


Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFl

| Product Status             | Obsolete                                                                      |
|----------------------------|-------------------------------------------------------------------------------|
| Core Processor             | F <sup>2</sup> MC-16LX                                                        |
| Core Size                  | 16-Bit                                                                        |
| Speed                      | 32MHz                                                                         |
| Connectivity               | CANbus, LINbus, UART/USART                                                    |
| Peripherals                | LCD, LVD, POR, PWM, WDT                                                       |
| Number of I/O              | 91                                                                            |
| Program Memory Size        | 256KB (256K x 8)                                                              |
| Program Memory Type        | FLASH                                                                         |
| EEPROM Size                | -                                                                             |
| RAM Size                   | 10K x 8                                                                       |
| Voltage - Supply (Vcc/Vdd) | 4V ~ 5.5V                                                                     |
| Data Converters            | A/D 8x8/10b                                                                   |
| Oscillator Type            | External                                                                      |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                            |
| Mounting Type              | Surface Mount                                                                 |
| Package / Case             | 120-LQFP                                                                      |
| Supplier Device Package    | 120-LQFP (16x16)                                                              |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/mb90f922ncpmc-gse1 |
|                            |                                                                               |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### (Continued) 16-bit reload timer (4 channels) 16-bit reload timer operation (select toggle output or one-shot output) Selectable event count function Real time watch timer (main clock) Operates directly from oscillator clock. Interrupt can be generated by second/minute/hour/date counter overflow. • PPG timer (6 channels) Output pins (3 channels), external trigger input pin (1 channel) Operation clock frequencies : fcp, fcp/2<sup>2</sup>, fcp/2<sup>4</sup>, fcp/2<sup>6</sup> Delay interrupt Generates interrupt for task switching. Interrupts to CPU can be generated/cleared by software setting. • External interrupts (8 channels) 8-channel independent operation Interrupt source setting available : "L" to "H" edge/ "H" to "L" edge/ "L" level/ "H" level. 8/10-bit A/D converter (8 channels) Conversion time : $3 \mu s$ (at $f_{CP} = 32 \text{ MHz}$ ) External trigger activation available (P50/INT0/ADTG) Internal timer activation available (16-bit reload timer 1) UART(LIN/SCI) (4 channels) Equipped with full duplex double buffer Clock-asynchronous or clock-synchronous serial transfer is available • CAN interface (4 channels : CAN0 and CAN2, and CAN1 and CAN3 share transmission and reception pins, and interrupt control registers). Conforms to CAN specifications version 2.0 Part A and B. Automatic resend in case of error. Automatic transfer in response to remote frame. 16 prioritized message buffers for data and ID Multiple message support Flexible configuration for receive filter : Full bit compare/full bit mask/two partial bit masks Supports up to 1 Mbps CAN wakeup function (RX connected to INT0 internally) • LCD controller/driver (32 segment x 4 common) Segment driver and command driver with direct LCD panel (display) drive capability Reset on detection of low voltage/program loop Automatic reset when low voltage is detected Program looping detection function Stepping motor controller (4 channels) High current output for each channel $\times 4$ Synchronized 8/10-bit PWM for each channel × 2 Sound generator (2 channels) 8-bit PWM signal mixed with tone frequency from 8-bit reload counter. PWM frequencies : 125 kHz, 62.5 kHz, 31.2 kHz, 15.6 kHz (at fcp = 32 MHz) Tone frequencies : PWM frequency $\frac{2}{2}$ , divided by (reload frequency +1) Input/output ports General-purpose input/output port (CMOS output) 93 ports • Function for port input level selection Automotive/CMOS-Schmitt Flash memory security function Protects the contents of Flash memory (Flash memory product only)



### ■ PIN DESCRIPTIONS

| Pin no. | Pin name | I/O circuit<br>type*1 | Function                                 |  |  |
|---------|----------|-----------------------|------------------------------------------|--|--|
| 108     | X0       | A                     | High-speed oscillation input pin         |  |  |
| 107     | X1       |                       | High-speed oscillation output pin        |  |  |
| 13      | X0A      | В                     | Low-speed oscillation input pin          |  |  |
| 13      | P92      | I                     | General-purpose I/O port                 |  |  |
| 14      | X1A      | В                     | Low-speed oscillation output pin         |  |  |
| 14      | P93      | I                     | General-purpose I/O port                 |  |  |
| 90      | RST      | С                     | Reset input pin                          |  |  |
| 02      | P00      | F                     | General-purpose I/O port                 |  |  |
| 93      | SEG24    |                       | LCD controller/driver segment output pin |  |  |
| 04      | P01      |                       | General-purpose I/O port                 |  |  |
| 94      | SEG25    | F                     | LCD controller/driver segment output pin |  |  |
| 05      | P02      | _                     | General-purpose I/O port                 |  |  |
| 95      | SEG26    | F                     | LCD controller/driver segment output pin |  |  |
| 00      | P03      | _                     | General-purpose I/O port                 |  |  |
| 96      | SEG27    | F                     | LCD controller/driver segment output pin |  |  |
| 07      | P04      | F                     | General-purpose I/O port                 |  |  |
| 97      | 97 SEG28 |                       | LCD controller/driver segment output pin |  |  |
|         | P05      | _                     | General-purpose I/O port                 |  |  |
| 98      | SEG29    | F                     | LCD controller/driver segment output pin |  |  |
| 00      | P06      | -                     | General-purpose I/O port                 |  |  |
| 99      | SEG30    | F                     | LCD controller/driver segment output pin |  |  |
| 100     | P07      | -                     | General-purpose I/O port                 |  |  |
| 100     | SEG31    | F                     | LCD controller/driver segment output pin |  |  |
|         | P10      |                       | General-purpose I/O port                 |  |  |
| 101     | PPG2     |                       | 16-bit PPG ch.2 output pin               |  |  |
|         | IN5      |                       | Input capture ch.5 trigger input pin     |  |  |
|         | P11      |                       | General-purpose I/O port                 |  |  |
| 100     | TOT0     | 1.                    | 16-bit reload timer ch.0 TOT output pin  |  |  |
| 102     | PPG3     | - 1                   | 16-bit PPG ch.3 output pin               |  |  |
| F       | IN4      | 1                     | Input capture ch.4 trigger input pin     |  |  |
|         | P12      |                       | General-purpose I/O port                 |  |  |
| 103     | TIN0     | 1                     | 16-bit reload timer ch.0 TIN input pin   |  |  |
| F       | PPG4     | 1                     | 16-bit PPG ch.4 output pin               |  |  |

