
Microchip Technology - ATTINY167-15XD Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, LINbus, SPI, UART/USART, USI

Peripherals Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT

Number of I/O 16

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 11x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 150°C (TA)

Mounting Type Surface Mount

Package / Case 20-TSSOP (0.173", 4.40mm Width)

Supplier Device Package 20-TSSOP

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/attiny167-15xd

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/attiny167-15xd-4431665
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

2.4 General Purpose Register File

The register file is optimized for the AVR® enhanced RISC instruction set. In order to achieve the required performance and
flexibility, the following input/output schemes are supported by the register file:

● One 8-bit output operand and one 8-bit result input

● Two 8-bit output operands and one 8-bit result input

● Two 8-bit output operands and one 16-bit result input

● One 16-bit output operand and one 16-bit result input

Figure 2-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 2-2. AVR CPU General Purpose Working Registers

Most of the instructions operating on the register file have direct access to all registers, and most of them are single cycle
instructions.

As shown in Figure 2-2, each register is also assigned a data memory address, mapping them directly into the first 32
locations of the user data space. Although not being physically implemented as SRAM locations, this memory organization
provides great flexibility in access of the registers, as the X-, Y- and Z-pointer registers can be set to index any register in the
file.

2.4.1 The X-register, Y-register, and Z-register

The registers R26.R31 have some added functions to their general purpose usage. These registers are 16-bit address
pointers for indirect addressing of the data space. The three indirect address registers X, Y, and Z are defined as described
in Figure 2-3 on page 12.

7 0 Addr.

R0 0x00

R1 0x01

R2 0x02

…

R13 0x0D

General R14 0x0E

Purpose R15 0x0F

Working R16 0x10

Registers R17 0x11

…

R26 0x1A X-register Low Byte

R27 0x1B X-register High Byte

R28 0x1C Y-register Low Byte

R29 0x1D Y-register High Byte

R30 0x1E Z-register Low Byte

R31 0x1F Z-register High Byte
11ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

The following code examples show one assembly and one C function for erase, write, or atomic write of the EEPROM. The
examples assume that interrupts are controlled (e.g., by disabling interrupts globally) so that no interrupts will occur during
execution of these functions.

Assembly Code Example

EEPROM_write:

; Wait for completion of previous write

sbic EECR,EEPE

rjmp EEPROM_write

; Set Programming mode

ldi r16, (0<<EEPM1)|(0<<EEPM0)

out EECR, r16

; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Write data (r16) to data register

out EEDR, r16

; Write logical one to EEMPE

sbi EECR,EEMPE

; Start eeprom write by setting EEPE

sbi EECR,EEPE

ret

C Code Example

void EEPROM_write(unsigned char ucAddress, unsigned char ucData)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEPE))

;

/* Set Programming mode */

EECR = (0<<EEPM1)|(0<<EEPM0);

/* Set up address and data registers */

EEAR = ucAddress;

EEDR = ucData;

/* Write logical one to EEMPE */

EECR |= (1<<EEMPE);

/* Start eeprom write by setting EEPE */

EECR |= (1<<EEPE);

}

ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

20

4.1.1 CPU Clock – clkCPU

The CPU clock is routed to parts of the system concerned with the AVR® core operation. Examples of such modules are the
general purpose register file, the status register and the data memory holding the stack pointer. Halting the CPU clock
inhibits the core from performing general operations and calculations.

4.1.2 I/O Clock – clkI/O

The I/O clock is used by the majority of the I/O modules, like synchronous timer/counter. The I/O clock is also used by the
external interrupt module, but note that some external interrupts are detected by asynchronous logic, allowing such
interrupts to be detected even if the I/O clock is halted.

4.1.3 Flash Clock – clkFLASH

The flash clock controls operation of the flash interface. The flash clock is usually active simultaneously with the CPU clock.

4.1.4 Asynchronous Timer Clock – clkASY

The asynchronous timer clock allows the asynchronous timer/counter to be clocked directly from an external clock or an
external low frequency crystal. The dedicated clock domain allows using this timer/counter as a real-time counter even when
the device is in sleep mode.

4.1.5 ADC Clock – clkADC

The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks in order to reduce noise
generated by digital circuitry. This gives more accurate ADC conversion results.

4.2 Clock Sources

The device has the following clock source options, selectable by flash fuse bits (default) or by the CLKSELR register
(dynamic clock switch circuit) as shown below. The clock from the selected source is input to the AVR clock generator, and
routed to the appropriate modules.

