
Microchip Technology - ATTINY167-15MZ Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, LINbus, SPI, UART/USART, USI

Peripherals Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT

Number of I/O 16

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 11x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 32-VFQFN Exposed Pad

Supplier Device Package 32-QFN (5x5)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/attiny167-15mz

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/attiny167-15mz-4431664
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

1.5 Block Diagram

Figure 1-1. Block Diagram

Power
Supervision
POR/ BOD

and
RESET

Oscillator
Circuits/

Clock
Generation

Watchdog
Timer

Watchdog
Oscillator

Program
Logic

debugWIRE

AVR CPU

EEPROM

D
AT

A
B

U
S

Flash

GND VCC

A/D Conv.

Internal
Voltage

References

Timer/
Counter-1

Timer/
Counter-0

Analog
Comp.SPI and USI

11

2

PORT B (8) PORT A (8) LIN/ UART

SRAM

AVCC

AGND

RESET
XTAL[1;2]

PB[0..7] PA[0..7]
5ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

1.7 Pin Description

1.7.1 Vcc

Supply voltage.

1.7.2 GND

Ground.

1.7.3 AVcc

Analog supply voltage.

1.7.4 AGND

Analog ground.

1.7.5 Port A (PA7..PA0)

Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have
symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled
low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes
active, even if the clock is not running.

Port A also serves the functions of various special features of the Atmel® ATtiny87/167 as listed on Section 9.3.3 “Alternate
Functions of Port A” on page 73.

1.7.6 Port B (PB7..PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have
symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled
low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes
active, even if the clock is not running.

Port B also serves the functions of various special features of the ATtiny87/167 as listed on Section 9.3.4 “Alternate
Functions of Port B” on page 78.

1.8 Resources

A comprehensive set of development tools, application notes and datasheets are available for download on
http://www.atmel.com/avr.

1.9 About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code
examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors
include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C
compiler documentation for more details.
7ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

3.4 I/O Memory

The I/O space definition of the Atmel® ATtiny87/167 is shown in Section “” on page 243.

All ATtiny87/167 I/Os and peripherals are placed in the I/O space. All I/O locations may be accessed by the LD/LDS/LDD
and ST/STS/STD instructions, transferring data between the 32 general purpose working registers and the I/O space. I/O
registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the instruction set
section for more details. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used.
When addressing I/O registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The
Atmel ATtiny87/167 is a complex microcontroller with more peripheral units than can be supported within the 64 location
reserved in opcode for the IN and OUT instructions. For the extended I/O space from 0x60 - 0xFF in SRAM, only the
ST/STS/STD and LD/LDS/LDD instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.

The I/O and peripherals control registers are explained in later sections.

3.4.1 General Purpose I/O Registers

The Atmel ATtiny87/167 contains three general purpose I/O registers. These registers can be used for storing any
information, and they are particularly useful for storing global variables and status flags.

The general purpose I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI, CBI, SBIS,
and SBIC instructions.

3.5 Register Description

3.5.1 EEARH and EEARL – EEPROM Address Register

• Bit 7:1 – Reserved Bits

These bits are reserved for future use and will always read as 0 in ATtiny87/167.

• Bits 8:0 – EEAR8:0: EEPROM Address

The EEPROM address registers – EEARH and EEARL – specifies the high EEPROM address in the EEPROM space (see
“E2 size” in Table 3-1 on page 16). The EEPROM data bytes are addressed linearly between 0 and “E2 size”. The initial
value of EEAR is undefined. A proper value must be written before the EEPROM may be accessed.

Note: For information only - ATtiny47: EEAR8 exists as register bit but it is not used for addressing.

Bit 7 6 5 4 3 2 1 0

- - - - - - - EEAR8 EEARH

EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

Bit 7 6 5 4 3 2 1 0

Read/Write R R R R R R R R/W

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 X

Initial Value X X X X X X X X
ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

22

The CKSEL0 fuse together with the SUT1..0 Fuses or CSEL0 together with CSUT1..0 field select the start-up times as
shown in Table 4-7.

Table 4-7. Start-up Times for the Crystal Oscillator Clock Selection

CKSEL0(1)

CSEL0(2)

SUT1..0(1)

CSUT1..0(2)
Start-up Time from
Power-down/save

Additional Delay
from Reset
(Vcc = 5.0V) Recommended Usage

0 00 258CK(3) 14CK + 4.1ms
Ceramic resonator, fast
rising power

0 01 258CK(3) 14CK + 65ms
Ceramic resonator, slowly
rising power

0 10(5) 1K(1024)CK(4) 14CK
Ceramic resonator, BOD
enabled

0 11 1K(1024)CK(4) 14CK + 4.1ms
Ceramic resonator, fast
rising power

1 00 1K(1024)CK(4) 14CK + 65ms
Ceramic resonator, slowly
rising power

1 01(5) 16K(16384)CK 14CK
Crystal Oscillator, BOD
enabled

1 10 16K(16384)CK 14CK + 4.1ms
Crystal Oscillator, fast
rising power

1 11 16K(16384)CK 14CK + 65ms
Crystal Oscillator, slowly
rising power

Notes: 1. Flash fuse bits.

