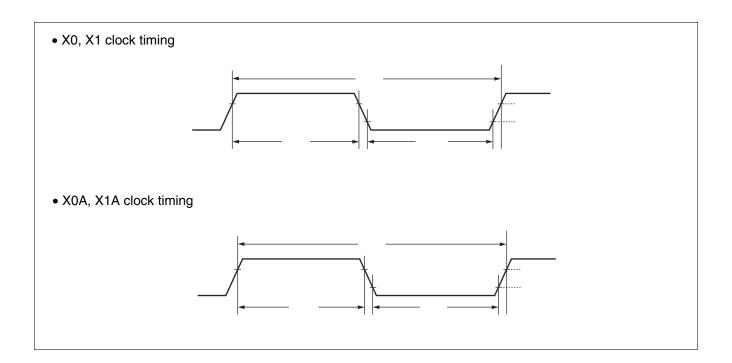
	Add	ress		Message Buffers (ID Registe	Abbre-	A	located at Mariana
CAN0	CAN1	CAN2	CAN3	Register	viation	Access	Initial Value
003А00н	003В00н	003700н	003800н				XXXXXXXXB
to 003A1Fн	to 003В1Fн	to 00371Fн	to 00381Fн	General-purpose RAM	_	R/W	to XXXXXXXXB
003А20н	003В20н	003720н	003820н				XXXXXXXX
003А21н	003В21н	003721н	003821н		IDDA	D 444	XXXXXXXXB
003А22н	003В22н	003722н	003822н	ID register 0	IDR0	R/W	XXXXX _B
003А23н	003В23н	003723н	003823н				XXXXXXXX
003А24н	003В24н	003724н	003824н				XXXXXXXX
003А25н	003В25н	003725н	003825н	ID register 1	IDR1	R/W	XXXXXXXX
003А26н	003В26н	003726н	003826н	ID register 1	IDKI	ri/ VV	XXXXXв
003А27н	003В27н	003727н	003827н				XXXXXXXXB
003А28н	003В28н	003728н	003828н				XXXXXXXX
003А29н	003В29н	003729н	003829н	ID register 2	IDR2	R/W	XXXXXXXXB
003А2Ан	003В2Ан	00372Ан	00382Ан	1D register 2	IDNZ	□/ V V	XXXXXв
003А2Вн	003В2Вн	00372Вн	00382Вн				XXXXXXXXB
003А2Сн	003В2Сн	00372Сн	00382Сн				XXXXXXXX
003А2Dн	003В2Dн	00372Dн	00382Dн	ID register 3	IDR3	DR3 R/W	XXXXXXX
003А2Ен	003В2Ен	00372Ен	00382Ен	Tib register 5			XXXXX _B
003А2Гн	003В2Гн	00372Fн	00382Fн				XXXXXXX
003А30н	003В30н	003730н	003830н				XXXXXXXXB
003А31н	003В31н	003731н	003831н	ID register 4	IDR4	R/W	XXXXXXXX
003А32н	003В32н	003732н	003832н	Togistor 4	IDIT	10114	XXXXXB
003А33н	003В33н	003733н	003833н				XXXXXXXX
003А34н	003В34н	003734н	003834н				XXXXXXXXB
003А35н	003В35н	003735н	003835н	ID register 5	IDR5	R/W	XXXXXXXXB
003А36н	003В36н	003736н	003836н	is regional a	15110		XXXXXB
003А37н	003В37н	003737н	003837н				XXXXXXXXB
003А38н	003В38н	003738н	003838н				XXXXXXXXB
003А39н	003В39н	003739н	003839н	ID register 6	IDR6	R/W	XXXXXXXXB
003А3Ан	003В3Ан	00373Ан	00383Ан				ХХХХХв
003А3Вн	003В3Вн	00373Вн	00383Вн				XXXXXXX
003А3Сн	003В3Сн	00373Сн	00383Сн				XXXXXXXX
003АЗДн	003В3Дн	00373Dн	00383Dн	ID register 7	IDR7	R/W	XXXXXXX
003А3Ен	003В3Ен	00373Ен	00383Ен				XXXXXB
003А3Гн	003В3Гн	00373Fн	00383Fн				XXXXXXXXB

(Continued)

35

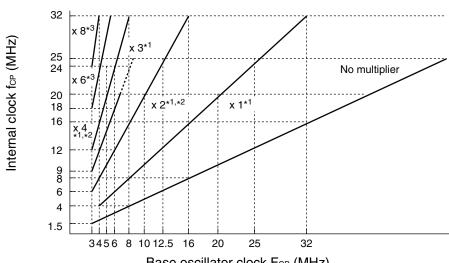
DS07-13750-4E

3. DC Characteristics


(Vcc = 5.0 V $\pm 10\%$, Vss = DVss = AVss = 0.0 V, T_A = -40 °C to +105 °C)

