

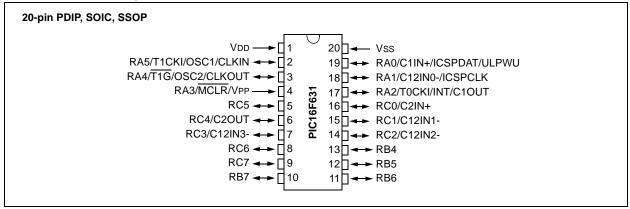
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	18
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	64 × 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f631-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device	Program Memory	Data N	lemory		Comparators	Timers	SSP	ECCP+	EUSART	
Device	Flash (words)	SRAM (bytes)	EEPROM (bytes)		(ch)	Comparators	8/16-bit	556	LUUPT	EUSARI
PIC16F631	1024	64	128	18	—	2	1/1	No	No	No
PIC16F677	2048	128	256	18	12	2	1/1	Yes	No	No
PIC16F685	4096	256	256	18	12	2	2/1	No	Yes	No
PIC16F687	2048	128	256	18	12	2	1/1	Yes	No	Yes
PIC16F689	4096	256	256	18	12	2	1/1	Yes	No	Yes
PIC16F690	4096	256	256	18	12	2	2/1	Yes	Yes	Yes

PIC16F631 Pin Diagram

TABLE 1: PIC16F631 PIN SUMMARY

I/O	Pin	Analog	Comparators	Timers	Interrupt	Pull-up	Basic
RA0	19	AN0/ULPWU	C1IN+	—	IOC	Y	ICSPDAT
RA1	18	AN1	C12IN0-		IOC	Y	ICSPCLK
RA2	17	_	C1OUT	T0CKI	IOC/INT	Y	—
RA3	4	—	—	—	IOC	Y(1)	MCLR/Vpp
RA4	3	—	—	T1G	IOC	Y	OSC2/CLKOUT
RA5	2		—	T1CKI	IOC	Y	OSC1/CLKIN
RB4	13		—	—	IOC	Y	—
RB5	12	—	—	—	IOC	Y	—
RB6	11	—	—	—	IOC	Y	—
RB7	10		—	_	IOC	Y	—
RC0	16	AN4	C2IN+	—	_	—	—
RC1	15	AN5	C12IN1-	_			—
RC2	14	AN6	C12IN2-	—		_	—
RC3	7	AN7	C12IN3-				—
RC4	6		C2OUT	—			—
RC5	5		—				—
RC6	8	—		—	_	—	—
RC7	9					_	—
—	1			_		_	Vdd
—	20	_		_		_	Vss

Note 1: Pull-up enabled only with external MCLR configuration.

Name	Function	Input Type	Output Type	Description
RB7	RB7	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
RC0/AN4/C2IN+	RC0	ST	CMOS	General purpose I/O.
	AN4	AN	—	A/D Channel 4 input.
	C2IN+	AN	—	Comparator C2 non-inverting input.
RC1/AN5/C12IN1-	RC1	ST	CMOS	General purpose I/O.
	AN5	AN	—	A/D Channel 5 input.
	C12IN1-	AN	—	Comparator C1 or C2 inverting input.
RC2/AN6/C12IN2-	RC2	ST	CMOS	General purpose I/O.
	AN6	AN	—	A/D Channel 6 input.
	C12IN2-	AN	—	Comparator C1 or C2 inverting input.
RC3/AN7/C12IN3-	RC3	ST	CMOS	General purpose I/O.
	AN7	AN	—	A/D Channel 7 input.
	C12IN3-	AN	—	Comparator C1 or C2 inverting input.
RC4/C2OUT	RC4	ST	CMOS	General purpose I/O.
	C2OUT	—	CMOS	Comparator C2 output.
RC5	RC5	ST	CMOS	General purpose I/O.
RC6/AN8/SS	RC6	ST	CMOS	General purpose I/O.
	AN8	AN	—	A/D Channel 8 input.
	SS	ST	—	Slave Select input.
RC7/AN9/SDO	RC7	ST	CMOS	General purpose I/O.
	AN9	AN	—	A/D Channel 9 input.
	SDO	—	CMOS	SPI data output.
Vss	Vss	Power	_	Ground reference.
Vdd	Vdd	Power	_	Positive supply.