2. CLKSELR register bits.

3. These options should only be used when not operating close to the maximum frequency of the device, and
only if frequency stability at start-up is not important for the application. These options are not suitable for
crystals.

4. These options are intended for use with ceramic resonators and will ensure frequency stability at start-up.
They can also be used with crystals when not operating close to the maximum frequency of the device, and if
frequency stability at start-up is not important for the application.

5. This setting is only available if RSTDISBL fuse is not set.
ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

30

4.2.5 Low-frequency Crystal Oscillator

To use a 32.768kHz watch crystal as the clock source for the device, the low-frequency crystal oscillator must be selected by
setting CKSEL fuses or CSEL field as shown in Table 4-1 on page 26. The crystal should be connected as shown in Figure
4-3. Refer to the 32.768 kHz crystal oscillator application note for details on oscillator operation and how to choose
appropriate values for C1 and C2.

The 32.768kHz watch crystal oscillator can be used by the asynchronous timer if the (high-frequency) crystal oscillator is not
running or if the external clock is not enabled (Section 4.3.3 “Enable/Disable Clock Source” on page 33). The asynchronous
timer is then able to start itself this low-frequency crystal oscillator.

Figure 4-3. Low-frequency Crystal Oscillator Connections

When this oscillator is selected, start-up times are determined by the SUT fuses or by CSUT field as shown in Table 4-8.

4.2.6 External Clock

To drive the device from this external clock source, CLKI should be driven as shown in Figure 4-4. To run the device on an
external clock, the CKSEL Fuses or CSEL field must be programmed as shown in Table 4-1 on page 26.

Figure 4-4. External Clock Drive Configuration

Table 4-8. Start-up Times for the Low Frequency Crystal Oscillator Clock Selection

SUT1..0(1)

CSUT1..0(2)
Start-up Time from
Power-down/save

Additional Delay from
Reset (Vcc = 5.0V) Recommended usage

00 1K(1024)CK(3) 4.1ms Fast rising power or BOD enabled

01 1K(1024)CK(3) 65ms Slowly rising power

10 32K(32768)CK 65ms Stable frequency at start-up

11 Reserved

Notes: 1. Flash fuse bits.

2. CLKSELR register bits.

3. These options should only be used if frequency stability at start-up is not important for the application.

C1 = 12 to 22pF

C2 = 12 to 22pF

12 to 22pF capacitors may be necessary if parasitic
impedance (pads, wires and PCB) is very low.

XTAL2

32.768KHz

XTAL1

GND

(XTAL2)
(CLKO)

CLKI
(XTAL1)

GND

External
Clock
Signal

~

31ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

4.4 System Clock Prescaler

4.4.1 Features

The Atmel® ATtiny87/167 system clock can be divided by setting the clock prescaler register – CLKPR. This feature can be
used to decrease power consumption when the requirement for processing power is low. This can be used with all clock
source options, and it will affect the clock frequency of the CPU and all synchronous peripherals. clkI/O, clkADC, clkCPU, and
clkFLASH are divided by a factor as shown in Table 4-10 on page 39.

4.4.2 Switching Time

When switching between prescaler settings, the system clock prescaler ensures that no glitches occur in the clock system
and that no intermediate frequency is higher than neither the clock frequency corresponding to the previous setting, nor the
clock frequency corresponding to the new setting.

The ripple counter that implements the prescaler runs at the frequency of the undivided clock, which may be faster than the
CPU’s clock frequency. Hence, it is not possible to determine the state of the prescaler – even if it were readable, and the
exact time it takes to switch from one clock division to another cannot be exactly predicted.

From the time the CLKPS values are written, it takes between T1 + T2 and T1 + 2*T2 before the new clock frequency is
active. In this interval, 2 active clock edges are produced. Here, T1 is the previous clock period, and T2 is the period
corresponding to the new prescaler setting.

4.5 Register Description

4.5.1 OSCCAL – Oscillator Calibration Register

• Bits 7:0 – CAL7:0: Oscillator Calibration Value

The oscillator calibration register is used to trim the calibrated internal RC oscillator to remove process variations from the
oscillator frequency. The factory-calibrated value is automatically written to this register during chip reset, giving an oscillator
frequency of 8.0MHz at 25°C. The application software can write this register to change the oscillator frequency. The
oscillator can be calibrated to any frequency in the range 7.3 - 8.1MHz within ±2% accuracy. Calibration outside that range is
not guaranteed.

Note that this oscillator is used to time EEPROM and flash write accesses, and these write times will be affected accordingly.
If the EEPROM or flash are written, do not calibrate to more than 8.8MHz. Otherwise, the EEPROM or flash write may fail.

The CAL7 bit determines the range of operation for the oscillator. Setting this bit to 0 gives the lowest frequency range,
setting this bit to 1 gives the highest frequency range. The two frequency ranges are overlapping, in other words a setting of
OSCCAL = 0x7F gives a higher frequency than OSCCAL = 0x80.