Table 4-1. Device Clocking Options Select(1) versus PB4 and PB5 Functionality

Device Clocking Option
 CKSEL3..0 (2)

CSEL3..0 (3) PB4 PB5

External Clock 0000 b CLKI CLKO - I/O

Calibrated Internal RC Oscillator 8.0MHz 0010 b I/O CLKO - I/O

Watchdog Oscillator 128kHz 0011 b I/O CLKO - I/O

External Low-frequency Oscillator 01xx b XTAL1 XTAL2

External Crystal/Ceramic Resonator (0.4 - 0.9MHz) 100x b XTAL1 XTAL2

External Crystal/Ceramic Resonator (0.9 - 3.0MHz) 101x b XTAL1 XTAL2

External Crystal/Ceramic Resonator (3.0 - 8.0MHz) 110x b XTAL1 XTAL2

External Crystal/Ceramic Resonator (8.0 - 16.0MHz) 111x b XTAL1 XTAL2

Notes: 1. For all fuses “1” means unprogrammed while “0” means programmed.

2. Flash fuse bits.

3. CLKSELR register bits.
ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

26

4.3.2 CLKSELR Register

4.3.2.1 Fuses Substitution

At reset, bits of the low fuse byte are copied into the CLKSELR register. The content of this register can subsequently be
user modified to overwrite the default values from the low fuse byte. CKSEL3..0, SUT1..0 and CKOUT fuses correspond
respectively to CSEL3..0, CSUT1:0 and ~(COUT) bits of the CLKSELR register as shown in Figure 4-5 on page 33.

4.3.2.2 Source Selection

The available codes of clock source are given in Table 4-1 on page 26.

Figure 4-5. Fuses substitution and Clock Source Selection

The CLKSELR register contains the CSEL, CSUT and COUT values which will be used by the ‘enable/disable clock source’,
‘request for clock availability’ or ‘clock source switching’ commands.

4.3.2.3 Source Recovering

The ‘recover system clock source’ command updates the CKSEL field of CLKSELR register (Section 4.3.6 “System Clock
Source Recovering” on page 34).

4.3.3 Enable/Disable Clock Source

The ‘enable clock source’ command selects and enables a clock source configured by the settings in the CLKSELR register.
CSEL3..0 will select the clock source and CSUT1:0 will select the start-up time (just as CKSEL and SUT fuse bits do). To be
sure that a clock source is operating, the ‘request for clock availability’ command must be executed after the ‘enable clock
source’ command. This will indicate via the CLKRDY bit in the CLKCSR register that a valid clock source is available and
operational.

The ‘disable clock source’ command disables the clock source indicated by the settings of CLKSELR register (only
CSEL3..0). If the clock source indicated is currently the one that is used to drive the system clock, the command is not
executed.

Because the selected configuration is latched at clock source level, it is possible to enable many clock sources at a given
time (ex: the internal RC oscillator for system clock + an oscillator with external crystal). The user (code) is responsible of
this management.

4.3.4 COUT Command

The ‘CKOUT ’ command allows to drive the CLKO pin. Refer to Section 4.2.7 “Clock Output Buffer” on page 32 for using.

Internal
Data Bus

Fuse:
Fuse Low Byte

Register:
CLKSELR

Selected
Configuration

Clock
Switch
Current

Configuration

Reset

C
LK

S
E

L[
3.

.0
]

S
U

T[
1.

.0
]

C
K

O
U

T

C
S

E
L[

3.
.0

]
C

S
U

T[
1.

.0
]

C
O

U
T

S
E

L
D

ec
od

er

SCLKRq(*)

SCLKRq(*):Command of Clock Control and Status Register

CKSEL[3..0]

EN-0

CKOUT

EN-1

EN-2

EN-n

SEL-0

SEL-1

SEL-2

SEL-n

S
E

L
E

nc
od

er

SUT[1..0]
33ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

7. Interrupts

This section describes the specifics of the interrupt handling as performed in Atmel® ATtiny87/167. For a general explanation
of the AVR® interrupt handling, refer to “Reset and Interrupt Handling” on page 13.

7.1 Interrupt Vectors in ATtiny87/167

Table 7-1. Reset and Interrupt Vectors in ATtiny87/167

Vector
Nb.