TABLE 1-2: PINOUT DESCRIPTION – PIC16F677 (CONTINUED)

Legend: AN = Analog input or output

TTL = TTL compatible input

HV = High Voltage

XTAL= Crystal

CMOS=CMOS compatible input or output

ST= Schmitt Trigger input with CMOS levels

	File Address		File Address		File		File Address
La dia a stata data (1)	-	la dina at a dala (1)	1	lucations et a statu (1)	Address	la dina sé a dala (1)	
Indirect addr. ⁽¹⁾ TMR0	00h	Indirect addr. ⁽¹⁾ OPTION REG	80h	Indirect addr. ⁽¹⁾ TMR0	100h	Indirect addr. ⁽¹⁾ OPTION_REG	180h
PCL	01h		81h		101h		181h
	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h	PORTA	105h	TRISA	185h
PORTB PORTC	06h 07h	TRISB TRISC	86h 87h	PORTB PORTC	106h 107h	TRISB TRISC	186h 187h
FURIC	0711 08h	TRISC	88h	FURIC	10711 108h	TRISC	188h
			89h				189h
PCLATH	09h	PCLATH		PCLATH	109h 104b	PCLATH	18Ah
INTCON	0Ah	INTCON	8Ah 8Bh	INTCON	10Ah 10Bh	INTCON	18Bh
PIR1	0Bh				10Bh 10Ch		
	0Ch	PIE1	8Ch	EEDAT	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2 ⁽¹⁾	18Dh
TMR1L	0Eh	PCON	8Eh		10Eh		18Eh
TMR1H	0Fh	OSCCON	8Fh		10Fh		18Fh
T1CON	10h	OSCTUNE	90h		110h		190h
	11h		91h		111h		191h
0000115	12h	000400(2)	92h		112h		192h
SSPBUF	13h	SSPADD ⁽²⁾	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
	15h	WPUA	95h	WPUB	115h		195h
	16h	IOCA	96h	IOCB	116h		196h
	17h	WDTCON	97h		117h		197h
	18h		98h	VRCON	118h		198h
	19h		99h	CM1CON0	119h		199h
	1Ah		9Ah	CM2CON0	11Ah		19Ah
	1Bh		9Bh	CM2CON1	11Bh		19Bh
	1Ch		9Ch		11Ch		19Ch
	1Dh		9Dh		11Dh		19Dh
ADRESH	1Eh	ADRESL	9Eh	ANSEL	11Eh	SRCON	19Eh
ADCON0	1Fh	ADCON1	9Fh	ANSELH	11Fh		19Fh
Quanta	20h	General Purpose Register	A0h		120h		1A0h
General Purpose Register		32 Bytes	BFh C0h				
96 Bytes			EFh		16Fh		1EFh
	7Fh	accesses 70h-7Fh	F0h FFh	accesses 70h-7Fh	170h 17Fh	accesses 70h-7Fh	1F0h 1FFh
Bank 0	-	Bank 1	-	Bank 2		Bank 3	
Note 1: Not a	physical re	data memory locat gister. o accesses the SS			under certa	in conditions.	