The CAL6..0 bits are used to tune the frequency within the selected range. A setting of 0x00 gives the lowest frequency in
that range, and a setting of 0x7F gives the highest frequency in the range. Incrementing CAL6..0 by 1 will give a frequency
increment of less than 2% in the frequency range 7.3 - 8.1MHz.

4.5.2 CLKPR – Clock Prescaler Register

Bit 7 6 5 4 3 2 1 0

CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value

Bit 7 6 5 4 3 2 1 0

CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 CLKPR

Read/Write R/W R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description
ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

38

4.5.4 CLKSELR - Clock Selection Register

• Bit 7– Res: Reserved Bit

This bit is reserved bit in the Atmel® ATtiny87/167 and will always read as zero.

• Bit 6 – COUT: Clock Out

The COUT bit is initialized with ~(CKOUT) fuse bit.
The COUT bit is only used in case of ‘CKOUT’ command. Refer to Section 4.2.7 “Clock Output Buffer” on page 32 for using.
In case of ‘recover system clock Source’ command, COUT it is not affected (no recovering of this setting).

• Bits 5:4 – CSUT1:0: Clock Start-up Time

CSUT bits are initialized with the values of SUT fuse bits.
In case of ‘enable/disable clock source’ command, CSUT field provides the code of the clock start-up time. Refer to
subdivisions of Section 4.2 “Clock Sources” on page 26 for code of clock start-up times.
In case of ‘recover system clock source’ command, CSUT field is not affected (no recovering of SUT code).

• Bits 3:0 – CSEL3:0: Clock Source Select

CSEL bits are initialized with the values of CKSEL fuse bits.
In case of ‘enable/disable clock source’, ‘request for clock availability’ or ‘clock source switch’ command, CSEL field provides
the code of the clock source. Refer to Table 4-1 on page 26 and subdivisions of Section 4.2 “Clock Sources” on page 26 for
clock source codes.
In case of ‘recover system clock source’ command, CSEL field contains the code of the clock source used to drive the clock
control unit as described in Figure 4-1 on page 25.

Bit 7 6 5 4 3 2 1 0

- COUT CSUT1 CSUT0 CSEL3 CSEL2 CSEL1 CSEL0 CLKSELR

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0
~ (CKOUT)

fuse
SUT1..0

fuses
CKSEL3..0

fuses
41ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

6. System Control and Reset

6.1 Reset

6.1.1 Resetting the AVR

During reset, all I/O registers are set to their initial values, and the program starts execution from the reset vector. The
instruction placed at the reset vector must be an RJMP – Relative Jump – instruction to the reset handling routine. If the
program never enables an interrupt source, the interrupt vectors are not used, and regular program code can be placed at
these locations. The circuit diagram in Figure 6-1 shows the reset circuit. Tables in Section 22.5 “RESET Characteristics” on
page 225 defines the electrical parameters of the reset circuitry.

The I/O ports of the AVR® are immediately reset to their initial state when a reset source goes active. This does not require
any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal reset. This allows the power to
reach a stable level before normal operation starts. The time-out period of the delay counter is defined by the user through
the SUT and CKSEL fuses. The different selections for the delay period are presented in Section 4.2 “Clock Sources” on
page 26.

6.1.2 Reset Sources

The Atmel® ATtiny87/167 has four sources of reset:

● Power-on reset. The MCU is reset when the supply voltage is below the power-on reset threshold (VPOT).

● External reset. The MCU is reset when a low level is present on the RESET pin for longer than the minimum pulse
length.

● Watchdog system reset. The MCU is reset when the watchdog timer period expires and the watchdog system reset
mode is enabled.

● Brown-out reset. The MCU is reset when the supply voltage Vcc is below the brown-out reset threshold (VBOT) and the
brown-out detector is enabled.
47ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

Bit 0 – INT0: External Interrupt Request 0 Enable

When the INT0 bit is set (one) and the I-bit in the status register (SREG) is set (one), the external pin interrupt is enabled.
The interrupt sense control0 bits 1/0 (ISC01 and ISC00) in the external interrupt control register A (EICRA) define whether
the external interrupt is activated on rising and/or falling edge of the INT0 pin or level sensed. Activity on the pin will cause an
interrupt request even if INT0 is configured as an output. The corresponding interrupt of external interrupt request 0 is
executed from the INT0 interrupt vector.

8.3.3 External Interrupt Flag Register – EIFR

• Bit 7, 2 – Res: Reserved Bits

These bits are unused bits in the Atmel® ATtiny87/167, and will always read as zero.

• Bit 1 – INTF1: External Interrupt Flag 1

When an edge or logic change on the INT1 pin triggers an interrupt request, INTF1 becomes set (one). If the I-bit in SREG
and the INT1 bit in EIMSK are set (one), the MCU will jump to the corresponding interrupt vector. The flag is cleared when
the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INT1 is configured as a level interrupt.

• Bit 0 – INTF0: External Interrupt Flag 0

When an edge or logic change on the INT0 pin triggers an interrupt request, INTF0 becomes set (one). If the I-bit in SREG
and the INT0 bit in EIMSK are set (one), the MCU will jump to the corresponding interrupt vector. The flag is cleared when
the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INT0 is configured as a level interrupt.