Program Address

Source Interrupt DefinitionATtiny87 ATtiny167

1 0x0000 0x0000 RESET
External Pin, Power-on Reset, Brown-out Reset

and Watchdog System Reset

2 0x0001 0x0002 INT0 External Interrupt Request 0

3 0x0002 0x0004 INT1 External Interrupt Request 1

4 0x0003 0x0006 PCINT0 Pin Change Interrupt Request 0

5 0x0004 0x0008 PCINT1 Pin Change Interrupt Request 1

6 0x0005 0x000A WDT Watchdog Time-out Interrupt

7 0x0006 0x000C TIMER1 CAPT Timer/Counter1 Capture Event

8 0x0007 0x000E TIMER1 COMPA Timer/Counter1 Compare Match A

9 0x0008 0x0010 TIMER1 COMPB Timer/Coutner1 Compare Match B

10 0x0009 0x0012 TIMER1 OVF Timer/Counter1 Overflow

11 0x000A 0x0014 TIMER0 COMPA Timer/Counter0 Compare Match A

12 0x000B 0x0016 TIMER0 OVF Timer/Counter0 Overflow

13 0x000C 0x0018 LIN TC LIN/UART Transfer Complete

14 0x000D 0x001A LIN ERR LIN/UART Error

15 0x000E 0x001C SPI, STC SPI Serial Transfer Complete

16 0x000F 0x001E ADC ADC Conversion Complete

17 0x0010 0x0020 EE READY EEPROM Ready

18 0x0011 0x0022 ANALOG COMP Analog Comparator

19 0x0012 0x0024 USI START USI Start Condition Detection

20 0x0013 0x0026 USI OVF USI Counter Overflow
57ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

7.2 Program Setup in ATtiny87

The most typical and general program setup for the reset and interrupt vector addresses in Atmel® ATtiny87 is (2-byte step -
using “rjmp” instruction):

Address(1)Label Code Comments

0x0000 rjmp RESET ; Reset Handler

0x0001 rjmp INT0addr ; IRQ0 Handler

0x0002 rjmp INT1addr ; IRQ1 Handler

0x0003 rjmp PCINT0addr ; PCINT0 Handler

0x0004 rjmp PCINT1addr ; PCINT1 Handler

0x0005 rjmp WDTaddr ; Watchdog Timer Handler

0x0006 rjmp ICP1addr ; Timer1 Capture Handler

0x0007 rjmp OC1Aaddr ; Timer1 Compare A Handler

0x0008 rjmp OC1Baddr ; Timer1 Compare B Handler

0x0009 rjmp OVF1addr ; Timer1 Overflow Handler

0x000A rjmp OC0Aaddr ; Timer0 Compare A Handler

0x000B rjmp OVF0addr ; Timer0 Overflow Handler

0x000C rjmp LINTCaddr ; LIN Transfer Complete Handler

0x000D rjmp LINERRaddr ; LIN Error Handler

0x000E rjmp SPIaddr ; SPI Transfer Complete Handler

0x000F rjmp ADCCaddr ; ADC Conversion Complete Handler

0x0010 rjmp ERDYaddr ; EEPROM Ready Handler

0x0011 rjmp ACIaddr ; Analog Comparator Handler

0x0012 rjmp USISTARTaddr ; USI Start Condition Handler

0x0013 rjmp USIOVFaddr ; USI Overflow Handler

0x0014 RESET: ldi r16, high(RAMEND); Main program start

0x0015 out SPH,r16 ; Set Stack Pointer to top of RAM

0x0016 ldi r16, low(RAMEND)

0x0017 out SPL,r16

0x0018 sei ; Enable interrupts

0x0019 <instr> xxx

Note: 1. 16-bit address
ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

58

9.2 Ports as General Digital I/O

The ports are bi-directional I/O ports with optional internal pull-ups. Figure 9-2 shows a functional description of one I/O-port
pin, here generically called Pxn.

Figure 9-2. General Digital I/O(1)

Notes: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O, SLEEP, and PUD
are common to all ports.

9.2.1 Configuring the Pin

Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in Section 9.4 “Register Description for
I/O Ports” on page 82, the DDxn bits are accessed at the DDRx I/O address, the PORTxn bits at the PORTx I/O address,
and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx register selects the direction of this pin. If DDxn is written logic one, Pxn is configured as an output
pin. If DDxn is written logic zero, Pxn is configured as an input pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is activated. To switch the pull-
up resistor off, PORTxn has to be written logic zero or the pin has to be configured as an output pin. The port pins are tri-
stated when reset condition becomes active, even if no clocks are running.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven high (one). If PORTxn is
written logic zero when the pin is configured as an output pin, the port pin is driven low (zero).

D
0

1

Q

WRx
RRx

WPx

Pxn

CLR

RESET

Synchronizer

D
AT

A
B

U
S

PORTxn

Q

Q

L

D

Q

QD

Q

PINxn

RESET

RPx

WDx: WRITE DDRx

WRx:

WPx:
RPx:
RRx: READ PORTx REGISTER

READ PORTx PIN
WRITE PINx REGISTER

RDx:
WRITE PORTx
READ DDRx

PUD: PULLUP DISABLE

CLKI/O:
SLEEP:

I/O CLOCK
SLEEP CONTROL

RDx

CLKI/O

PUD

WDx

SLEEP

D

Q CLR

DDxn

Q

65ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

A simplified block diagram of the 8-bit timer/counter is shown in Figure 10-1. For the actual placement of I/O pins, refer to
Section 1.6 “Pin Configuration” on page 6. CPU accessible I/O registers, including I/O bits and I/O pins, are shown in bold.
The device-specific I/O register and bit locations are listed in the Section 10.11 “8-bit Timer/Counter Register Description” on
page 95.