FIGURE 2-5: PIC16F677 SPECIAL FUNCTION REGISTERS

GURE 2-7:	File	F687/PIC16F68	File				File
					File		File
Indirect addr. (1)	Address	ladias et e dela (1)	Address	ladias et e dala (1)	Address	Indinent ender (1)	Addres
		Indirect addr. ⁽¹⁾		Indirect addr. ⁽¹⁾		Indirect addr. (1)	
TMR0 PCL	01h	OPTION_REG PCL	81h 82b	TMR0 PCL	101h 102h	OPTION_REG PCL	181h
STATUS	02h 03h	STATUS	82h 83h	STATUS	102h 103h	STATUS	182h 183h
FSR	-	FSR		FSR		FSR	
	04h		84h	PORTA	104h 105h		184h
PORTA PORTB	05h 06h	TRISA TRISB	85h 86h	PORTA	105h 106h	TRISA TRISB	185h 186h
PORTE	00n 07h	TRISE	87h	PORTE	106h 107h	TRISE	187h
FURIC	08h	TRIBC	88h	FORTC	107h 108h	TRISC	188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10911 10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10An 10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDAT	10Dh	EECON1	18Ch
	-					EECON2 ⁽¹⁾	
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECONZY	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH ⁽³⁾	10Eh		18Eh
TMR1H	0Fh	OSCCON	8Fh	EEADRH ⁽³⁾	10Fh		18Fh
T1CON	10h	OSCTUNE	90h		110h		190h
	11h		91h		111h		191h
	12h	(2)	92h		112h		192h
SSPBUF	13h	SSPADD ⁽²⁾	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
	15h	WPUA	95h	WPUB	115h		195h
	16h	IOCA	96h	IOCB	116h		196h
	17h	WDTCON	97h		117h		197h
RCSTA	18h	TXSTA	98h	VRCON	118h		198h
TXREG	19h	SPBRG	99h	CM1CON0	119h		199h
RCREG	1Ah	SPBRGH	9Ah	CM2CON0	11Ah		19Ah
	1Bh	BAUDCTL	9Bh	CM2CON1	11Bh		19Bh
	1Ch		9Ch		11Ch		19Ch
	1Dh		9Dh		11Dh	00001	19Dh
ADRESH	1Eh	ADRESL	9Eh	ANSEL	11Eh	SRCON	19Eh
ADCON0	1Fh	ADCON1	9Fh	ANSELH	11Fh		19Fh
General Purpose Register	20h	General Purpose Register 32 Bytes 48 Bytes	A0h BFh C0h	General Purpose Register 80 Bytes (PIC16F689	120h		1A0h
96 Bytes		(PIC16F689 only)	EFh	only)			
	7Fh	accesses 70h-7Fh	F0h FFh	accesses 70h-7Fh	170h 17Fh	accesses 70h-7Fh	1F0h 1FFh
Bank 0	1	Bank 1	I	Bank 2	I	Bank 3	
lote 1: Not a p 2: Addres See Re	ohysical reg s 93h also	•	P Mask (SS	as '0'. SPMSK) register u	nder certai	n conditions.	

2.2.2.6 PIR1 Register

The PIR1 register contains the interrupt flag bits, as shown in Register 2-6.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-6: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

U-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
—	ADIF ⁽⁵⁾	RCIF ⁽³⁾	TXIF ⁽³⁾	SSPIF ⁽⁴⁾	CCP1IF ⁽²⁾	TMR2IF ⁽¹⁾	TMR1IF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6	ADIF: A/D Converter Interrupt Flag bit ⁽⁵⁾
	 1 = A/D conversion complete (must be cleared in software) 0 = A/D conversion has not completed or has not been started
bit 5	RCIF: EUSART Receive Interrupt Flag bit ⁽³⁾
	 1 = The EUSART receive buffer is full (cleared by reading RCREG) 0 = The EUSART receive buffer is not full
bit 4	TXIF: EUSART Transmit Interrupt Flag bit ⁽³⁾
	 1 = The EUSART transmit buffer is empty (cleared by writing to TXREG) 0 = The EUSART transmit buffer is full
bit 3	SSPIF: Synchronous Serial Port (SSP) Interrupt Flag bit ⁽⁴⁾
	 1 = The Transmission/Reception is complete (must be cleared in software) 0 = Waiting to Transmit/Receive
bit 2	CCP1IF: CCP1 Interrupt Flag bit ⁽²⁾
	Capture mode:
	 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred
	Compare mode:
	 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred
	<u>PWM mode:</u>
	Unused in this mode
bit 1	TMR2IF: Timer2 to PR2 Interrupt Flag bit ⁽¹⁾
	 1 = A Timer2 to PR2 match occurred (must be cleared in software) 0 = No Timer2 to PR2 match occurred
bit 0	TMR1IF: Timer1 Overflow Interrupt Flag bit
	 1 = The TMR1 register overflowed (must be cleared in software) 0 = The TMR1 register did not overflow
Note	1: PIC16F685/PIC16F690 only.
	2: PIC16F685/PIC16F689/PIC16F690 only.
	3: PIC16F687/PIC16F689/PIC16F690 only.
	4: PIC16F677/PIC16F687/PIC16F689/PIC16F690 only.
	5: PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only.