8.3.4 Pin Change Interrupt Control Register – PCICR

• Bit 7, 2 – Res: Reserved Bits

These bits are unused bits in the Atmel ATtiny87/167, and will always read as zero.

• Bit 1 - PCIE1: Pin Change Interrupt Enable 1

When the PCIE1 bit is set (one) and the I-bit in the status register (SREG) is set (one), pin change interrupt 1 is enabled. Any
change on any enabled PCINT15..8 pin will cause an interrupt. The corresponding interrupt of pin change interrupt request is
executed from the PCI1 interrupt vector. PCINT15..8 pins are enabled individually by the PCMSK1 register.

• Bit 0 - PCIE0: Pin Change Interrupt Enable 0

When the PCIE0 bit is set (one) and the I-bit in the status register (SREG) is set (one), pin change interrupt 0 is enabled. Any
change on any enabled PCINT7..0 pin will cause an interrupt. The corresponding interrupt of pin change interrupt request is
executed from the PCI0 Interrupt Vector. PCINT7..0 pins are enabled individually by the PCMSK0 register.

Bit 7 6 5 4 3 2 1 0

– – – – – – INTF1 INTF0 EIFR

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – – – PCIE1 PCIE0 PCICR

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

62

9.3 Alternate Port Functions

Most port pins have alternate functions in addition to being general digital I/Os. Figure 9-6 shows how the port pin control
signals from the simplified Figure 9-2 on page 65 can be overridden by alternate functions. The overriding signals may not
be present in all port pins, but the figure serves as a generic description applicable to all port pins in the AVR microcontroller
family.

Figure 9-6. Alternate Port Functions(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O, SLEEP, and PUD
are common to all ports. All other signals are unique for each pin.

D
0

1

Q

WRx
RRx

WPx

PTOExn

Pxn

CLR

RESET

Synchronizer

D
AT

A
B

U
S

PORTxn

Q

0

1

Q

L

D SET

CLR CLRQ

QD

Q

PINxn

0

1

RESET

RPx

Pxn PULL-UP OVERRIDE ENABLE
Pxn PULL-UP OVERRIDE VALUE

PUD: PULL-UP DISABLEPUOExn:

Pxn PORT VALUE OVERRIDE VALUEPVOVxn:
Pxn PORT VALUE OVERRIDE ENABLEPVOExn:

Pxn DATA DIRECTION OVERRIDE ENABLE
Pxn DATA DIRECTION OVERRIDE VALUE

DDOExn:
DDOVxn:

SLEEP CONTROLSLEEP:
Pxn, PORT TOGGLE OVERRIDE ENABLEPTOExn:

Pxn DIGITAL INPUT ENABLE OVERRIDE VALUEDIEOVxn:
Pxn DIGITAL INPUT ENABLE OVERRIDE ENABLEDIEOExn:

I/O CLOCK

RDx:

RPx:
WRITE PINx

WRx:

ANALOG INPUT/OUTPUT PIN n ON PORTx
DIGITAL INPUT PIN n ON PORTx

RRx: READ PORTx REGISTER

WPx:

WRITE PORTx

AIOxn:
DIxn:

READ PORTx PIN

WDx:
READ DDRx
WRITE DDRxPUOVxn:

RDx

CLKI/O

DIxn
AIOxn

CLK:I/O

DIEOVxn

DIEOExn

PVOExn

DDOExn

PVOVxn

0

1

PUOExn

PUOVxn

0

1 DDOVxn

SLEEP

PUD

WDx

D

Q CLR

DDxn

Q

ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

70

Table 9-8. Overriding Signals for Alternate Functions in PB3..PB0

Signal
Name

PB3/PCINT11/
OC1BV

PB2/PCINT10/
OC1AV/USCK/SCL

PB1/PCINT9/
OC1BU/DO

PB0/IPCINT8/
OC1AU/DI/SDA

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 (USI_2_WIRE & USIPOS) 0
(USI_2_WIRE &

USIPOS)

DDOV 0

(USI_SCL_HOLD |

PORTB2)
& DDRB2

0
(USI_SHIFTOUT |

PORTB0) & DDRB0)

PVOE
OC1B_ENABLE &

OC1BV

(USI_2_WIRE &

USIPOS &
DDRB2) |

(OC1A_ENABLE & OC1AV)

(USI_2_WIRE &
USI_3_WIRE &

USIPOS) |
(OC1B_ENABLE & OC1BU)

(USI_2_WIRE &

USIPOS &
DDRB0) |

(OC1A_ENABLE & OC1AU)

PVOV OC1B

{ (USI_2_WIRE &

USIPOS &
DDRB2) ?

(0) : (OC1A) }

{ (USI_2_WIRE &
USI_3_WIRE &

USIPOS) ?

(USI_SHIFTOUT) : (OC1B) }

{ (USI_2_WIRE &

USIPOS &
DDRB0) ?