Figure 10-1. 8-bit Timer/Counter0 Block Diagram

The timer/counter (TCNT0) and output compare register (OCR0A) are 8-bit registers. Interrupt request (shorten as Int.Req.)
signals are all visible in the timer interrupt flag register (TIFR0). All interrupts are individually masked with the timer interrupt
mask register (TIMSK0). TIFR0 and TIMSK0 are not shown in the figure.

The timer/counter can be clocked internally, via the prescaler, or asynchronously clocked from the XTAL1/2 pins, as detailed
later in this section. The asynchronous operation is controlled by the asynchronous status register (ASSR). The clock select
logic block controls which clock source the timer/counter uses to increment (or decrement) its value. The timer/counter is
inactive when no clock source is selected. The output from the clock select logic is referred to as the timer clock (clkT0).

The double buffered output compare register (OCR0A) is compared with the timer/counter value at all times. The result of
the compare can be used by the waveform generator to generate a PWM or variable frequency output on the output
compare pin (OC0A). Section 10.5 “Output Compare Unit” on page 86 for details. The compare match event will also set the
compare flag (OCF0A) which can be used to generate an output compare interrupt request.

TOP

= 0 = 0xFF

BOTTOM

Status flags

Synchronized Status flags

asynchronous mode
select (ASn)

Synchronization Unit

XTAL2

XTAL1

OCnx

TCNTn
Timer/Counter

count
clear

direction

OCRnx

ASSRn

TCCRnx

=

D
AT

A
B

U
S

Control Logic

Prescaler

Waveform
Generation

Oscillator

clkTn

clkI/O

clkI/O

clkASY

TOVn
(Int. Req.)

OCnx
(Int. Req.)
ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

84

• Bit 3 – OCR0AUB: Output Compare 0 Register A Update Busy

When timer/counter0 operates asynchronously and OCR0A is written, this bit becomes set. When OCR0A has been
updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that OCR0A is
ready to be updated with a new value.

• Bit 2 – Res: Reserved Bit

This bit is reserved in the Atmel® ATtiny87/167 and will always read as zero.

• Bit 1 – TCR0AUB: Timer/Counter0 Control Register A Update Busy

When timer/counter0 operates asynchronously and TCCR0A is written, this bit becomes set. When TCCR0A has been
updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that TCCR0A
is ready to be updated with a new value.

• Bit 0 – TCR0BUB: Timer/Counter0 Control Register B Update Busy

When timer/counter0 operates asynchronously and TCCR0B is written, this bit becomes set. When TCCR0B has been
updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that TCCR0B
is ready to be updated with a new value.

If a write is performed to any of the four timer/counter0 registers while its update busy flag is set, the updated value might get
corrupted and cause an unintentional interrupt to occur.

The mechanisms for reading TCNT0, OCR0A, TCCR0A and TCCR0B are different. When reading TCNT0, the actual timer
value is read. When reading OCR0A, TCCR0A or TCCR0B the value in the temporary storage register is read.

10.11.5 Timer/Counter0 Interrupt Mask Register – TIMSK0

• Bit 7:2 – Res: Reserved Bits

These bits are reserved in the Atmel ATtiny87/167 and will always read as zero.

• Bit 1 – OCIE0A: Timer/Counter0 Output Compare Match A Interrupt Enable

When the OCIE0A bit is written to one and the I-bit in the status register is set (one), the timer/counter0 compare match A
interrupt is enabled. The corresponding interrupt is executed if a compare match in timer/counter0 occurs, i.e., when the
OCF0A bit is set in the timer/counter0 interrupt flag register – TIFR0.

• Bit 0 – TOIE0: Timer/Counter0 Overflow Interrupt Enable

When the TOIE0 bit is written to one and the I-bit in the status register is set (one), the timer/counter0 overflow interrupt is
enabled. The corresponding interrupt is executed if an overflow in timer/counter0 occurs, i.e., when the TOV0 bit is set in the
timer/counter0 interrupt flag register – TIFR0.

10.11.6 Timer/Counter0 Interrupt Flag Register – TIFR0

• Bit 7:2 – Res: Reserved Bits

These bits are reserved in the Atmel ATtiny87/167 and will always read as zero.