3.2 Oscillator Control

The Oscillator Control (OSCCON) register (Figure 3-1) controls the system clock and frequency selection options. The OSCCON register contains the following bits:

- Frequency selection bits (IRCF)
- Frequency Status bits (HTS, LTS)
- System clock control bits (OSTS, SCS)

REGISTER 3-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R/W-1	R/W-1	R/W-0	R-1	R-0	R-0	R/W-0
—	IRCF2	IRCF1	IRCF0	OSTS ⁽¹⁾	HTS	LTS	SCS
bit 7							bit 0
Legend:							

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6-4	IRCF<2:0>: Internal Oscillator Frequency Select bits 111 = 8 MHz 110 = 4 MHz (default) 101 = 2 MHz 100 = 1 MHz 011 = 500 kHz 010 = 250 kHz 001 = 125 kHz 000 = 31 kHz (LFINTOSC)
bit 3	OSTS: Oscillator Start-up Time-out Status bit ⁽¹⁾ 1 = Device is running from the clock defined by FOSC<2:0> of the CONFIG register 0 = Device is running from the internal oscillator (HFINTOSC or LFINTOSC)
bit 2	 HTS: HFINTOSC Status bit (High Frequency – 8 MHz to 125 kHz) 1 = HFINTOSC is stable 0 = HFINTOSC is not stable
bit 1	LTS: LFINTOSC Stable bit (Low Frequency – 31 kHz) 1 = LFINTOSC is stable 0 = LFINTOSC is not stable
bit 0	 SCS: System Clock Select bit 1 = Internal oscillator is used for system clock 0 = Clock source defined by FOSC<2:0> of the CONFIG register
Note 1.	Discrete to (o) with Two Greed Oters up and LD VT or LIC collected on the Opeillater mode on Feil

Note 1: Bit resets to '0' with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe mode is enabled.

3.5.3 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is an uncalibrated 31 kHz internal clock source.

The output of the LFINTOSC connects to a postscaler and multiplexer (see Figure 3-1). Select 31 kHz, via software, using the IRCF<2:0> bits of the OSCCON register. See **Section 3.5.4 "Frequency Select Bits (IRCF)**" for more information. The LFINTOSC is also the frequency for the Power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The LFINTOSC is enabled by selecting 31 kHz (IRCF<2:0> bits of the OSCCON register = 000) as the system clock source (SCS bit of the OSCCON register = 1), or when any of the following are enabled:

- Two-Speed Start-up IESO bit of the Configuration Word register = 1 and IRCF<2:0> bits of the OSCCON register = 000
- Power-up Timer (PWRT)
- Watchdog Timer (WDT)
- Fail-Safe Clock Monitor (FSCM)

The LF Internal Oscillator (LTS) bit of the OSCCON register indicates whether the LFINTOSC is stable or not.

3.5.4 FREQUENCY SELECT BITS (IRCF)

The output of the 8 MHz HFINTOSC and 31 kHz LFINTOSC connects to a postscaler and multiplexer (see Figure 3-1). The Internal Oscillator Frequency Select bits IRCF<2:0> of the OSCCON register select the frequency output of the internal oscillators. One of eight frequencies can be selected via software:

- 8 MHz
- 4 MHz (Default after Reset)
- 2 MHz
- 1 MHz
- 500 kHz
- 250 kHz
- 125 kHz
- 31 kHz (LFINTOSC)

Note:	Following any Reset, the IRCF<2:0> bits
	of the OSCCON register are set to '110'
	and the frequency selection is set to
	4 MHz. The user can modify the IRCF bits
	to select a different frequency.

3.5.5 HFINTOSC AND LFINTOSC CLOCK SWITCH TIMING

When switching between the LFINTOSC and the HFINTOSC, the new oscillator may already be shut down to save power (see Figure 3-6). If this is the case, there is a delay after the IRCF<2:0> bits of the OSCCON register are modified before the frequency selection takes place. The LTS and HTS bits of the OSCCON register will reflect the current active status of the LFINTOSC and HFINTOSC oscillators. The timing of a frequency selection is as follows:

- 1. IRCF<2:0> bits of the OSCCON register are modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. CLKOUT is held low and the clock switch circuitry waits for a rising edge in the new clock.
- CLKOUT is now connected with the new clock. LTS and HTS bits of the OSCCON register are updated as required.
- 6. Clock switch is complete.

See Figure 3-1 for more details.

If the internal oscillator speed selected is between 8 MHz and 125 kHz, there is no start-up delay before the new frequency is selected. This is because the old and new frequencies are derived from the HFINTOSC via the postscaler and multiplexer.