| Pin no. | Pin name | I/O circuit<br>type*1 | Function                                 |  |  |
|---------|----------|-----------------------|------------------------------------------|--|--|
| 104     | P13      |                       | General-purpose I/O port                 |  |  |
| 104     | PPG5     |                       | 16-bit PPG ch.5 output pin               |  |  |
|         | P14      |                       | General-purpose I/O port                 |  |  |
| 109     | TIN2     |                       | 16-bit reload timer ch.2 TIN input pin   |  |  |
|         | IN1      |                       | Input capture ch.1 trigger input pin     |  |  |
| 110     | P15      |                       | General-purpose I/O port                 |  |  |
| 110     | INO      | - 1                   | Input capture ch.0 trigger input pin     |  |  |
| 111     | COM0     | Р                     | LCD controller/driver common output pin  |  |  |
| 112     | COM1     | Р                     | LCD controller/driver common output pin  |  |  |
| 113     | COM2     | Р                     | LCD controller/driver common output pin  |  |  |
| 114     | COM3     | Р                     | LCD controller/driver common output pin  |  |  |
| 445     | P22      | _                     | General-purpose I/O port                 |  |  |
| 115     | SEG00    | F                     | LCD controller/driver segment output pin |  |  |
| 110     | P23      | -                     | General-purpose I/O port                 |  |  |
| 116     | SEG01    | F                     | LCD controller/driver segment output pin |  |  |
| 447     | P24      | _                     | General-purpose I/O port                 |  |  |
| 117     | SEG02    | F                     | LCD controller/driver segment output pin |  |  |
| 110     | P25      | -                     | General-purpose I/O port                 |  |  |
| 118     | SEG03    | F                     | LCD controller/driver segment output pin |  |  |
| 110     | P26 _    | _                     | General-purpose I/O port                 |  |  |
| 119     | SEG04    | F                     | LCD controller/driver segment output pin |  |  |
| 100     | P27      |                       | General-purpose I/O port                 |  |  |
| 120     | SEG05    | F                     | LCD controller/driver segment output pin |  |  |
| _       | P30      |                       | General-purpose I/O port                 |  |  |
| 1       | SEG06    | F                     | LCD controller/driver segment output pin |  |  |
| 0       | P31      |                       | General-purpose I/O port                 |  |  |
| 2       | SEG07    | F                     | LCD controller/driver segment output pin |  |  |
| 0       | P32      | _                     | General-purpose I/O port                 |  |  |
| 3       | SEG08    | F                     | LCD controller/driver segment output pin |  |  |
|         | P33      | _                     | General-purpose I/O port                 |  |  |
| 4       | SEG09    | F                     | LCD controller/driver segment output pin |  |  |
|         | P34      |                       | General-purpose I/O port                 |  |  |
| 5       | SEG10    | F                     | LCD controller/driver segment output pin |  |  |
| 6       | P35      |                       | General-purpose I/O port                 |  |  |
| 6       | SEG11    | F                     | LCD controller/driver segment output pin |  |  |



| Pin no. | Pin name | I/O circuit<br>type*1 | Function                                         |
|---------|----------|-----------------------|--------------------------------------------------|
| 70      | P73      | <br>- L               | General-purpose output-only port                 |
| 70      | PWM2M0   |                       | Stepping motor controller ch.0 output pin        |
| 71      | P74      | - L                   | General-purpose output-only port                 |
| / 1     | PWM1P1   |                       | Stepping motor controller ch.1 output pin        |
| 72      | P75      | L                     | General-purpose output-only port                 |
| 12      | PWM1M1   |                       | Stepping motor controller ch.1 output pin        |
| 73      | P76      | <br>- L               | General-purpose output-only port                 |
| 73      | PWM2P1   |                       | Stepping motor controller ch.1 output pin        |
| 74      | P77      | L                     | General-purpose output-only port                 |
| 74      | PWM2M1   |                       | Stepping motor controller ch.1 output pin        |
| 77      | P80      | L                     | General-purpose output-only port                 |
| 11      | PWM1P2   |                       | Stepping motor controller ch.2 output pin        |
| 78      | P81      | - L                   | General-purpose output-only port                 |
| 70      | PWM1M2   |                       | Stepping motor controller ch.2 output pin        |
| 79      | P82 L    |                       | General-purpose output-only port                 |
| 19      | PWM2P2   |                       | Stepping motor controller ch.2 output pin        |
| 80      | P83      | L                     | General-purpose output-only port                 |
| 00      | PWM2M2   |                       | Stepping motor controller ch.2 output pin        |
| 81      | P84      | L                     | General-purpose output-only port                 |
| 01      | PWM1P3   |                       | Stepping motor controller ch.3 output pin        |
| 82      | P85      | L                     | General-purpose output-only port                 |
| 02      | PWM1M3   |                       | Stepping motor controller ch.3 output pin        |
| 83      | P86      |                       | General-purpose output-only port                 |
| 03      | PWM2P3   |                       | Stepping motor controller ch.3 output pin        |
| 84      | P87      |                       | General-purpose output-only port                 |
| 04      | PWM2M3   | - L                   | Stepping motor controller ch.3 output pin        |
| 00      | P90      | Г                     | General-purpose I/O port                         |
| 22      | SEG22    | F                     | LCD controller/driver segment output pin         |
| 00      | P91 _    |                       | General-purpose I/O port                         |
| 23      | SEG23    | F                     | LCD controller/driver segment output pin         |
| 01      | P94      | <u> </u>              | General-purpose I/O port                         |
| 31      | V0       | G                     | LCD controller/driver reference power supply pin |
| 20      | P95      | 6                     | General-purpose I/O port                         |
| 32      | V1       | G                     | LCD controller/driver reference power supply pin |