Bit 7 6 5 4 3 2 1 0

– – – – – – OCIE0A TOIE0 TIMSK0

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – – – OCF0A TOV0 TIFR0

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
99ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

15. LIN/UART - Local Interconnect Network Controller or UART

The LIN (local interconnect network) is a serial communications protocol which efficiently supports the control of
mechatronics nodes in distributed automotive applications. The main properties of the LIN bus are:

● Single master with multiple slaves concept

● Low cost silicon implementation based on common UART/SCI interface

● Self synchronization with on-chip oscillator in slave node

● Deterministic signal transmission with signal propagation time computable in advance

● Low cost single-wire implementation

● Speed up to 20Kbit/s.

LIN provides a cost efficient bus communication where the bandwidth and versatility of CAN are not required. The
specification of the line driver/receiver needs to match the ISO9141 NRZ-standard.

If LIN is not required, the controller alternatively can be programmed as universal asynchronous serial receiver and
transmitter (UART).

15.1 LIN Features
● Hardware implementation of LIN 2.1 (LIN 1.3 compatibility)

● Small, CPU efficient and independent master/slave routines based on “LIN Work Flow Concept” of LIN 2.1
specification

● Automatic LIN header handling and filtering of irrelevant LIN frames

● Automatic LIN response handling

● Extended LIN error detection and signaling

● Hardware frame time-out detection

● “Break-in-data” support capability

● Automatic re-synchronization to ensure proper frame integrity

● Fully flexible extended frames support capabilities

15.2 UART Features
● Full duplex operation (independent serial receive and transmit processes)

● Asynchronous operation

● High resolution baud rate generator

● Hardware support of 8 data bits, odd/even/no parity Bit, 1 stop bit frames

● Data over-run and framing error detection
149ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

Figure 17-9. Offset Error

● Gain Error: After adjusting for offset, the gain error is found as the deviation of the last transition (0x3FE to 0x3FF)
compared to the ideal transition (at 1.5 LSB below maximum). Ideal value: 0 LSB

Figure 17-10. Gain Error

Offset
Error

Output Code

Ideal ADC

Actual ADC

VREF Input Voltage

Output Code

Ideal ADC

Actual ADC

VREF Input Voltage

Gain
Error
ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

184

17.8 ADC Conversion Result

After the conversion is complete (ADIF is high), the conversion result can be found in the ADC result registers (ADCL,
ADCH). The form of the conversion result depends on the type of the conversion as there are three types of conversions:
single ended conversion, unipolar differential conversion and bipolar differential conversion.

17.8.1 Single Ended Conversion

For single ended conversion, the result is:

where VIN is the voltage on the selected input pin and VREF the selected voltage reference (see Table 17-4 on page 188 and
Table 17-5 on page 189). 0x000 represents analog ground, and 0x3FF represents the selected voltage reference minus one
LSB. The result is presented in one-sided form, from 0x3FF to 0x000.

17.8.2 Unipolar Differential Conversion

If differential channels and an unipolar input mode are used, the result is:

where VPOS is the voltage on the positive input pin, VNEG the voltage on the negative input pin, and VREF the selected voltage
reference (see Table 17-4 on page 188 and Table 17-5 on page 189). The voltage on the positive pin must always be larger
than the voltage on the negative pin or otherwise the voltage difference is saturated to zero. The result is presented in one-
sided form, from 0x000 (0d) to 0x3FF (+1023d). The GAIN is either 8x or 20x.

17.8.3 Bipolar Differential Conversion

As default the ADC converter operates in the unipolar input mode, but the bipolar input mode can be selected by writing the
BIN bit in the ADCSRB register to one. In the bipolar input mode two-sided voltage differences are allowed and thus the
voltage on the negative input pin can also be larger than the voltage on the positive input pin. If differential channels and a
bipolar input mode are used, the result is:

where VPOS is the voltage on the positive input pin, VNEG the voltage on the negative input pin, and VREF the selected voltage
reference. The result is presented in two’s complement form, from 0x200 (–512d) through 0x000 (+0d) to 0x1FF (+511d). The
GAIN is either 8x or 20x.

However, if the signal is not bipolar by nature (9 bits + sign as the 10th bit), this scheme loses one bit of the converter
dynamic range. Then, if the user wants to perform the conversion with the maximum dynamic range, the user can perform a
quick polarity check of the result and use the unipolar differential conversion with selectable differential input pair. When the
polarity check is performed, it is sufficient to read the MSB of the result (ADC9 in ADCH register). If the bit is one, the result
is negative, and if this bit is zero, the result is positive.