		Pin		Value				<u> </u>	
Parameter	Symbol	name	Conditions	Conditions Min Typ		Max	Unit	Remarks	
	VIHA		_	0.8 Vcc	_	_	٧	Pin inputs if Automotive input levels are selected	
"H" level input voltage	VIHS		_	0.8 Vcc			V	Pin inputs if CMOS hysteresis input levels are selected	
	VIHC	_	_	0.7 Vcc			٧	RST input pin (CMOS hysteresis)	
	VILA		_	_		0.5 Vcc	V	Pin inputs if Automotive input levels are selected	
"L" level input voltage	VILS	_	_		_	0.2 Vcc	V	Pin inputs if CMOS hysteresis input levels are selected	
	VILR	_	_			0.3 Vcc	٧	RST input pin (CMOS hysteresis)	
	Icc		Maximum operating frequency F _{CP} = 32 MHz, normal operation	_	35	45	mA		
	100		Maximum operating frequency F _{CP} = 32 MHz, writing Flash memory		55	65	mA		
	Iccs		Operating frequency FCP = 32 MHz, sleep mode		13	20	mA		
	Істѕ				Operating frequency FCP = 2 MHz, time-base timer mode	_	0.6	1.0	mA
Power supply current*	ICTSPLL	Vcc	Operating frequency FCP = 32 MHz, PLL timer mode, External frequency = 4 MHz	_	2.5	4	mA		
	Iccl		Operating frequency $F_{CP} = 8 \text{ kHz}, T_A = +25 ^{\circ}\text{C},$ sub clock operation	_	120	270	μΑ		
	Iccls		Operating frequency $F_{CP} = 8 \text{ kHz}, T_A = +25 ^{\circ}\text{C},$ sub sleep operation		100	200	μΑ		
	Ісст		Operating frequency $F_{CP} = 8 \text{ kHz}, T_A = +25 ^{\circ}\text{C},$ watch mode	_	90	180	μΑ		
	Іссн		T _A = + 25 °C, stop mode	_	80	170	μΑ		

(Vcc = 5.0 V
$$\pm 10\%$$
, Vss = DVss = AVss = 0.0 V, TA = -40 °C to $+105$ °C)


Parameter	Symbol	bol Pin name Conditions		Value			Unit	Remarks
raiametei	Min Typ Max		Max	Oilit	nemarks			
LCDC leakage current	ILCDC	V0 to V3, COMm (m = 0 to 3), SEGn, (n = 00 to 31)	_	_	_	5.0	μΑ	
LCD output impedance	Rvcom	COMn (n = 0 to 3)	_	_	_	4.5	kΩ	
	Rvseg	SEGn (n = 00 to 31)	_		_	17	kΩ	

^{*:} Power supply current values assume an external clock supplied to the X1 pin and X1A pin. Users must be aware that power supply current levels differ depending on whether an external clock or oscillator is used.

(Continued)

Base oscillator frequency vs. Internal operating clock frequency

Base oscillator clock Fcp (MHz)

*1: When the PLL multiplier is \times 1, \times 2, \times 3 or \times 4 and the internal clock is 20 MHz < fcp \leq 32 MHz, set DIV2 bit = "1"*4, CS2 bit = "1" in the PSCCR register.

[Example] When using a base oscillator frequency of 24 MHz at PLL × 1:

CKSCR register : CS1 bit = "0", CS0 bit = "0" PSCCR register : DIV2 bit = "1"*4,CS2 bit = "1"

[Example] When using a base oscillator frequency of 6 MHz at PLL × 3:

CKSCR register : CS1 bit = "1", CS0 bit = "0" PSCCR register: DIV2 bit = "1"*4, CS2 bit = "1"

*2: When the PLL multiplier is \times 2 or \times 4 and the internal clock is 20 MHz < fcp \leq 32 MHz, the following settings are also supported.