| Туре | Circuit                                                                                                                                                                                                                                                                   | Remarks                                                                                                                                                                                                        |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E    | CMOS hysteresis input                                                                                                                                                                                                                                                     | <ul> <li>Input-only pin (with pull-down resistance)</li> <li>Attached pull-down resistance: approx. 50 kΩ</li> <li>CMOS hysteresis input (VIH/VIL = 0.8 Vcc/0.2 Vcc)</li> </ul>                                |
|      | ***                                                                                                                                                                                                                                                                       | Note: The MD2 pin of the evaluation products uses this circuit type.                                                                                                                                           |
| F    | P-ch<br>P-ch<br>P-ch<br>P-ch<br>P-ch<br>Pout<br>LCD input<br>CMOS hysteresis input<br>Standby control signal or<br>LCD input enable signal<br>Automotive input<br>Standby control signal or<br>LCD input enable signal                                                    | LCD output common general-<br>purpose port<br>• CMOS output<br>(IoH/IoL = ± 4 mA)<br>• Hysteresis input<br>(VIH/VIL = 0.8 Vcc/0.2 Vcc)<br>• Automotive input<br>(VIH/VIL = 0.8 Vcc/0.5 Vcc)                    |
| G    | P-ch<br>P-ch<br>P-ch<br>P-ch<br>P-ch<br>P-ch<br>P-ch<br>Pout<br>LCDC reference power supply<br>input<br>CMOS hysteresis input<br>Standby control signal or<br>LCD output switching signal<br>Automotive input<br>Standby control signal or<br>LCD output switching signal | LCDC reference power supply com-<br>mon general-purpose port<br>• CMOS output (IoH/IoL = ±4 mA)<br>• CMOS hysteresis input<br>(VIH/VIL = 0.8 Vcc/0.2 Vcc)<br>• Automotive input<br>(VIH/VIL = 0.8 Vcc/0.5 Vcc) |

| Туре | Circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Remarks                                                                                                                                                                                                                                                                                                           |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K    | P-ch<br>P-ch<br>Nout<br>P-ch<br>Nout<br>Analog output<br>CMOS hysteresis input<br>Standby control signal<br>or analog input enable signal<br>or analog input enable signal<br>or analog input enable signal<br>CMOS hysteresis input<br>Standby control signal<br>or analog input enable signal<br>CMOS input (SIN)<br>Standby control signal<br>or analog input enable signal<br>CMOS input (SIN)<br>Standby control signal<br>or analog input enable signal | <ul> <li>A/D converter input common general-<br/>purpose port (serial input)</li> <li>CMOS output (IoH/IoL = ±4 mA)</li> <li>CMOS hysteresis input<br/>(VIH/VIL = 0.8 Vcc/0.2 Vcc)</li> <li>CMOS input (SIN)<br/>(VIH/VIL = 0.7 Vcc/0.3 Vcc)</li> <li>Automotive input<br/>(VIH/VIL = 0.8 Vcc/0.5 Vcc)</li> </ul> |
| L    | P-ch Pout<br>High current<br>N-ch Nout                                                                                                                                                                                                                                                                                                                                                                                                                        | High current output port (SMC pin)<br>CMOS output (Io⊬/Io∟ = ± 30 mA)                                                                                                                                                                                                                                             |
| M    | P-ch<br>P-ch<br>P-ch<br>P-ch<br>Pout<br>P-ch<br>Pout<br>P-ch<br>Pout<br>P-ch<br>Pout<br>CMOS hysteresis input<br>Standby control signal or<br>LCDC output switching signal<br>Automotive input<br>Standby control signal or<br>LCDC output switching signal<br>CMOS input (SIN)<br>Standby control signal or<br>LCDC output switching signal<br>CMOS input (SIN)<br>Standby control signal or<br>LCDC output switching signal                                 | LCDC output common general-<br>purpose port (serial input))<br>• CMOS output (IoH/IoL = ± 4 mA)<br>• CMOS hysteresis input<br>(VIH/VIL = 0.8 Vcc/0.2 Vcc)<br>• CMOS input (SIN)<br>(VIH/VIL = 0.7 Vcc/0.3 Vcc)<br>• Automotive input<br>(VIH/VIL = 0.8 Vcc/0.5 Vcc)                                               |

### HANDLING DEVICES

#### • Strictly observe maximum rated voltages (preventing latch-up)

In CMOS IC devices, a condition known as latch-up may occur if voltages higher than V<sub>cc</sub> or lower than V<sub>ss</sub> are applied to input or output pins other than medium or high withstand voltage pins, or if the voltage applied between VCC and VSS pins exceeds the rated voltage level. If a latch-up occurs, the power supply current may increase dramatically and may destroy semiconductor elements. When using semiconductor devices, always take sufficient care to avoid exceeding maximum ratings.