ADC
VIN 1024

VREF
---------------------------=

ADC
VPOS VNEG–  1024

VREF
--- GAIN=

ADC
VPOS VNEG–  512

VREF
-- GAIN=
ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

186

18.1.3 DIDR0 – Digital Input Disable Register 0

• Bits 7,6 – AIN1D, AIN0D: AIN1D and AIN0D Digital Input Disable

When this bit is written logic one, the digital input buffer on the corresponding analog compare pin is disabled. The
corresponding PIN register bit will always read as zero when this bit is set. When an analog signal is applied to the AIN0/1
pin and the digital input from this pin is not needed, this bit should be written logic one to reduce power consumption in the
digital input buffer.

18.2 Analog Comparator Inputs

18.2.1 Analog Compare Positive Input

It is possible to select any of the inputs of the ADC positive input multiplexer to replace the positive input to the analog
comparator. The ADC multiplexer is used to select this input, and consequently, the ADC must be switched off to utilize this
feature. If the analog comparator multiplexer enable bit (ACME in ADCSRB register) is set and the ADC is switched off
(ADEN in ADCSRA register is zero), MUX[4..0] in ADMUX register select the input pin to replace the positive input to the
analog comparator, as shown in Table 18-2 on page 196. If ACME is cleared or ADEN is set, AIN1 pin is applied to the
positive input to the analog comparator.

Bit 7 6 5 4 3 2 1 0

ADC7D /
AIN1D

ADC6D /
AIN0D

ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D DIDR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 18-2. Analog Comparator Positive Input

ACME ADEN MUX[4..0] Analog Comparator Positive Input - Comment

0 x x xxxx b AIN1
ADC Switched On

x 1 x xxxx b AIN1

1 0 0 0000 b ADC0

ADC Switched Off.

1 0 0 0001 b ADC1

1 0 0 0010 b ADC2

1 0 0 0011 b ADC3 / ISRC

1 0 0 0100 b ADC4

1 0 0 0101 b ADC5

1 0 0 0110 b ADC6

1 0 0 0111 b ADC7

1 0 0 1000 b ADC8

1 0 0 1001 b ADC9

1 0 0 1010 b ADC10

1 0 Other This doesn’t make sense - Don’t use.
ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

196

19. DebugWIRE On-chip Debug System

19.1 Features
● Complete program flow control

● Emulates all on-chip functions, both digital and analog, except RESET pin

● Real-time operation

● Symbolic debugging support (both at C and assembler source level, or for other HLLs)

● Unlimited number of program break points (using software break points)

● Non-intrusive operation

● Electrical characteristics identical to real device

● Automatic configuration system

● High-speed operation

● Programming of non-volatile memories

19.2 Overview

The debugWIRE on-chip debug system uses a One-wire, bi-directional interface to control the program flow, execute AVR®
instructions in the CPU and to program the different non-volatile memories.

19.3 Physical Interface

When the debugWIRE enable (DWEN) fuse is programmed and lock bits are unprogrammed, the debugWIRE system within
the target device is activated. The RESET port pin is configured as a wire-AND (open-drain) bi-directional I/O pin with pull-up
enabled and becomes the communication gateway between target and emulator.

Figure 19-1. The debugWIRE Setup

Figure 19-1 shows the schematic of a target MCU, with debugWIRE enabled, and the emulator connector. The system clock
is not affected by debugWIRE and will always be the clock source selected by the CKSEL fuses.

When designing a system where debugWIRE will be used, the following observations must be made for correct operation:

● Pull-up resistors on the dW/(RESET) line must not be smaller than 10k. The pull-up resistor is not required for
debugWIRE functionality.

● Connecting the RESET pin directly to Vcc will not work.

● Capacitors connected to the RESET pin must be disconnected when using debugWire.

● All external reset sources must be disconnected.

GND

dW (RESET)

VCC

dW

+1.8 to +5.5V
ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

198

Figure 21-3. Programming the Flash Waveforms (1)

Note: 1. “XX” is don’t care. The letters refer to the programming description above.

21.7.5 Programming the EEPROM

The EEPROM is organized in pages, see Table 21-8 on page 210. When programming the EEPROM, the program data is
latched into a page buffer. This allows one page of data to be programmed simultaneously. The programming algorithm for
the EEPROM data memory is as follows (refer to Section 21.7.4 “Programming the Flash” on page 212 for details on
command, address and data loading):

A: Load command “0001 0001 b”.

G: Load address high byte (0x00 - 0xFF).

B: Load address low byte (0x00 - 0xFF).

C: Load data (0x00 - 0xFF).

E: Latch data (give PAGEL a positive pulse).

K: Repeat A through E until the entire buffer is filled.