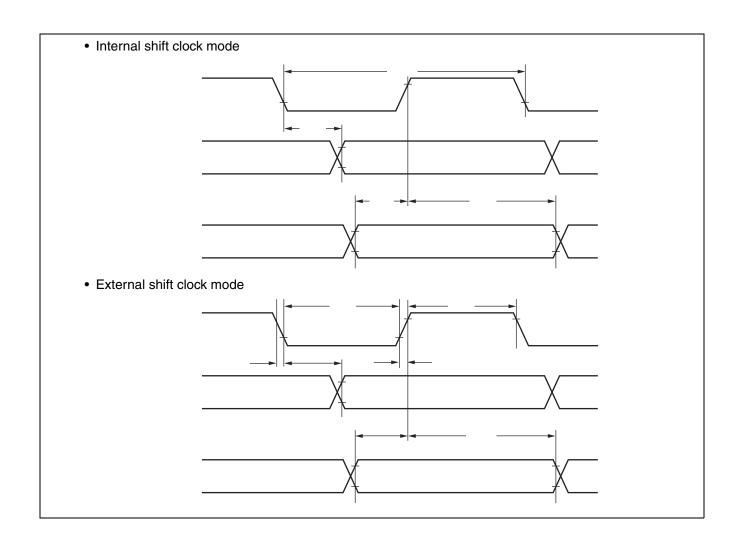
PLL × 2: CKSCR register: CS1 bit = "0", CS0 bit = "0"

PSCCR register : DIV2 bit = "0"*4, CS2 bit = "0"

PLL × 4: CKSCR register: CS1 bit = "0", CS0 bit = "1"

PSCCR register : DIV2 bit = "0"*4, CS2 bit = "0"

*3 : When the PLL multiplier is set to $\times 6$ or $\times 8$ set "DIV2 bit = "0"*4 CS2 bit = "1" and "PLL2 bit = 1" in the PSCCR register.


[Example] When using a base oscillator frequency of 4 MHz at PLL × 6:

CKSCR register : CS1 bit = "1", CS0 bit = "0" PLLOS register: DIV2 bit = "0"*4, CS2 bit = "1"

[Example] When using a base oscillator frequency of 3 MHz at PLL × 8:

CKSCR register : CS1 bit = "1", CS0 bit = "1" PLLOS register: DIV2 bit = "0"*4, CS2 bit = "1"

*4: The DIV2 bit is assigned to bit 9 of the PSCCR register and the CS2 bit is assigned to bit 8 of the PSCCR register. Both bits have a default value of "0".

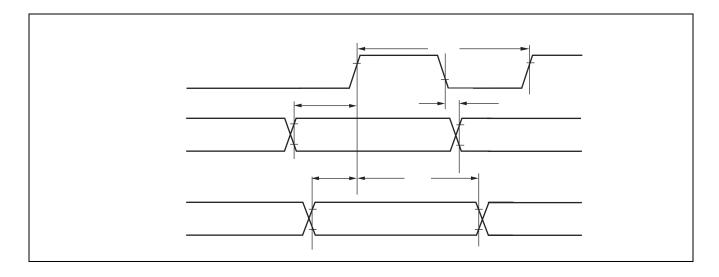
• Bit setting: ESCR0/1/2/3:SCES=1, ECCR0/1/2/3:SCDE=0

 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 °C to +105 °C)$

Parameter	er Symbol Pin name Conditions		Conditions	Va	lue	Heit
Parameter			Conditions	Min	Max	Unit
Serial clock cycle time	tscyc	SCK0 to SCK3		5 tcp	_	ns
$SCK \uparrow \rightarrow SOT$ delay time	tsноvі	SCK0 to SCK3, SOT0 to SOT3	Internal shift clock mode output pin	- 50	+ 50	ns
Valid SIN \rightarrow SCK $↓$	tıvslı	SCK0 to SCK3,	C _L = 80 pF + 1TTL	tcp + 80	_	ns
$SCK \downarrow \to valid \; SIN \; hold \; time$	tslixi	SIN0 to SIN3		0	_	ns
Serial clock "H" pulse width	t shsl	SCK0 to SCK3		3 tcp - tR	_	ns
Serial clock "L" pulse width	t slsh	SCRU IU SCRS		tcp + 10	_	ns
$SCK \uparrow \rightarrow SOT$ delay time	tshove	SCK0 to SCK3, SOT0 to SOT3	External shift clock	_	2 tcp + 60	ns
Valid SIN → SCK \downarrow	tivsle	SCK0 to SCK3,	mode output pin CL = 80 pF + 1TTL	30	_	ns
$SCK \downarrow \rightarrow valid SIN hold time$	tslixe	SIN0 to SIN3	00 pr 1 1112	tcp + 30	_	ns
SCK ↓ time	tғ	SCKU to SCKU		_	10	ns
SCK ↑ time	t R	SCK0 to SCK3		_	10	ns

Notes: • Depending on the machine clock frequency to be used, the maximum baud rate may be limited by some parameters. These parameters are shown in "MB90920 series hardware manual".