When the analog system power supply is switched on or off, be careful not to apply the analog power supply (AV<sub>cc</sub>, AVRH), the analog input voltages and the power supply voltage for the high current output buffer pins (DV<sub>cc</sub>) in excess of the digital power supply voltage (V<sub>cc</sub>).

Once the digital power supply voltage (Vcc) has been disconnected, the analog power supply (AVcc, AVRH) and the power supply voltage for the high current output buffer pins (DVcc) may be turned on in any sequence.

#### Supply voltage stabilization

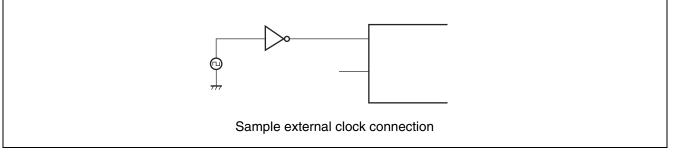
Rapid fluctuations in the power supply voltage can cause malfunctions even if the Vcc power supply voltage remains within the warranted operating range. It is recommended that the power supply be stabilized such that ripple fluctuations (P-P value) at commercial frequencies (50 Hz/60 Hz) be limited to within 10% of the standard Vcc value, and that transient fluctuations due to power supply switching, etc. be limited to a rate of 0.1 V/ms or less.

#### • Precautions when turning the power on

In order to prevent the built-in step-down circuits from malfunctioning, the time taken for the voltage to rise (0.2 V to 2.7 V) during power-on should be less than 50  $\mu$ s.

#### • Handling unused pins

If unused input pins are left open, they may cause malfunctions or latch-up which may lead to permanent damage to the semiconductor. Unused input pins should therefore be pulled up or pulled down through a resistor of at least 2 k $\Omega$ .


Unused input/output pins may be set to the output state and left open, or set to the input state and connected to a pull-up or pull-down resistance of 2 k $\Omega$  or more.

#### • Handling A/D converter power supply pins

Even if the A/D converter is not used, the power supply pins should be connected such as  $AV_{CC} = V_{CC}$ , and  $AV_{SS} = AVRH = V_{SS}$ .

#### • Notes on using an external clock

Even when an external clock is used, an oscillation stabilization wait time is required following power-on reset or release from sub clock mode or stop mode. Furthermore, only the X0A pin should be driven when an external clock is used, with the X1A pin open as shown in the following diagram. Do not use high-speed oscillation pins (X0 and X1) for external clock input.



#### • Serial communication

In serial communication, reception of wrong data may occur due to noise or other causes. Therefore, design a printed circuit board to prevent noise from occurring. Taking account of the reception of wrong data, detect errors by measures such as adding a checksum to the end of data. If an error is detected, retransmit the data.

#### • Characteristic difference between flash device and MASK ROM device

In the flash device and the MASK ROM device, the electrical characteristic including current consumption, ESD, latch-up, the noise characteristic, and oscillation characteristic, etc. is different according to the difference between the chip layout and the memory structure.

Reconfirm the electrical characteristic when the product is replaced by another product of the same series.

| Address         | Register name                         | Symbol         | Read/write            | Resource name     | Initial value         |  |  |  |  |  |
|-----------------|---------------------------------------|----------------|-----------------------|-------------------|-----------------------|--|--|--|--|--|
| 003700н         |                                       |                |                       |                   |                       |  |  |  |  |  |
| to              | Area reserved for CAN C               | ontroller 2. R | efer to " <b>■</b> CA | N CONTROLLERS"    |                       |  |  |  |  |  |
| 0037FFн         |                                       |                |                       |                   |                       |  |  |  |  |  |
| 003800н<br>to   | Area reserved for CAN C               | ontrollar 3 R  | ofor to "■ CA         |                   |                       |  |  |  |  |  |
| 0038FFн         | Alea leserved for CAN C               |                |                       | N CONTROLLERS     |                       |  |  |  |  |  |
| 003900н         |                                       |                |                       |                   |                       |  |  |  |  |  |
| to              |                                       | (Disabl        | ed)                   |                   |                       |  |  |  |  |  |
| 00391Fн         |                                       |                |                       |                   |                       |  |  |  |  |  |
| 003920н         | PPG0 down counter register            | PDCR0          | R                     |                   | 11111111 <sub>В</sub> |  |  |  |  |  |
| <b>003921</b> н |                                       |                |                       | 16-bit PPG0       | 11111111 <sub>В</sub> |  |  |  |  |  |
| 003922н         | PPG0 cycle setting register           | PCSR0          | W                     |                   | 11111111 <sub>В</sub> |  |  |  |  |  |
| 003923н         |                                       |                | 11111111в             |                   |                       |  |  |  |  |  |
| 003924н         | PPG0 duty setting register            | PDUT0          | W                     |                   | 0000000в              |  |  |  |  |  |
| 003925н         |                                       | FD010          | vv                    | 16-bit PPG0       | 0000000в              |  |  |  |  |  |
| 003926н         | PPG0 output division setting register | PPGDIV0        | R/W, R                |                   | 11111100в             |  |  |  |  |  |
| 003927н         | (Disabled)                            |                |                       |                   |                       |  |  |  |  |  |
| 003928н         |                                       | PDCR1          | R                     |                   | 11111111в             |  |  |  |  |  |
| 003929н         | PPG1 down counter register            |                |                       |                   | 11111111в             |  |  |  |  |  |
| 00392Ан         |                                       | PCSR1          | W                     |                   | 11111111в             |  |  |  |  |  |
| 00392Вн         | PPG1 cycle setting register           |                |                       | 16-bit PPG1       | 11111111в             |  |  |  |  |  |
| 00392Сн         |                                       |                |                       |                   | 0000000в              |  |  |  |  |  |
| 00392Dн         | PPG1 duty setting register            | PDUT1          | W                     |                   | 0000000в              |  |  |  |  |  |
| 00392Ен         | PPG1output division setting register  | PPGDIV1        | R/W, R                |                   | 11111100 <sub>B</sub> |  |  |  |  |  |
| <b>00392F</b> н |                                       |                |                       |                   |                       |  |  |  |  |  |
| 003930н         |                                       |                |                       |                   | 11111111в             |  |  |  |  |  |
| <b>003931</b> н | PPG2 down counter register            | PDCR2          | R                     |                   | 11111111 <sub>в</sub> |  |  |  |  |  |
| 003932н         |                                       |                |                       |                   | 11111111 <sub>В</sub> |  |  |  |  |  |
| 003933н         | PPG2 cycle setting register           | PCSR2          | W                     | 16-bit PPG2       | 11111111в             |  |  |  |  |  |
| 003934н         |                                       |                |                       |                   | 0000000в              |  |  |  |  |  |
| 003935н         | PPG2 duty setting register            | PDUT2          | W                     |                   | 0000000в              |  |  |  |  |  |
| 003936н         | PPG2 output division setting register | PPGDIV2        | R/W, R                |                   | 11111100в             |  |  |  |  |  |
| <b>003937</b> н |                                       | I              |                       |                   | I                     |  |  |  |  |  |
| to              |                                       | (Disabl        | ed)                   |                   |                       |  |  |  |  |  |
| 00393Fн         |                                       | 1              | ,                     |                   |                       |  |  |  |  |  |
| 003940н         | Input capture register 4              | IPCP4          | R                     |                   | XXXXXXXXB             |  |  |  |  |  |
| <b>003941</b> н |                                       |                |                       | Input capture 4/5 | XXXXXXXXB             |  |  |  |  |  |
| 003942н         | Input capture register 5              | IPCP5 R        |                       |                   | XXXXXXXXB             |  |  |  |  |  |
| 003943н         | Input capture register o              |                |                       |                   | XXXXXXXXB             |  |  |  |  |  |
|                 |                                       |                |                       |                   | (Continued)           |  |  |  |  |  |