Start-up delay specifications are located in the oscillator tables of **Section 17.0** "**Electrical Specifications**".

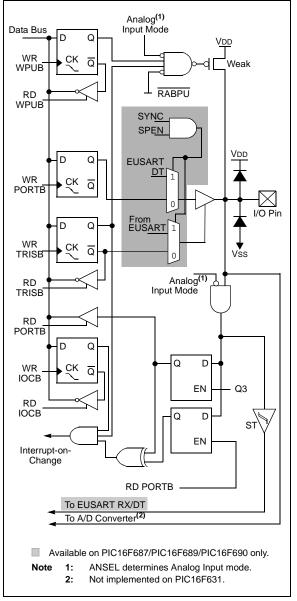
3.7.3 CHECKING TWO-SPEED CLOCK STATUS

Checking the state of the OSTS bit of the OSCCON register will confirm if the microcontroller is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Word register (CONFIG), or the internal oscillator.

FIGURE 3-7:	TWO-SPEED START-UP	
HFINTOSC /		
OSC1	←Tost	
OSC2		
Program Counter	PC - N 5 PC	PC + 1
System Clock		

4.4.3.2 RB5/AN11/RX/DT^(1, 2)

Figure 4-8 shows the diagram for this pin. The RB5/ AN11/RX/DT pin is configurable to function as one of the following:

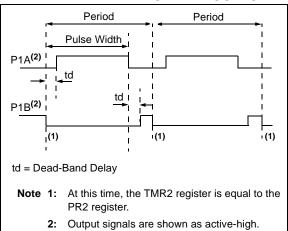

- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- an asynchronous serial input
- a synchronous serial data I/O

Note 1: RX and DT are available on PIC16F687/ PIC16F689/PIC16F690 only.

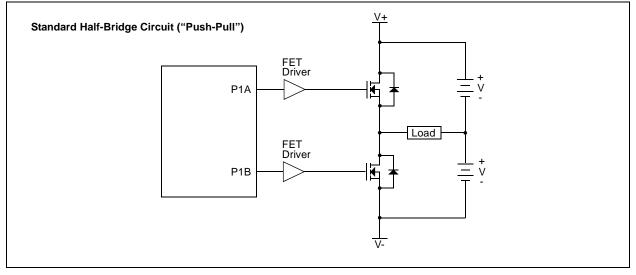
2: AN11 is not implemented on PIC16F631.

FIGURE 4-8:

BLOCK DIAGRAM OF RB5



11.4.6 PROGRAMMABLE DEAD-BAND DELAY MODE


In Half-Bridge applications where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on, and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (*shoot-through current*) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable deadband delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 11-8 for illustration. The lower seven bits of the associated PWM1CON register (Register 11-3) sets the delay period in terms of microcontroller instruction cycles (TcY or 4 Tosc).

FIGURE 11-17: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 11-18: EXAMPLE OF HALF-BRIDGE APPLICATIONS

11.4.7 PULSE STEERING MODE

In Single Output mode, pulse steering allows any of the PWM pins to be the modulated signal. Additionally, the same PWM signal can be simultaneously available on multiple pins.

Once the Single Output mode is selected (CCP1M<3:2> = 11 and P1M<1:0> = 00 of the CCP1CON register), the user firmware can bring out the same PWM signal to one, two, three or four output pins by setting the appropriate STR<D:A> bits of the PSTRCON register, as shown in Figure 11-19.

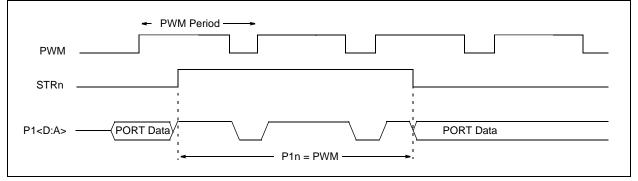
Note: The associated TRIS bits must be set to output ('0') to enable the pin output driver in order to see the PWM signal on the pin.

While the PWM Steering mode is active, CCP1M<1:0> bits of the CCP1CON register select the PWM output polarity for the P1<D:A> pins.