(0) : (OC1A) }

PTOE 0 USI_PTOE & USIPOS 0 0

DIEOE PCIE1 & PCMSK11
(USISIE & USIPOS) |
(PCIE1 & PCMSK10)

PCIE1 & PCMSK9
(USISIE & USIPOS) |
(PCIE1 & PCMSK8)

DIEOV 1
(USISIE & USIPOS) |
(PCIE1 & PCMSK10)

1
(USISIE & USIPOS) |
(PCIE1 & PCMSK8)

DI PCINT11 PCINT10 -/- USCK -/- SCL PCINT9 PCINT8 -/- DI -/- SDA

AIO 0 0 0 0
81ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

Figure 12-10.Phase and Frequency Correct PWM Mode, Timing Diagram

The timer/counter overflow flag (TOV1) is set at the same timer clock cycle as the OCR1A/B registers are updated with the
double buffer value (at BOTTOM). When either OCR1A or ICR1 is used for defining the TOP value, the OC1A or ICF1 flag
set when TCNT1 has reached TOP. The interrupt flags can then be used to generate an interrupt each time the counter
reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value of all of the
compare registers. If the TOP value is lower than any of the compare registers, a compare match will never occur between
the TCNT1 and the OCR1A/B.

As Figure 12-10 shows the output generated is, in contrast to the phase correct mode, symmetrical in all periods. Since the
OCR1A/B registers are updated at BOTTOM, the length of the rising and the falling slopes will always be equal. This gives
symmetrical output pulses and is therefore frequency correct.

Using the ICR1 register for defining TOP works well when using fixed TOP values. By using ICR1, the OCR1A register is
free to be used for generating a PWM output on OC1A. However, if the base PWM frequency is actively changed by
changing the TOP value, using the OCR1A as TOP is clearly a better choice due to its double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM waveforms on the OC1A/B pins.
Setting the COM1A/B1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by
setting the COM1A/B1:0 to three (See Table on page 125). The actual OC1A/B value will only be visible on the port pin if the
data direction for the port pin is set as output (DDR_OC1A/B) and OC1A/Bi is set. The PWM waveform is generated by
setting (or clearing) the OC1A/B register at the compare match between OCR1A/B and TCNT1 when the counter
increments, and clearing (or setting) the OC1A/B register at compare match between OCR1A/B and TCNT1 when the
counter decrements. The PWM frequency for the output when using phase and frequency correct PWM can be calculated by
the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1A/B register represents special cases when generating a PWM waveform output in the
phase correct PWM mode. If the OCR1A/B is set equal to BOTTOM the output will be continuously low and if set equal to
TOP the output will be set to high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic
values.

1 2 3 4

TCNTn

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCnxi

OCnxi

Period

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set

(Interrupt on TOP)

OCRnx/ TOP Update and
TOVn Interrupt Flag Set

(Interrupt on Bottom)

fOCnxPFCPWM

fclk_I/O

2 N TOP 
----------------------------=
121ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

The 4-bit counter can be both read and written via the data bus, and can generate an overflow interrupt. Both the USI data
register and the counter are clocked simultaneously by the same clock source. This allows the counter to count the number
of bits received or transmitted and generate an interrupt when the transfer is complete. Note that when an external clock
source is selected the counter counts both clock edges. In this case the counter counts the number of edges, and not the
number of bits. The clock can be selected from three different sources: The USCK pin, timer/counter0 compare match or
from software.

The Two-wire clock control unit can generate an interrupt when a start condition is detected on the two-wire bus. It can also
generate wait states by holding the clock pin low after a start condition is detected, or after the counter overflows.

14.3 Functional Descriptions

14.3.1 Three-wire Mode

The USI three-wire mode is compliant to the serial peripheral interface (SPI) mode 0 and 1, but does not have the slave
select (SS) pin functionality. However, this feature can be implemented in software if necessary. Pin names used by this
mode are: DI, DO, and USCK.

Figure 14-2. Three-wire Mode Operation, Simplified Diagram

Figure 14-2 shows two USI units operating in three-wire mode, one as master and one as slave. The two USI data register
are interconnected in such way that after eight USCK clocks, the data in each register are interchanged. The same clock
also increments the USI’s 4-bit counter. The counter overflow (interrupt) flag, or USIOIF, can therefore be used to determine
when a transfer is completed.

The clock is generated by the master device software by toggling the USCK pin via the PORT register or by writing a one to
the USITC bit in USICR.

Bit7 DI

USCK

USCK

DO

PORTxn

SLAVE

Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 DI

DO

MASTER

Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
139ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

• Bit 3:2 – USICS1:0: Clock Source Select

These bits set the clock source for the USI data register and counter. The data output latch ensures that the output is
changed at the opposite edge of the sampling of the data input (DI/SDA) when using external clock source (USCK/SCL).
When software strobe or timer/counter0 compare match clock option is selected, the output latch is transparent and
therefore the output is changed immediately. Clearing the USICS1:0 bits enables software strobe option. When using this
option, writing a one to the USICLK bit clocks both the USI data register and the counter. For external clock source
(USICS1 = 1), the USICLK bit is no longer used as a strobe, but selects between external clocking and software clocking by
the USITC strobe bit.

Table 14-2 on page 148 shows the relationship between the USICS1..0 and USICLK setting and clock source used for the
USI data register and the 4-bit counter.