### CAN CONTROLLERS

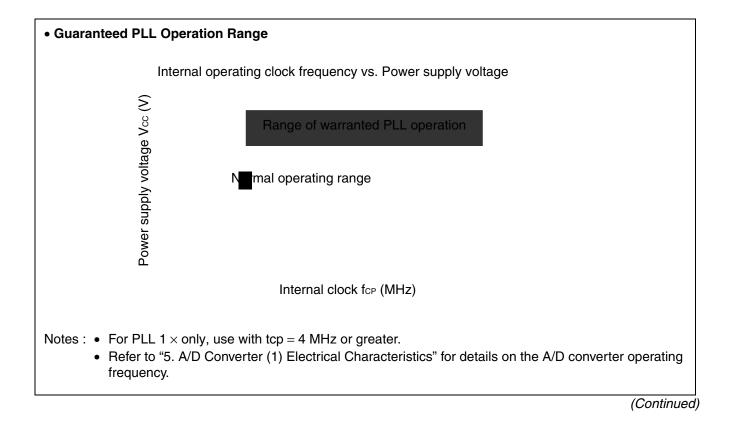
The CAN controller has the following features :

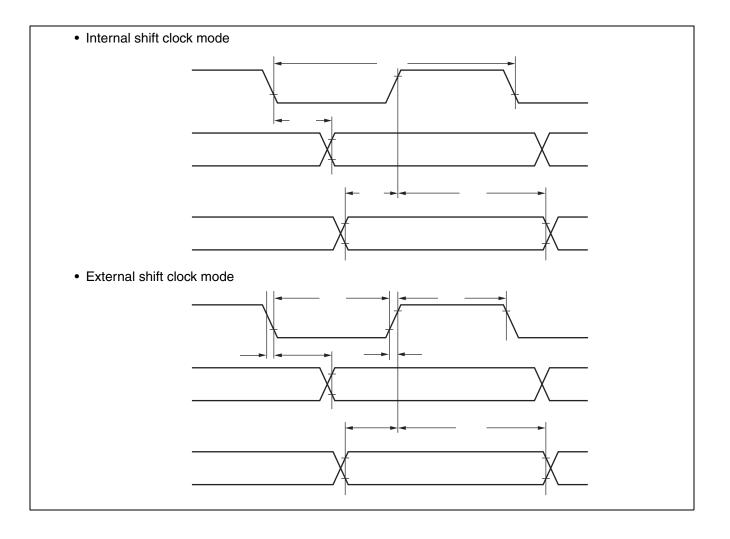
- Conforms to CAN Specification Version 2.0 Part A and B
  - Supports transmission/reception in standard frame and extended frame formats
- Supports transmission of data frames by receiving remote frames
- 16 transmission/reception message buffers
  - 29-bit ID and 8-byte data
  - Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask
  - 2 acceptance mask registers in either standard frame format or extended frame formats
- Bit rate programmable from 10 kbps to 2 Mbps (when input clock is at 16 MHz)