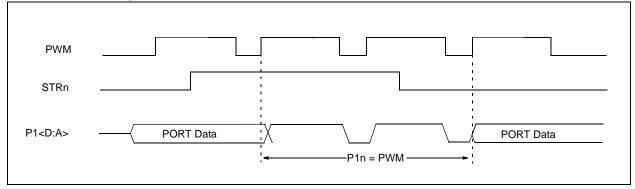
The PWM auto-shutdown operation also applies to PWM Steering mode as described in **Section 11.4.4** "**Enhanced PWM Auto-shutdown mode**". An autoshutdown event will only affect pins that have PWM outputs enabled.

REGISTER 11-4: PSTRCON: PULSE STEERING CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1				
_	_	—	STRSYNC	STRD	STRC	STRB	STRA				
bit 7	·						bit (
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'					
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 7-5	Unimpleme	nted: Read as	'0'								
bit 4	STRSYNC:	Steering Sync I	pit								
	1 = Output s	1 = Output steering update occurs on next PWM period									
	0 = Output s	0 = Output steering update occurs at the beginning of the instruction cycle boundary									
bit 3	STRD: Stee	ring Enable bit	D								
		1 = P1D pin has the PWM waveform with polarity control from CCP1M<1:0>									
	0 = P1D pin	0 = P1D pin is assigned to port pin									
bit 2	STRC: Stee	STRC: Steering Enable bit C									
	1 = P1C pin	1 = P1C pin has the PWM waveform with polarity control from CCP1M<1:0>									
	0 = P1C pin	0 = P1C pin is assigned to port pin									
bit 1		STRB: Steering Enable bit B									
	1 = P1B pin	1 = P1B pin has the PWM waveform with polarity control from CCP1M<1:0>									
	0 = P1B pin	0 = P1B pin is assigned to port pin									
bit 0	STRA: Stee	STRA: Steering Enable bit A									
	1 = P1A pin	1 = P1A pin has the PWM waveform with polarity control from CCP1M<1:0>									
	0 = P1A pin	is assigned to	port pin								


Note 1: The PWM Steering mode is available only when the CCP1CON register bits CCP1M<3:2> = 11 and P1M<1:0> = 00.

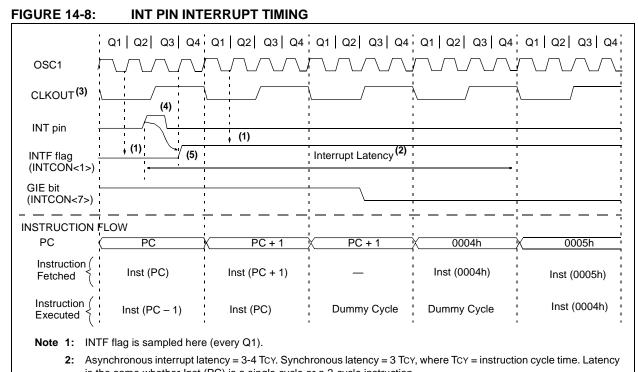
11.4.7.1 Steering Synchronization


The STRSYNC bit of the PSTRCON register gives the user two selections of when the steering event will happen. When the STRSYNC bit is '0', the steering event will happen at the end of the instruction that writes to the PSTRCON register. In this case, the output signal at the P1<D:A> pins may be an incomplete PWM waveform. This operation is useful when the user firmware needs to immediately remove a PWM signal from the pin.

When the STRSYNC bit is '1', the effective steering update will happen at the beginning of the next PWM period. In this case, steering on/off the PWM output will always produce a complete PWM waveform. Figures 11-20 and 11-21 illustrate the timing diagrams of the PWM steering depending on the STRSYNC setting.

FIGURE 11-20: EXAMPLE OF STEERING EVENT AT END OF INSTRUCTION (STRSYNC = 0)

FIGURE 11-21: EXAMPLE OF STEERING EVENT AT BEGINNING OF INSTRUCTION (STRSYNC = 1)



Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
BAUDCTL	ABDOVF	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	01-0 0-00
INTCON	GIE	PEIE	TOIE	INTE	RABIE	T0IF	INTF	RABIF	x000 000x	0000 000x
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
RCREG	EUSART F	Receive Da	ta Register						0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
SPBRGH	BRG15	BRG14	BRG13	BRG12	BRG11	BRG10	BRG9	BRG8	0000 0000	0000 0000
TRISB	TRISB7	TRISB6	TRISB5	TRISB4					1111	1111
TXREG	EUSART Transmit Data Register								0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
Legend:	x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Asynchronous Transmission.									