- C_L is the load capacitance connected to the pin during testing.
- top is the internal operating clock cycle time. Refer to "(1) Clock timing".

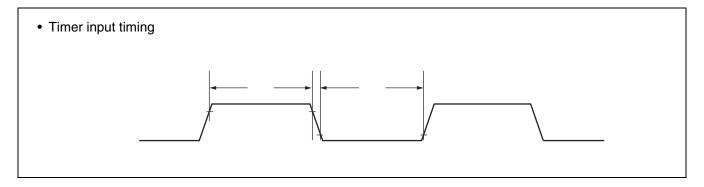

• Bit setting: ESCR0/1/2/3:SCES=1, ECCR0/1/2/3:SCDE=1

 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 °C to +105 °C)$

Parameter	Symbol Pin name		Conditions	Val	Unit	
Parameter			Conditions	Min	Max	Oilit
Serial clock cycle time	tscyc	SCK0 to SCK3		5 tcp	_	ns
$SCK \downarrow \to SOT$ delay time	t sLOVI	SCK0 to SCK3, SOT0 to SOT3	Internal shift clock	- 50	+ 50	ns
Valid SIN $ ightarrow$ SCK \downarrow	tıvshı	SCK0 to SCK3,	mode output pin $C_L = 80 \text{ pF} + 1 \text{TTL}$	tcp + 80		ns
$SCK \uparrow \rightarrow valid SIN hold time$	tshixi	SIN0 to SIN3		0		ns
$SOT \to SCK \uparrow delay time$	tsovнı	SCK0 to SCK3, SOT0 to SOT3		3 tcp - 70	_	ns

Notes: • Depending on the machine clock frequency to be used, the maximum baud rate may be limited by some parameters. These parameters are shown in "MB90920 series hardware manual".

- C_L is the load capacitance connected to the pin during testing.
- tcp is the internal operating clock cycle time. Refer to "(1) Clock timing".

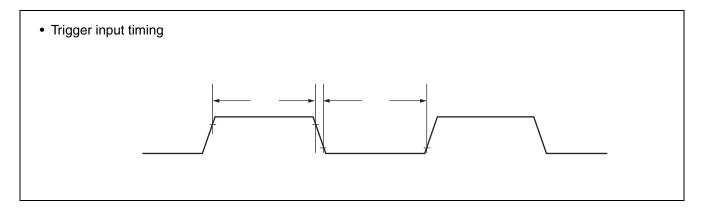


(5) Timer input timing

 $(Vcc = 5.0 V\pm 10\%, Vss = AVss = 0.0 V, T_A = -40 °C to +105 °C)$

Parameter	Symbol	Pin name	Conditions	Va	lue	Unit
rarameter	Symbol Fin hame Conditi	Conditions	Min	Max	Oilit	
Input pulse width	tтıwн tтıwL	TIN0, TIN1, IN0 to IN3	_	4 tcp	_	ns

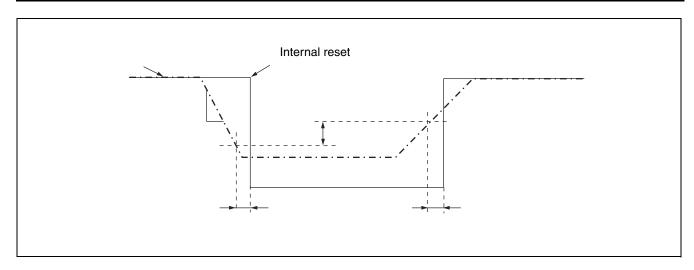
Note: tcp is the internal operating clock cycle time. Refer to "(1) Clock timing".