Table 14-1. Relations between USIWM1..0 and the USI Operation

USIWM1 USIWM0 Description

0 0 Outputs, clock hold, and start detector disabled. Port pins operates as normal.

0 1

Three-wire mode. Uses DO, DI, and USCK pins.

The data output (DO) pin overrides the corresponding bit in the PORT register in this mode.
However, the corresponding DDR bit still controls the data direction. When the port pin is set as
input the pins pull-up is controlled by the PORT bit.

The data input (DI) and serial clock (USCK) pins do not affect the normal port operation. When
operating as master, clock pulses are software generated by toggling the PORT register, while
the data direction is set to output. The USITC bit in the USICR register can be used for this
purpose.

1 0

Two-wire mode. Uses SDA (DI) and SCL (USCK) pins(1).

The serial data (SDA) and the serial clock (SCL) pins are bi-directional and uses open-collector
output drives. The output drivers are enabled by setting the corresponding bit for SDA and SCL
in the DDR register.

When the output driver is enabled for the SDA pin, the output driver will force the line SDA low
if the output of the USI data register or the corresponding bit in the PORT register is zero.
Otherwise the SDA line will not be driven (i.e., it is released). When the SCL pin output driver is
enabled the SCL line will be forced low if the corresponding bit in the PORT register is zero, or
by the start detector. Otherwise the SCL line will not be driven.

The SCL line is held low when a start detector detects a start condition and the output is
enabled. Clearing the start condition flag (USISIF) releases the line. The SDA and SCL pin
inputs is not affected by enabling this mode. Pull-ups on the SDA and SCL port pin are disabled
in Two-wire mode.

1 1

Two-wire mode. Uses SDA and SCL pins.

Same operation as for the two-wire mode described above, except that the SCL line is also
held low when a counter overflow occurs, and is held low until the counter overflow flag
(USIOIF) is cleared.

Note: 1. The DI and USCK pins are renamed to serial data (SDA) and serial clock (SCL) respectively to avoid confu-
sion between the modes of operation.
147ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

15.4.7.2 Rx Service

Once this service is enabled, the user is warned of an in-coming character by the LRXOK flag of LINSIR register. Reading
LINDAT register automatically clears the flag and makes free the second stage of the buffer. If the user considers that the in-
coming character is irrelevant without reading it, he directly can clear the flag (see specific flag management described in
Section 15.6.2 “LIN Status and Interrupt Register - LINSIR” on page 167).

The intrinsic structure of the Rx service offers a 2-byte buffer. The fist one is used for serial to parallel conversion, the
second one receives the result of the conversion. This second buffer byte is reached reading LINDAT register. If the 2-byte
buffer is full, a new in-coming character will overwrite the second one already recorded. An OVRERR error in
LINERR register will then accompany this character when read.

A FERR error in LINERR register will be set in case of framing error.

15.4.7.3 Tx Service

If this service is enabled, the user sends a character by writing in LINDAT register. Automatically the LTXOK flag of
LINSIR register is cleared. It will rise at the end of the serial transmission. If no new character has to be sent, LTXOK flag
can be cleared separately (see specific flag management described in Section 15.6.2 “LIN Status and Interrupt Register -
LINSIR” on page 167).

There is no transmit buffering.

No error is detected by this service.

15.5 LIN/UART Description

15.5.1 Reset

The AVR® core reset logic signal also resets the LIN/UART controller. Another form of reset exists, a software reset
controlled by LSWRES bit in LINCR register. This self-reset bit performs a partial reset as shown in Table 15-2.

15.5.2 Clock

The I/O clock signal (clki/o) also clocks the LIN/UART controller. It is its unique clock.

15.5.3 LIN Protocol Selection

LIN13 bit in LINCR register is used to select the LIN protocol:

● LIN13 = 0 (default): LIN 2.1 protocol,

● LIN13 = 1: LIN 1.3 protocol.

The controller checks the LIN13 bit in computing the checksum (enhanced checksum in LIN2.1 / classic checksum in LIN
1.3). This bit is irrelevant for UART commands.

Table 15-2. Reset of LIN/UART Registers

Register Name Reset Value LSWRES Value Comment

LIN control reg. LINCR 0000 0000 b 0000 0000 b

x=unknown

u=unchanged

LIN status & interrupt reg. LINSIR 0000 0000 b 0000 0000 b

LIN enable interrupt reg. LINENIR 0000 0000 b xxxx 0000 b

LIN error reg. LINERR 0000 0000 b 0000 0000 b

LIN bit timing reg. LINBTR 0010 0000 b 0010 0000 b

LIN baud rate reg. low LINBRRL 0000 0000 b uuuu uuuu b

LIN baud rate reg. high LINBRRH 0000 0000 b xxxx uuuu b

LIN data length reg. LINDLR 0000 0000 b 0000 0000 b

LIN identifier reg. LINIDR 1000 0000 b 1000 0000 b

LIN data buffer selection LINSEL 0000 0000 b xxxx 0000 b

LIN data LINDAT 0000 0000 b 0000 0000 b
ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

156

15.5.4 Configuration

Depending on the mode (LIN or UART), LCONF[1..0] bits of the LINCR register set the controller in the following
configuration (see Table 15-3).