L: Program EEPROM page

1. Set BS1 to “0”.

2. Give WR a negative pulse. This starts programming of the EEPROM page. RDY/BSY goes low.

3. Wait until to RDY/BSY goes high before programming the next page (See Figure 21-4 for signal waveforms).

Figure 21-4. Programming the EEPROM Waveforms

XTAL1

RDY/ BSY

OE

RESET +12V

PAGEL/BS1

XA0

XA1/BS2

DATA
A B C D E B C D

F

E G H
0x10 XXXXXX ADDR. HIGHADDR. LOWADDR. LOW DATA HIGHDATA HIGH DATA LOWDATA LOW

WR

XTAL1

RDY/BSY

OE

RESET +12V

PAGEL/BS1

XA0

XA1/BS2

DATA

WR

A B C E B C

K

EG
ADDR. HIGH ADDR. LOW0x11 DATA XX ADDR. LOW DATA XX

L

ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

214

21.7.6 Reading the Flash

The algorithm for reading the flash memory is as follows (refer to Section 21.7.4 “Programming the Flash” on page 212 for
details on command and address loading):

1. A: Load command “0000 0010 b”.

2. G: Load address high byte (0x00 - 0xFF).

3. B: Load address low byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The flash word low byte can now be read at DATA.

5. Set BS1 to “1”. The flash word high byte can now be read at DATA.

6. Set OE to “1”.

21.7.7 Reading the EEPROM

The algorithm for reading the EEPROM memory is as follows (refer to Section 21.7.4 “Programming the Flash” on page 212
for details on command and address loading):

1. A: Load command “0000 0011 b”.

2. G: Load address high byte (0x00 - 0xFF).

3. B: Load address low byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The EEPROM data byte can now be read at DATA.

5. Set OE to “1”.

21.7.8 Programming the Fuse Low Bits

The algorithm for programming the fuse low bits is as follows (refer to Section 21.7.4 “Programming the Flash” on page 212
for details on command and data loading):

1. A: Load command “0100 0000 b”.

2. C: Load data low byte. Bit n = “0” programs and bit n = “1” erases the fuse bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

21.7.9 Programming the Fuse High Bits

The algorithm for programming the fuse high bits is as follows (refer to Section 21.7.4 “Programming the Flash” on page 212
for details on command and data loading):

1. A: Load command “0100 0000 b”.

2. C: Load data low byte. Bit n = “0” programs and bit n = “1” erases the fuse bit.

3. Set BS1 to “1” and BS2 to “0”. This selects high data byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS1 to “0”. This selects low data byte.

21.7.10 Programming the Extended Fuse Bits

The algorithm for programming the extended fuse bits is as follows (refer to Section 21.7.4 “Programming the Flash” on page
212 for details on command and data loading):

1. A: Load command “0100 0000 b”.

2. C: Load data low byte. Bit n = “0” programs and bit n = “1” erases the fuse bit.

3. Set BS1 to “0” and BS2 to “1”. This selects extended data byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS2 to “0”. This selects low data byte.
215ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

If the LSB in RDY/BSY data byte out is ‘1’, a programming operation is still pending. Wait until this bit returns ‘0’ before the
next instruction is carried out.

Within the same page, the low data byte must be loaded prior to the high data byte.

After data is loaded to the page buffer, program the EEPROM page, see Figure 21-8.

Figure 21-8. Serial programming Instruction Example

21.9 Serial Programming Characteristics

Figure 21-9. Serial Programming Waveforms

For characteristics of the SPI module, see Section 22.10 “SPI Timing Characteristics” on page 231

Addr. MSB

Bit 15 B Bit 15 B 00

Load Program Memory Page (High/Low Byte)
Load EEPROM Memory Page (page access)

Write Program Memory Page/
Write EEPROM Memory Page

Byte 1 Byte 2 Byte 3 Byte 4

Page 0

Page 1

Page 2

Page N-1

Byte 1 Byte 2 Byte 3 Byte 4

Addr. LSB

Page Offset

Page Number

Addr. MSB Addr. LSB

Page Buffer

Serial Programming Instruction

Program Memory/
EEPROM Memory

MSBSERIAL DATA INPUT
(MOSI)

SERIAL DATA OUTPUT
(MISO)

MSB

LSB

LSB

SERIAL CLOCK INPUT
(SCK)

SAMPLE
221ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

Notes: 1. “Typ.”, typical values at 25°C. Maximum values are characterized values and not test limits in production.

2. “Max.” means the highest value where the pin is guaranteed to be read as low.

3. “Min.” means the lowest value where the pin is guaranteed to be read as high.

4. Although each I/O port can sink more than the test conditions (10mA at Vcc= 5V, 5mA at Vcc = 3V) under steady state
conditions (non-transient), the following must be observed: The sum of all IOL, for all ports, should not exceed 120mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current
greater than the listed test condition.