|         | Add                 | ress            |                 | Register                | Abbreviation | Access     | Initial Value         |  |
|---------|---------------------|-----------------|-----------------|-------------------------|--------------|------------|-----------------------|--|
| CAN0    | CAN1                | CAN2            | CAN3            | negister                | Abbreviation | ALLESS     |                       |  |
| 003С00н | 003D00н             | 003E00н         | 003F00н         | Control status register | CSR          | R/W, R     | 00000в                |  |
| 003C01н | 003D01н             | <b>003E01</b> н | <b>003F01</b> н | Control Status register | 0311         | 11/ VV, 11 | 00-1в                 |  |
| 003C02н | 003D02 <sub>H</sub> | 003E02н         | 003F02н         | Last event indicator    | LEIR         | R/W        | В                     |  |
| 003C03н | 003D03н             | 003E03н         | 003F03н         | register                |              | 10/00      | 000-0000в             |  |
| 003C04н | 003D04 <sub>H</sub> | 003E04н         | 003F04н         | RX/TX error counter     | RTEC         | R          | 0000000в              |  |
| 003C05н | 003D05н             | 003E05н         | 003F05н         |                         | meo          | 11         | 0000000в              |  |
| 003С06н | 003D06н             | 003E06н         | 003F06н         | Bit timing register     | BTR          | R/W        | -1111111в             |  |
| 003C07н | 003D07н             | <b>003E07</b> н | <b>003F07</b> н |                         | BIN          | I 1/ V V   | 11111111 <sub>В</sub> |  |

#### List of Control Registers(1)

| Address       |               |                 | Begister        | Abbre-                     | A       | Initial Value |                |
|---------------|---------------|-----------------|-----------------|----------------------------|---------|---------------|----------------|
| CAN0          | CAN1          | CAN2            | CAN3            | Register                   | viation | Access        | Initial Value  |
| 003A80н       | 003B80н       | 003780⊦         | 003880H         | Data register () (9 butes) |         |               | XXXXXXXXB      |
| to<br>003A87⊦ | to<br>003B87⊦ | to<br>003787⊦   | to<br>003887⊦   | Data register 0 (8 bytes)  | DTR0    | R/W           | to<br>XXXXXXXB |
| 003A88н       | 003B88н       | <b>003788</b> н | 003888H         |                            | DTD4    | DAA           | XXXXXXX        |
| to<br>003A8F⊦ | to<br>003B8F⊦ | to<br>00378F⊦   | to<br>00388Fн   | Data register 1 (8 bytes)  | DTR1    | R/W           | to<br>XXXXXXXB |
| 003А90н       | 003B90н       | 003790н         | 003890⊦<br>to   | Data register 2 (8 bytes)  | DTR2    | R/W           | XXXXXXXXB      |
| to<br>003А97н | to<br>003B97н | to<br>003797⊦   | to<br>003897⊦   | Data register 2 (8 bytes)  | DIRZ    | H/ VV         | to<br>XXXXXXXB |
| 003A98н       | 003B98н       | <b>003798</b> н | <b>003898</b> н |                            | 5754    | 5 444         | XXXXXXXXB      |
| to<br>003A9F⊦ | to<br>003B9F⊦ | to<br>00379Fн   | to<br>00389Fн   | Data register 3 (8 bytes)  | DTR3    | R/W           | to<br>XXXXXXXB |
| 003AA0н       | 003BA0н       | 0037A0н         | 0038A0н         | Data register 4 (9 butes)  |         |               | XXXXXXXXB      |
| to<br>003AA7⊦ | to<br>003BA7н | to<br>0037А7н   | to<br>0038А7н   | Data register 4 (8 bytes)  | DTR4    | R/W           | to<br>XXXXXXXB |
| 003AA8H       | 003BA8н       | 0037A8н         | 0038A8н         | Data register E (9 butes)  | DTDE    |               | XXXXXXXXB      |
| to<br>003AAF⊦ | to<br>003BAF⊦ | to<br>0037AF⊦   | to<br>0038AF⊦   | Data register 5 (8 bytes)  | DTR5    | R/W           | to<br>XXXXXXXB |
| 003AB0н       | 003BB0н       | 0037B0н         | 0038B0н         |                            | DTDA    | 544           | XXXXXXXXB      |
| to<br>003AB7н | to<br>003BB7н | to<br>0037В7н   | to<br>0038В7н   | Data register 6 (8 bytes)  | DTR6    | R/W           | to<br>XXXXXXXB |
| 003AB8н       | 003BB8н       | 0037B8н         | 0038B8н         | Data variatav 7 (0 kutar)  |         |               | XXXXXXXXB      |
| to<br>003ABF⊬ | to<br>003BBF⊦ | to<br>0037BF⊬   | to<br>0038BF⊦   | Data register 7 (8 bytes)  | DTR7    | R/W           | to<br>XXXXXXXB |
| 003АС0н       | 003ВС0н       | 0037С0н         | 0038C0н         |                            |         |               | XXXXXXXXB      |
| to<br>003AC7н | to<br>003BC7⊦ | to<br>0037C7⊦   | to<br>0038С7н   | Data register 8 (8 bytes)  | DTR8    | R/W           | to<br>XXXXXXXB |
| 003AC8H       | 003BC8н       | 0037C8H         | 0038C8н         | Data register 0 (0 butes)  |         |               | XXXXXXXXB      |
| to<br>003ACF⊦ | to<br>003BCF⊦ | to<br>0037CF⊦   | to<br>0038CF⊦   | Data register 9 (8 bytes)  | DTR9    | R/W           | to<br>XXXXXXXB |
| 003AD0н       | 003BD0н       | 0037D0н         | 0038D0н         |                            |         |               | XXXXXXXXB      |
| to<br>003AD7н | to<br>003BD7⊦ | to<br>0037D7н   | to<br>0038D7н   | Data register 10 (8 bytes) | DTR10   | R/W           | to<br>XXXXXXXB |
| 003AD8н       | 003BD8н       | 0037D8н         | 0038D8н         |                            |         |               | XXXXXXXXB      |
| to<br>003ADF⊦ | to<br>003BDF⊦ | to<br>0037DF⊦   | to<br>0038DF⊦   | Data register 11 (8 bytes) | DTR11   | R/W           | to<br>XXXXXXXB |
| 003AE0н       | 003BE0н       | <b>0037E0</b> н | <b>0038E0</b> н |                            |         |               | XXXXXXXXB      |
| to<br>003АЕ7н | to<br>003BE7н | to<br>0037E7н   | to<br>0038E7н   | Data register 12 (8 bytes) | DTR12   | R/W           | to<br>XXXXXXXB |
| 003AE8н       | 003BE8н       | 0037E8н         | 0038E8н         | _                          |         | 5 444         | XXXXXXXXB      |
| to<br>003AEF⊦ | to<br>003BEF⊦ | to<br>0037EF⊦   | to<br>0038EF⊦   | Data register 13 (8 bytes) | DTR13   | R/W           | to<br>XXXXXXXB |
| 003AF0н       | 003BF0н       | 0037F0⊦         | 0038F0н         |                            |         |               | XXXXXXXXB      |
| to<br>003AF7н | to<br>003BF7⊦ | to<br>0037F7⊦   | to<br>0038F7н   | Data register 14 (8 bytes) | DTR14   | R/W           | to<br>XXXXXXXB |
| 003AF8н       | 003BF8⊦       | 0037F8н         | 0038F8⊦         |                            | DTD     |               | XXXXXXXXB      |
| to<br>003AFF⊦ | to<br>003BFF⊦ | to<br>0037FF⊦   | to<br>0038FF⊦   | Data register 15 (8 bytes) | DTR15   | R/W           | to<br>XXXXXXXB |