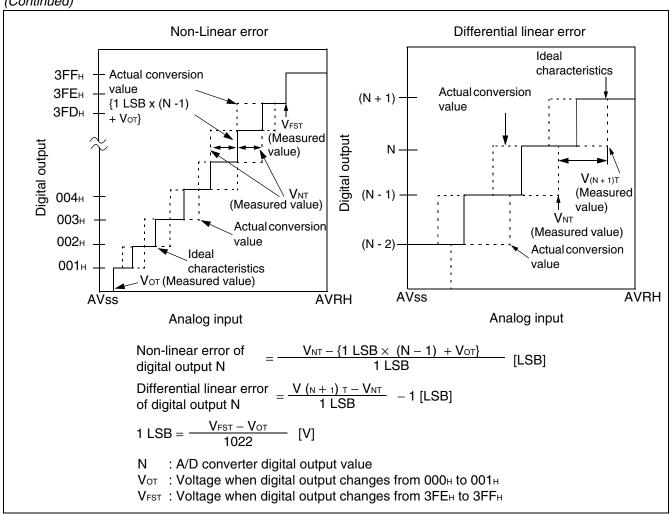


(6) Trigger input timing

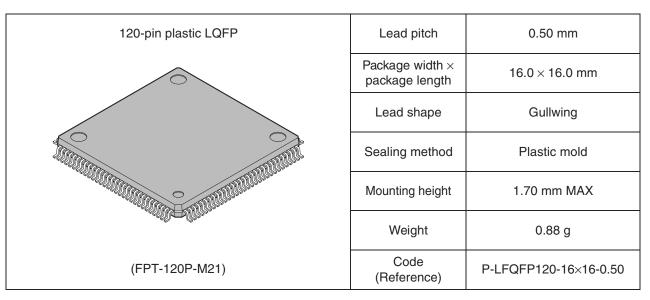
 $(Vcc = 5.0 V\pm 10\%, Vss = AVss = 0.0 V, T_A = -40 °C to +105 °C)$

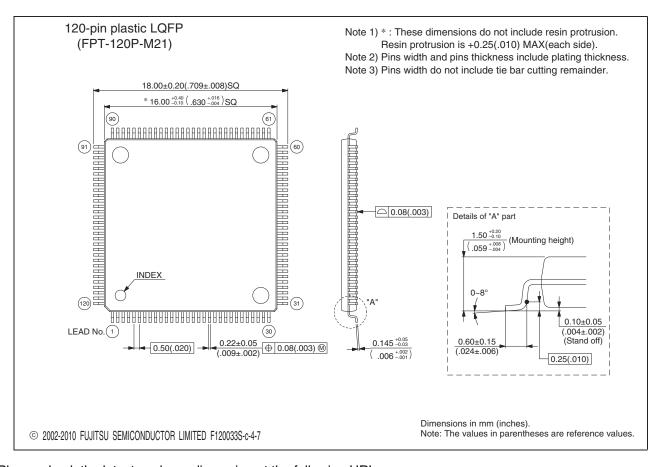
Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max	Oilit	nemarks
Input pulse width	tтядн, tтядь	INT0 to INT7	_	200	_	ns	During normal operation
		ADTG		tcp + 200	—	ns	


Note: tcp is the internal operating clock cycle time. Refer to "(1) Clock timing".



(7) Low voltage detection


 $(V_{SS} = AV_{SS} = 0.0 \text{ V}, T_A = -40 ^{\circ}\text{C to } +105 ^{\circ}\text{C})$


Parameter	Symbol	Pin name	Conditions	Value				
				Min	Тур	Max	Unit	Remarks
Detection voltage	V _{DL}	VCC	_	4.0	4.2	4.4	V	Flash memory product, during voltage drop
				3.7	4.0	4.3	V	Evaluation product, during voltage drop
Hysteresis width	V _{HYS}	VCC	_	190			mV	Flash memory product, during voltage rise
				0.1			٧	Evaluation product, during voltage rise
Power supply voltage change rate	dV/dt	VCC	_	- 0.1	_	+ 0.1	V/μs	Flash memory product, dV/dt at low voltage reset
				-0.004		+ 0.004	V/µs	Flash memory product, dV/dt at standard value of low voltage detection/release voltage
				- 0.1	_	+ 0.02	V/µs	Evaluation product
Detection delay time	td	_	_	_	_	3.2	μs	Flash memory product, when $dV/dt \le 0.004 \ V/\mu s$
						35	μs	Evaluation product

■ PACKAGE DIMENSION

Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

FUJITSU SEMICONDUCTOR LIMITED

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome, Kohoku-ku Yokohama Kanagawa 222-0033, Japan

Tel: +81-45-415-5858 http://jp.fujitsu.com/fsl/en/

For further information please contact:

North and South America

FUJITSU SEMICONDUCTOR AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://us.fujitsu.com/micro/

Europe

FUJITSU SEMICONDUCTOR EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/semiconductor/

Korea

FUJITSU SEMICONDUCTOR KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

Asia Pacific

FUJITSU SEMICONDUCTOR ASIA PTE. LTD.
151 Lorong Chuan,
#05-08 New Tech Park 556741 Singapore
Tel: +65-6281-0770 Fax: +65-6281-0220
http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China
Tel: +86-21-6146-3688 Fax: +86-21-6335-1605
http://cn.fujitsu.com/fss/

FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: +852-2377-0226 Fax: +852-2376-3269

http://cn.fujitsu.com/fsp/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited: Sales Promotion Department