TABLE 12-1: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
BAUDCTL	ABDOVF	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	01-0 0-00
INTCON	GIE	PEIE	TOIE	INTE	RABIE	T0IF	INTF	RABIF	x000 000x	0000 000x
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
RCREG	EUSART F	Receive Da	ta Register						0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 000x	0000 000x
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
SPBRGH	BRG15	BRG14	BRG13	BRG12	BRG11	BRG10	BRG9	BRG8	0000 0000	0000 0000
TRISB	TRISB7	TRISB6	TRISB5	TRISB4					1111	1111
TXREG	EUSART	EUSART Transmit Data Register							0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
Legend:	x = unknow	unknown, - = unimplemented read as '0'. Shaded cells are not used for Asynchronous Reception.								

TABLE 12-2: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

- is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
- 3: CLKOUT is available only in INTOSC and RC Oscillator modes.
- 4: For minimum width of INT pulse, refer to AC specifications in Section 17.0 "Electrical Specifications".
- 5: INTF is enabled to be set any time during the Q4-Q1 cycles.

TABLE 14-6: SUMMARY OF INTERRUPT REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	RABIE	T0IF	INTF	RABIF	x000 000x	0000 000x
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
PIE2	OSFIE	C2IE	C1IE	EEIE	—	_	—	—	0000	0000
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
PIR2	OSFIF	C2IF	C1IF	EEIF	—	_	—	—	0000	0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition.

Shaded cells are not used by the Interrupt module.

17.4 DC Characteristics: PIC16F631/677/685/687/689/690-I (Industrial) PIC16F631/677/685/687/689/690-E (Extended)

DC CHA	ARACTER	ISTICS	Standard Operat		herwise stated) 5°C for industrial 25°C for extended			
Param No.	Sym.	Characteristic	Characteristic Min. Typ†		Max.	Units	Conditions	
	VIL	Input Low Voltage						
		I/O Port:						
D030		with TTL buffer	Vss	—	0.8	V	$4.5V \leq V \text{DD} \leq 5.5V$	
D030A			Vss	—	0.15 Vdd	V	$2.0V \leq V\text{DD} \leq 4.5V$	
D031		with Schmitt Trigger buffer	Vss	—	0.2 Vdd	V	$2.0V \le VDD \le 5.5V$	
D032		MCLR, OSC1 (RC mode) ⁽¹⁾	Vss	—	0.2 Vdd	V		
D033		OSC1 (XT and LP modes)	Vss	_	0.3	V		
D033A		OSC1 (HS mode)	Vss	—	0.3 Vdd	V		
	VIH	Input High Voltage						
		I/O Ports:		_				
D040		with TTL buffer	2.0	_	Vdd	V	$4.5V \le VDD \le 5.5V$	
D040A			0.25 VDD + 0.8	—	Vdd	V	$2.0V \le VDD \le 4.5V$	
D041		with Schmitt Trigger buffer	0.8 Vdd	_	Vdd	V	$2.0V \le VDD \le 5.5V$	
D042		MCLR	0.8 Vdd	_	Vdd	V		
D043		OSC1 (XT and LP modes)	1.6	_	Vdd	V		
D043A		OSC1 (HS mode)	0.7 Vdd	—	Vdd	V		
D043B		OSC1 (RC mode)	0.9 Vdd	_	Vdd	V	(Note 1)	
	lı∟	Input Leakage Current ⁽²⁾						
D060		I/O ports	_	± 0.1	± 1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance	
D061		MCLR ⁽³⁾	—	± 0.1	± 5	μA	$VSS \leq VPIN \leq VDD$	
D063		OSC1	_	± 0.1	± 5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP oscillator configuration	
D070*	IPUR	PORTA Weak Pull-up Current	50	250	400	μΑ	VDD = 5.0V, VPIN = VSS	
	Vol	Output Low Voltage ⁽⁵⁾						
D080		I/O ports	—	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V (Ind.)	
	Voh	Output High Voltage ⁽⁵⁾						
D090		I/O ports	Vdd - 0.7	-	_	V	IOH = -3.0 mA, VDD = 4.5V (Ind.)	
D100	IULP	Ultra Low-Power Wake-up Current	_	200	_	nA	See Application Note AN879, "Using the Microchip Ultra Low-Power Wake-up Module" (DS00879)	
		Capacitive Loading Specs on Output Pins						