### List of Message Buffers (Data register)

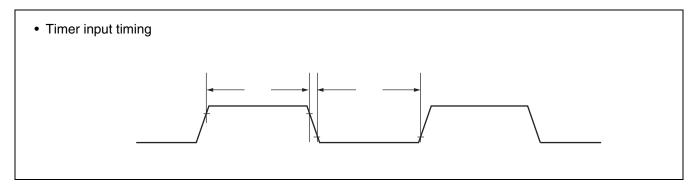

(Continued)

(Vcc = 5.0 V  $\pm 10\%$ , Vss = DVss = AVss = 0.0 V, T<sub>A</sub> = -40 °C to +105 °C)

| Parameter               | Symbol | Pin name                                                      | Conditions | Value |     |     | Unit | Remarks |
|-------------------------|--------|---------------------------------------------------------------|------------|-------|-----|-----|------|---------|
| Falametei               | Symbol | Finitianie                                                    | Conditions | Min   | Тур | Max | Unit | nemarks |
| LCDC leakage<br>current | ILCDC  | V0 to V3,<br>COMm<br>(m = 0 to 3),<br>SEGn,<br>(n = 00 to 31) | _          |       |     | 5.0 | μΑ   |         |
| LCD output<br>impedance | Rvcom  | COMn<br>(n = 0 to 3)                                          | _          | _     |     | 4.5 | kΩ   |         |
|                         | Rvseg  | SEGn<br>(n = 00 to 31)                                        |            |       |     | 17  | kΩ   |         |

\* : Power supply current values assume an external clock supplied to the X1 pin and X1A pin. Users must be aware that power supply current levels differ depending on whether an external clock or oscillator is used.

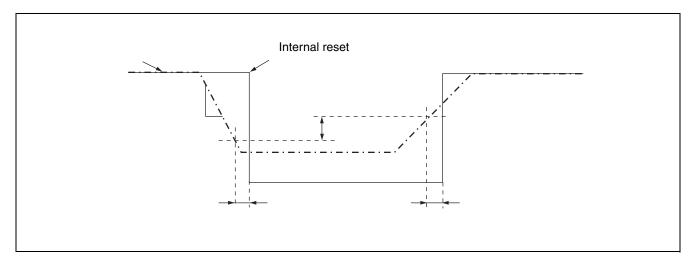





### (5) Timer input timing

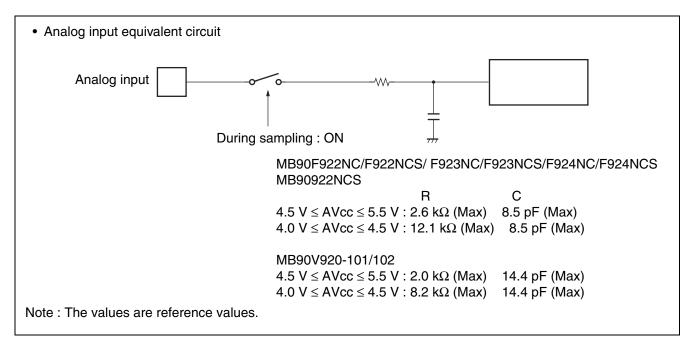
 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to} + 105 \text{ }^{\circ}\text{C})$ 

| Parameter         | Symbol         | Pin name                  | Conditions | Value |     | Unit |
|-------------------|----------------|---------------------------|------------|-------|-----|------|
| rarameter         | Symbol         | r in name                 | Conditions | Min   | Мах | Onit |
| Input pulse width | t⊤iwн<br>t⊤iw∟ | TIN0, TIN1,<br>IN0 to IN3 |            | 4 tcp | _   | ns   |


Note : tcp is the internal operating clock cycle time. Refer to " (1) Clock timing".