The LIN configuration is independent of the programmed LIN protocol.

The listening mode connects the internal Tx LIN and the internal Rx LIN together. In this mode, the TXLIN output pin is
disabled and the RXLIN input pin is always enabled. The same scheme is available in UART mode.

Figure 15-6. Listening Mode

15.5.5 Busy Signal

LBUSY bit flag in LINSIR register is the image of the BUSY signal. It is set and cleared by hardware. It signals that the
controller is busy with LIN or UART communication.

15.5.5.1 Busy Signal in LIN Mode

Figure 15-7. Busy Signal in LIN Mode

Table 15-3. Configuration Table versus Mode

Mode LCONF[1..0] Configuration

LIN

00 b LIN standard configuration (default)

01 b No CRC field detection or transmission

10 b Frame_time_out disable

11 b Listening mode

UART

00 b 8-bit data, no parity and 1 stop-bit

01 b 8-bit data, even parity and 1 stop-bit

10 b 8-bit data, odd parity and 1 stop-bit

11 b Listening mode, 8-bit data, no parity and 1 stop-bit

TXLIN
internal
Tx LIN

internal
Rx LIN

LISTEN

1

0
RXLIN

Field Field
SYNC

Node providing the master task

Node providing a slave task

HEADER

LIN Bus

1) LBUSY

2) LBUSY

3) LBUSY

FRAME SLOT

RESPONSE

LCMD = Tx Header LIDOK LCMD = Tx or Rx Response LTXOK or LRXOK

BREAK
Field

PROTECTED
IDENTIFIER

Field
DATA-0

Field
DATA-n CHECKSUM

Field

Node providing neither the master task, neither a slave task
157ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

16.2.2 Current Source for Low Cost Transducer

An external transducer based on a variable resistor can be connected to the current source.
This can be, for instance:

● A thermistor, or temperature-sensitive resistor, used as a temperature sensor,

● A CdS photoconductive cell, or luminosity-sensitive resistor, used as a luminosity sensor,

● ...

Using the current source with this type of transducer eliminates the need for additional parts otherwise required in resistor
network or wheatstone bridge.

16.2.3 Voltage Reference for External Devices

An external resistor used in conjunction with the current source can be used as voltage reference for external devices. Using
a resistor in serie with a lower tolerance than the current source accuracy (≤ 2%) is recommended. Table 16-2 on page 174
gives an example of voltage references using standard values of resistors.

16.2.4 Threshold Reference for Internal Analog Comparator

An external resistor used in conjunction with the current source can be used as threshold reference for internal analog
Comparator (see Section 18. “AnaComp - Analog Comparator” on page 194). This can be connected to AIN0 (negative
analog compare input pin) as well as AIN1 (positive analog compare input pin). Using a resistor in serie with a lower
tolerance than the current source accuracy (≤ 2%) is recommended. Table 16-2 on page 174 gives an example of threshold
references using standard values of resistors.

16.3 Control Register

16.3.1 AMISCR – Analog Miscellaneous Control Register

• Bit 0 – ISRCEN: Current Source Enable

Writing this bit to one enables the current source as shown in Figure 16-1 on page 173. It is recommended to use DIDR
register bit function when ISRCEN is set. It also recommended to turn off the current source as soon as possible (ex: once
the ADC measurement is done).

Bit 7 6 5 4 3 2 1 0

- - - - - AREFEN XREFEN ISRCEN AMISCR

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
175ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

Rdloop:
lpm r0, Z+
ld r1, Y+
cpse r0, r1
rjmp Error
sbiw loophi:looplo, 1 ; use subi for PAGESIZEB<=256
brne Rdloop

; To ensure compatibility with devices supporting Read-While-Write
; Return to RWW section
; Verify that RWW section is safe to read

Return:
in temp1, SPMCSR
sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is not ready yet
ret
; Clear temporary page buffer
ldi spmcsrval, (1<<CPTB) | (1<<SELFPGEN)
call Do_spm
rjmp Return

Do_spm:
; Check for previous SPM complete

Wait_spm:
in temp1, SPMCSR
sbrc temp1, SELFPGEN
rjmp Wait_spm
; Input: spmcsrval determines SPM action
; Disable interrupts if enabled, store status
in temp2, SREG
cli
; Check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEPE
rjmp Wait_ee
; SPM timed sequence
out SPMCSR, spmcsrval
spm
; Restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret
ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

206

22.8 ADC Characteristics

Table 22-9. ADC Characteristics, Single Ended Channels (–40°C/+125°C)

Parameter Condition Symbol Min Typ Max Units

Resolution Single ended conversion 10 Bits

Absolute accuracy
Vcc = 4V, VRef = 4V,
ADC clock = 200kHz

TUE 2.0 3.5 LSB

Integral non linearity
Vcc = 4V, VRef = 4V,
ADC clock = 200kHz

INL 0.6 2.0 LSB

Differential non linearity
Vcc = 4V, VRef = 4V,
ADC clock = 200kHz

DNL 0.3 0.8 LSB

Gain error
Vcc = 4V, VRef = 4V,
ADC clock = 200kHz

-6.0 -2.5 2.0 LSB

Offset error
Vcc = 4V, VRef = 4V,
ADC clock = 200kHz

-3.5 1.5 3.5 LSB

Ref voltage VREF 2.56 AVcc V

Input bandwidth 38.5 kHz

Internal voltage VINT 2.4 2.56 2.7 V

Reference input resistance RREF 32 k

Analog input resistance RAIN 100 M

Table 22-10. ADC Characteristics, Differential Channels (–40°C/+125°C)