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

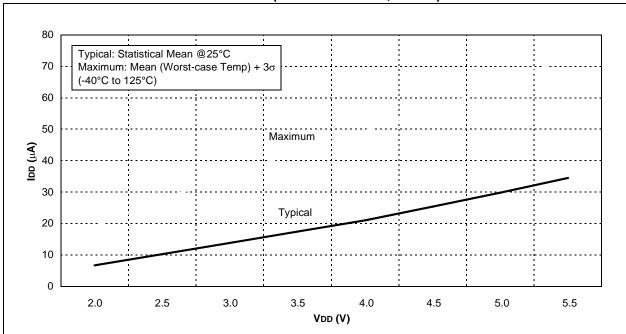
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

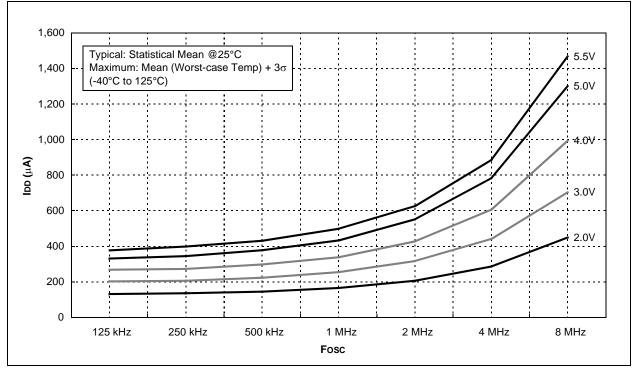
4: See Section 10.2.1 "Using the Data EEPROM" for additional information.

5: Including OSC2 in CLKOUT mode.


17.5 Thermal Considerations

Param No.	Sym.	Characteristic	Тур.	Units	Conditions
TH01	θJA	Thermal Resistance	62.4	C/W	20-pin PDIP package
		Junction to Ambient	85.2	C/W	20-pin SOIC package
			108.1	C/W	20-pin SSOP package
			40	C/W	20-pin QFN 4x4mm package
TH02	θJC	Thermal Resistance	28.1	C/W	20-pin PDIP package
		Junction to Case	24.2	C/W	20-pin SOIC package
			32.2	C/W	20-pin SSOP package
			2.5	C/W	20-pin QFN 4x4mm package
TH03	TDIE	Die Temperature	150	С	For derated power calculations
TH04	PD	Power Dissipation	_	W	PD = PINTERNAL + PI/O
TH05	PINTERNAL	Internal Power Dissipation	_	W	PINTERNAL = IDD x VDD (Note 1)
TH06	Pi/o	I/O Power Dissipation	—	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$
TH07	Pder	Derated Power	_	W	PDER = PDMAX (TDIE - TA)/θJA (Note 2, 3)

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

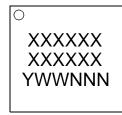

2: TA = Ambient Temperature.

3: Maximum allowable power dissipation is the lower value of either the absolute maximum total power dissipation or derated power.

19.0 PACKAGING INFORMATION

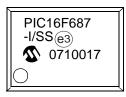
19.1 Package Marking Information


20-Lead PDIP

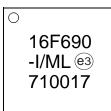

20-Lead SOIC (7.50 mm)

20-Lead SSOP

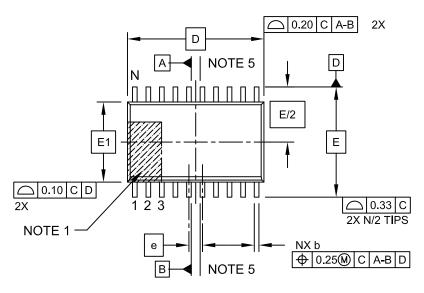
20-Lead QFN

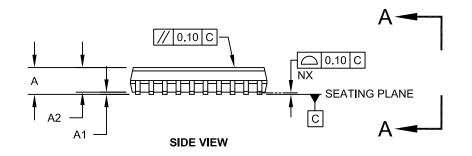


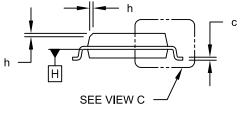
Example


Example

Example


Example


Legend:	XXX Y YY WW NNN (e3) *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.						
	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.							


20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

Microchip Technology Drawing C04-094C Sheet 1 of 2