### (7) Low voltage detection


| $(V_{SS} = AV_{SS} = 0.0 \text{ V},  T_{A} = -40 ^{\circ}\text{C} \text{ to } +10 ^{\circ}\text{C} \text{ to } $ | )5 °C) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|

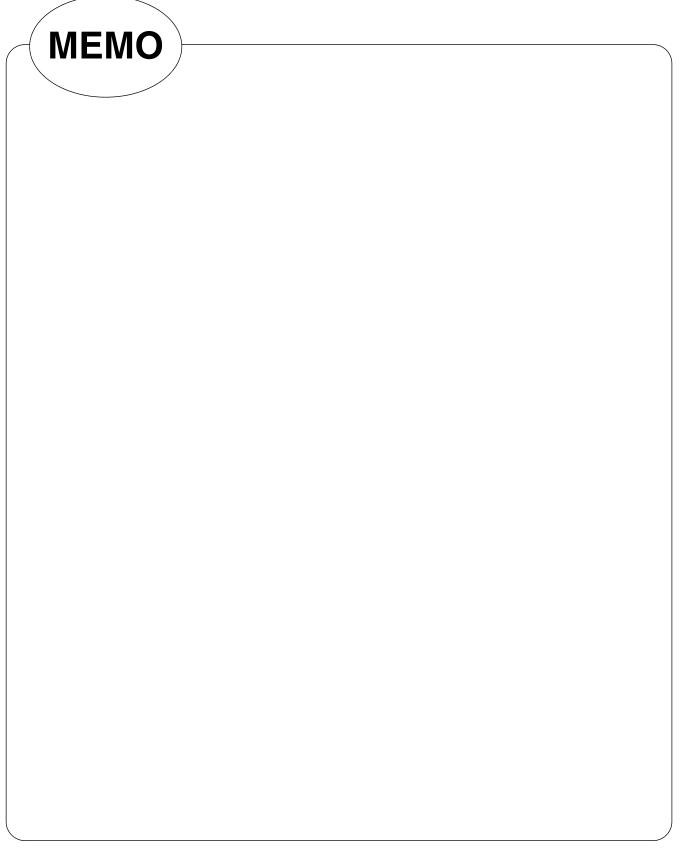
| Parameter                        | Symbol | Pin name | Conditions | Value  |     |         | Unit | Remarks                                                                                               |
|----------------------------------|--------|----------|------------|--------|-----|---------|------|-------------------------------------------------------------------------------------------------------|
|                                  |        |          |            | Min    | Тур | Max     | Unit | nemarks                                                                                               |
| Detection voltage                | Vdl    | VCC      | —          | 4.0    | 4.2 | 4.4     | v    | Flash memory<br>product, during<br>voltage drop                                                       |
|                                  |        |          |            | 3.7    | 4.0 | 4.3     | V    | Evaluation product, during voltage drop                                                               |
| Hysteresis width                 | Vhys   | VCC      |            | 190    | _   |         | mV   | Flash memory<br>product, during<br>voltage rise                                                       |
|                                  |        |          |            | 0.1    |     |         | V    | Evaluation product, during voltage rise                                                               |
|                                  |        |          |            | - 0.1  | _   | + 0.1   | V/µs | Flash memory<br>product, dV/dt at low<br>voltage reset                                                |
| Power supply voltage change rate | dV/dt  | vcc      | _          | -0.004 |     | + 0.004 | V/µs | Flash memory<br>product, dV/dt at<br>standard value of<br>low voltage<br>detection/release<br>voltage |
|                                  |        |          |            | - 0.1  |     | + 0.02  | V/µs | Evaluation product                                                                                    |
| Detection delay time             | td     | _        | _          | _      |     | 3.2     | μs   | Flash memory product, when $dV/dt \le 0.004 V/\mu s$                                                  |
|                                  |        |          |            | _      | _   | 35      | μs   | Evaluation product                                                                                    |



#### • Notes on the external impedance and sampling time of analog inputs

A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. If the sampling time is still not sufficient, connect a capacitor of about 0.1  $\mu$ F to the analog input pin.




| Parameter                            | Conditions                                                                                         | Value |     |     | Unit  | Remarks                                  |  |
|--------------------------------------|----------------------------------------------------------------------------------------------------|-------|-----|-----|-------|------------------------------------------|--|
| Farameter                            | Conditions                                                                                         | Min   | Тур | Max | Omt   |                                          |  |
| Sector erase time                    | T <sub>A</sub> = + 25 °C                                                                           |       | 0.9 | 3.6 | s     | Excludes pre-programming before<br>erase |  |
| Word (16-bit width) programming time | $V_{CC} = 5.0 V$                                                                                   |       | 23  | 370 | μs    | Excludes system-level overhead           |  |
| Chip programming time                | $\begin{array}{l} T_{\text{A}}=+\ 25\ ^{\circ}\text{C},\\ V_{\text{CC}}=5.0\ \text{V} \end{array}$ |       | 3.4 | 55  | s     |                                          |  |
| Erase/program cycle                  | —                                                                                                  | 10000 |     |     | cycle |                                          |  |
| Flash memory data retention time     | Average<br>T <sub>A</sub> = + 85 °C                                                                | 20    |     |     | year  | *                                        |  |

### 6. Flash Memory Program/Erase Characteristics

\* : This value is calculated from the results of evaluating the reliability of the technology (using Arrhenius equation to translate high temperature measurements into normalized value at + 85 °C).

### ■ ORDERING INFORMATION

| Part number                                                                                                             | Package                                | Remarks        |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------|
| MB90F922NCPMC<br>MB90F922NCSPMC<br>MB909922NCSPMC<br>MB90F923NCPMC<br>MB90F923NCSPMC<br>MB90F924NCPMC<br>MB90F924NCSPMC | 120-pin plastic LQFP<br>(FPT-120P-M21) |                |
| MB90V920-101CR<br>MB90V920-102CR                                                                                        | 299-pin ceramic PGA<br>(PGA-299C-A01)  | For evaluation |