5. Although each I/O port can source more than the test conditions (10mA at Vcc = 5V, 5mA at Vcc = 3V) under steady state
conditions (non-transient), the following must be observed: The sum of all IOH, for all ports, should not exceed 120mA.
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

6. Values using methods described in Section 5.8 “Minimizing Power Consumption” on page 44. Power reduction is
enabled (PRR = 0xFF) and there is no I/O drive.

7. BOD disabled.

Power supply current(6)

Active mode
(external clock)

16MHz, Vcc = 5V

ICC

10 13 mA

8MHz, Vcc = 5V 5.5 7.0 mA

8MHz, Vcc = 3V 2.8 3.5 mA

4MHz, Vcc = 3V 1.8 2.5 mA

Power supply current(6)

Idle mode
(external clock)

16MHz, Vcc = 5V 3.5 5.0 mA

8MHz, Vcc = 5V 1.8 2.5 mA

8MHz, Vcc = 3V 1 1.5 mA

4MHz, Vcc = 3V 0.5 0.8 mA

Power supply current(7)

Power-down mode

WDT enabled, Vcc = 5V 7 100 µA

WDT disabled, Vcc = 5V 0.18 70 µA

WDT enabled, Vcc = 3V 5 70 µA

WDT disabled, Vcc = 3V 0.15 45 µA

Analog comparator
Input offset voltage

Vcc = 5V

Vin = Vcc/2
VACIO -10 10 40 mV

Analog comparator
Input leakage current

Vcc = 5V
Vin = Vcc/2

IACLK -50 50 nA

Analog comparator
Propagation delay
Common mode Vcc/2

Vcc = 2.7V
tACID

170 ns

Vcc = 5.0V 180 ns

22.2 DC Characteristics (Continued)
TA = -40°C to +125°C, Vcc = 2.7V to 5.5V (unless otherwise noted)

Parameter Condition Symbol Min. Typ.(1) Max. Units
223ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

Figure 24-16. I/O Pin Output Voltage versus Source Current (VCC = 3V)

Figure 24-17. I/O Pin Output Voltage versus Source Current (VCC = 5V)

24.7 Internal Oscillator Speed

Figure 24-18. Calibrated 8.0MHz RC Oscillator Frequency versus Vcc

0 2 4 6 8 10 12 14 16 18 20

3.0

2.5

2.0

1.5

1.0

0.5

0

V O
H
 (V

)

IOH (mA)

150

125
85
25

-40

0 2 4 6 8 10 12 14 16 18 20

5.1

4.9

4.7

4.5

4.3

4.1

3.9

3.7

V O
H
 (V

)

IOH (mA)

150

125
85
25

-40
ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

240

4. Comparison between ADC inputs and voltage references

In the analog comparator module, comparing any ADC input (ADC[10..0]) with voltage references (2.56V, 1.28V,
1.10V, 0.64V or 0.32V) fails.

Regardless, AIN1 input can be compared with the voltage references and any ADC input can be compared with AIN0
input.

Problem Fix/Workaround

Do not use this configuration.

5. Register bits of DIDR1

ADC8D, ADC9D and ADC10D (digital input disable) initially located at bit 4 up to 6 are instead located at bit 0 up to 2.
These register bits are also in write only mode.

Problem Fix/Workaround

Allow for the change in bit locations and the access mode restriction.

6. LIN Break Delimiter

In SLAVE MODE, a BREAK field detection error can occur under following conditions.

The problem occurs if 2 conditions occur simultaneously:

a. The DOMINANT part of the BREAK is (N+0.5)*Tbit long with N=13, 14,15, ...

b. The RECESSIVE part of the BREAK (BREAK DELIMITER) is equal to 1*Tbit. (see note below)

The BREAK_high is not detected, and the 2nd bit of the SYNC field is interpreted as the BREAK DELIMITER.

The error is detected as a framing error on the first bits of the PID or on subsequent Data or a Checksum error.

There is no error if BREAK_high is greater than 1 Tbit + 18%.

There is no problem in master mode.

Note: LIN2.1 protocol specification paragraph 2.3.1.1 Break field says: “A break field is always generated by the
master task(in the master node) and it shall be at least 13 nominal bit times of dominant value, followed by a
break delimiter, as shown in Figure 29-1. The break delimiter shall be at least one nominal bit time long.”

Figure 29-1. The Break Field

Workaround

None

Frame

Break

Protected
identifier

field

Break
field

Data 1

Inter-byte space Inter-byte space

Break
delimiter

Data 2 Data N ChecksumSync
field

Header Response

Response space
259ATtiny87/ATtiny167 [DATASHEET]
7728H–AVR–03/14