Parameter Condition Symbol Min Typ Max Units

Resolution Differential conversion 8

Absolute accuracy

Gain = 8x, BIPOLAR
VREF = 4V, Vcc = 5V
ADC clock = 200kHz

TUE

1.0 3.0

LSB

Gain = 20x, BIPOLAR
VREF = 4V, Vcc = 5V
ADC clock = 200kHz

1.5 3.5

Gain = 8x, UNIPOLAR
VREF = 4V, Vcc = 5V
ADC clock = 200kHz

2.0 4.5

Gain = 20x, UNIPOLAR
VREF = 4V, Vcc = 5V
ADC clock = 200kHz

2.0 6.0

Integral non linearity

Gain = 8x, BIPOLAR
VREF = 4V, Vcc = 5V
ADC clock = 200kHz

INL

0.2 1.0

LSB

Gain = 20x, BIPOLAR
VREF = 4V, Vcc = 5V
ADC clock = 200kHz

0.4 1.5

Gain = 8x, UNIPOLAR
VREF = 4V, Vcc = 5V
ADC clock = 200kHz

0.5 2.0

Gain = 20x, UNIPOLAR
VREF = 4V, Vcc = 5V
ADC clock = 200kHz

1.6 5.0
227ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

0x2D (0x4D) SPSR SPIF WCOL – – – – – SPI2X 135

0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 134

0x2B (0x4B) GPIOR2 GPIOR27 GPIOR26 GPIOR25 GPIOR24 GPIOR23 GPIOR22 GPIOR21 GPIOR20 24

0x2A (0x4A) GPIOR1 GPIOR17 GPIOR16 GPIOR15 GPIOR14 GPIOR13 GPIOR12 GPIOR11 GPIOR10 24

0x29 (0x49) Reserved

0x28 (0x48) OCR0A OCR0A7 OCR0A6 OCR0A5 OCR0A4 OCR0A3 OCR0A2 OCR0A1 OCR0A0 98

0x27 (0x47) TCNT0 TCNT07 TCNT06 TCNT05 TCNT04 TCNT03 TCNT02 TCNT01 TCNT00 98

0x26 (0x46) TCCR0B FOC0A – – – – CS02 CS01 CS00 97

0x25 (0x45) TCCR0A COM0A1 COM0A0 – – – – WGM01 WGM00 95

0x24 (0x44) Reserved

0x23 (0x43) GTCCR TSM – – – – – PSR0 PSR1 100, 102

0x22 (0x42) EEARH(1) – – – – – – – EEAR8 22

0x21 (0x41) EEARL EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 22

0x20 (0x40) EEDR EEDR7 EEDR6 EEDR5 EEDR4 EEDR3 EEDR2 EEDR1 EEDR0 23

0x1F (0x3F) EECR – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE 23

0x1E (0x3E) GPIOR0 GPIOR07 GPIOR06 GPIOR05 GPIOR04 GPIOR03 GPIOR02 GPIOR01 GPIOR00 24

0x1D (0x3D) EIMSK – – – – – – INT1 INT0 61

0x1C (0x3C) EIFR – – – – – – INTF1 INTF0 62

0x1B (0x3B) PCIFR – – – – – – PCIF1 PCIF0 63

0x1A (0x3A) Reserved

0x19 (0x39) Reserved

0x18 (0x38) Reserved

0x17 (0x37) Reserved

0x16 (0x36) TIFR1 – – ICF1 – – OCF1B OCF1A TOV1 129

0x15 (0x35) TIFR0 – – – – – – OCF0A TOV0 99

0x14 (0x34) Reserved

0x13 (0x33) Reserved

0x12 (0x32) PORTCR – – BBMB BBMA – – PUDB PUDA 72

0x11 (0x31) Reserved

0x10 (0x30) Reserved

0x0F (0x2F) Reserved

0x0E (0x2E) Reserved

0x0D (0x2D) Reserved

0x0C (0x2C) Reserved

0x0B (0x2B) Reserved

0x0A (0x2A) Reserved

25. Register Summary (Continued)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Notes: 1. Address bits exceeding EEAMSB (Table 21-8 on page 210) are don’t care.

2. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory
addresses should never be written.

3. I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

4. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags.
The CBI and SBI instructions work with registers 0x00 to 0x1F only.

5. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The Atmel®
ATtiny87/167 is a complex microcontroller with more peripheral units than can be supported within the 64 location
reserved in opcode for the IN and OUT instructions. For the extended I/O space from 0x60 - 0xFF in SRAM, only the
ST/STS/STD and LD/LDS/LDD instructions can be used.
ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

248

